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The usage of methods for the estimation of the true underlying connectivity among the
observed variables of a system is increasing, especially in the domain of neuroscience.
Granger causality and similar concepts are employed for the estimation of the brain
network from electroencephalogram (EEG) data. Also source localization techniques, such
as the standardized low resolution electromagnetic tomography (sLORETA), are widely
used for obtaining more reliable data in the source space. In this work, connectivity
structures are estimated in the sensor and in the source spacemaking use of the sLORETA
transformation for simulated and for EEG data with episodes of spontaneous epileptiform
discharges (ED). From the comparative simulation study on high-dimensional coupled
stochastic and deterministic systems originating in the sensor space, we conclude that the
structure of the estimated causality networks differs in the sensor space and in the source
space. Moreover, different network types, such as random, small-world and scale-free,
can be better discriminated on the basis of the data in the original sensor space than on the
transformed data in the source space. Similarly, in EEG epochs containing epileptiform
discharges, the discriminative ability of network topological indices was significantly better
in the sensor compared to the source level. In conclusion, causality networks constructed
at the sensor and source level, for both simulated and empirical data, exhibit significant
structural differences. These observations indicate that further studies are warranted in
order to clarify the exact relationship between data registered in the sensor and
source space.

Keywords: multi-channel EEG analysis, sensor space analysis, source space analysis, brain networks, Granger
causality, sLORETA

1 INTRODUCTION

There is an increasing interest in neuroscience in working on the true current distribution of the
sources in the grey matter of the brain, termed source space, and not on the extracranial
electroencephalograms (EEG) or magnetic encephalogram (MEG) recordings, termed sensor
space (De Vico Fallani et al., 2010; Lehmann et al., 2014). Many strategies have been proposed
in order to obtain the primary current distribution of the sources in the brain from EEG or MEG.
These are basically head models that take into account the volume conduction of the brain and other
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properties in order to estimate the activity of the initial sources
that explain best the extracranial electric potential measurements.
Alternatively, it has also been proposed to reconstruct the
electrostatic field within a predefined cubic grid of center
points, based on the assumption of an ellipsoid and
electromagnetically homogeneous head model, without using
dipole modeling or other priors, an approach called 3D vector
field tomography (Papadaniil and Hadjileontiadis, 2015;
Papadaniil et al., 2016). The methods of source reconstruction
are separated in two main classes, the over-determined and the
under-determined inverse models (Michel et al., 2004). The over-
determined inverse models presuppose that a small number of
points in the source space is capable of explaining the extracranial
measurements sufficiently. In this case, a unique solution, in
terms of source location and current activity, is provided when
the number of parameters to be estimated is less or equal to the
number of sensor space channels. On the contrary, the under-
determined inverse models consider a dense three dimensional
(3D) grid of points in the brain having fixed positions and being
manymore than the sensor space channels, which leads to infinite
solutions, as stated first in (Helmholtz, 1853). The objective for
these models then is to determine a unique optimal source electric
activity distribution over the grid of points.

In recent years, the concepts of Granger causality (Granger,
1969) and causality networks are of increasing interest in many
branches of science such as finance (Hong et al., 2009; Billio et al.,
2012), socioeconomics (Bollen et al., 2011), climatology (Runge
et al., 2015; Dijkstra et al., 2019) and neuroscience (Kugiumtzis
and Kimiskidis, 2015; Porta and Faes, 2016; He et al., 2019;
Rossini et al., 2019). Intuitively, given two variables, X1 and X2,
the Granger causality from variable X1 to variable X2 exists if the
past and present of X1 provide information that improves
forecasts for the future of X2. The concept of Granger
causality is implemented in a number of measures in the time,
frequency and phase domain, and extended to account for the
presence of other observed variables and thus estimate only direct
causal effects. In several studies, linear and nonlinear as well as
bivariate and multivariate causality measures are compared, e.g.,
see the recent comparative studies in (Bakhshayesh et al., 2019;
Siggiridou et al., 2019; Sommariva et al., 2019) and references
therein, and it turns out that the most appropriate measures are
the direct and nonlinear measures, but these are also the harder to
be estimated reliably. The dimension reduction, intrinsically
taking place in the algorithm of some Granger causality
measures, allows for the estimation of direct causal effects in
high-dimensional time series, such as multi-channel EEG. We
consider a linear and a nonlinear such measure in this study, the
restricted conditional Granger causality index (RCGCI)
(Siggiridou and Kugiumtzis, 2016) and the partial mutual
information from mixed embedding (PMIME) (Kugiumtzis,
2013), respectively, both found to perform well in high-
dimensional settings (Koutlis and Kugiumtzis, 2016; Siggiridou
et al., 2019).

The direct measures are particularly relevant for the formation
of causality networks from multivariate time series because only
direct causal effects are estimated. The causality networks are
graphs with nodes that represent the observed variables of a

system and connections between nodes that are weighted by the
values of the selected causality measure. These networks are
usually analyzed with simple metrics of network theory in
order to estimate important characteristics of their topology
(Rubinov and Sporns, 2010; Fornito et al., 2016; Geier and
Lehnertz, 2017). In neuroscience, the estimation of causality
effects among brain areas using EEG recordings is a widely
used approach for the observation of brain reactions to certain
stimuli and for the discrimination of normal and abnormal states
of brain function (Schelter et al., 2006; Lehnertz et al., 2014;
Fornito et al., 2016).

For the computation of the connectivity in the source space, in
some cases the cortical activity may be estimated for a limited
number of nodes and that makes the computations cost-efficient
(De Vico Fallani et al., 2010), while in other cases, the number of
nodes is prohibitive for a multivariate analysis of the estimated
cortical activity (Milz et al., 2014). In the latter cases, the usual
strategy is to discretize the cortex in different regions of interest
(ROIs) and to consider as new nodes the centers of these regions
and assign to them the average activity of all nodes of this region
(Hata et al., 2016; Toppi et al., 2016). The connectivity of the
estimated cortical activity is estimated using the measures of
Granger causality discussed above [see also (Lei et al., 2015)], as
well as linear measures (Schoffelen and Gross, 2009; De Vico
Fallani et al., 2010; Lehmann et al., 2014; Milz et al., 2014) and
nonlinear measures (Mulert et al., 2011; Pascual-Marqui et al.,
2014) of similarity and synchronization, i.e. phase
synchronization or correlation in the time and frequency
domain. Recent studies found that the choice of the inverse
method impacts the brain connectivity analysis, e.g., see
source-space coherence analysis on magnetoencephalogram
(MEG) (Hincapié et al., 2017).

To the best of our knowledge there have not been any reports
for systematic comparison of the brain connectivity estimated in
the sensor and source space. These two approaches are tested in
simulation examples and discussed in (Brunner et al., 2016; Van
de Steen et al., 2019). Furthermore, the effect of noise and source
locations on the estimation of connectivity in source space is
studied in (Anzolin et al., 2019). It is well accepted that EEG
sensors do not capture signals exclusively from areas beneath
EEG electrodes and the location and orientation of the sources
influence critically the signals registered at the sensor level (Van
de Steen et al., 2019). For that very reason, in the present study, we
examine the overall connectivity and not distinguish one-to-one
relationship between connections of individual anatomic areas in
the sensor and source space, as done in the two studies in
(Brunner et al., 2016; Van de Steen et al., 2019). Our study
differs from the two studies also in that it assumes the simulated
systems in the sensor rather than the source space, where the
latter is physiologically more appropriate as sensors do not
interact with each other but brain sources do. However, the
data at hand are the scalp EEG (sensor space) and it is thus
reasonable to assume simulation systems for the observed
dynamics. Moreover, the study is on the overall structure of
causality networks and not causal relationships of distinct sources
as in (Anzolin et al., 2019; Van de Steen et al., 2019), and for this
to develop a high dimensional system in the source space under
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realistic assumptions is a hard task. For the comparison of
causality networks in sensor and source space it was reported
strong correlation of the global functional connectivity between
the two domains on real scalp EEG of eyes open and closed (Lai
et al., 2018). We extend this study using effective connectivity
measures and a different real EEG setting of changing
connectivity structure.

In this work, the objective is beyond investigating differences
in the estimated connectivity networks in the sensor and source
space, which is expected due to the transform and we show it here
analytically. Rather, the objective is to apply the same procedures
for causality network estimation in the sensor and source space
and to compare the causality structures that arise on each of the
two workspaces. Though it is not expected to find similar
causality structures, an important question is whether the
estimated causality structures hold the same discriminative
information in any of their characteristics, estimated by
network metrics. For this, we performed a simulation study on
systems of linear and nonlinear dynamics, having a predefined
connectivity structure of one of the three types of random
(RAND) (Erdös and Rényi, 1959), scale-free (SCF) (Barabási
and Albert, 1999) and small-world (SW) (Watts and Strogatz,
1998) networks. Examples of the network types are presented in
Figure 1. The original space of the generated multivariate time
series is assumed to be the sensor space and the data are
transformed by sLORETA to source space. The objective of
the simulation study is the discrimination of different coupling
structures (the three network types) by a network characteristic in
both spaces. As established in our previous works, the two
causality measures RCGCI and PMIME have a very good
discrimination capability in the sensor space (the generated
time series in the simulation study) and the interest is merely
to investigate the deformation of the network structure in the
source space. For the neuroscience data analysis, EEG data with
episodes of epileptiform discharges (ED) are used in order to
compare the causality structure of the brain before, during and
after an ED in the sensor and source space.

The paper is organized as follows: in Section 2 the source
localization method sLORETA, the causality measures and the
network indices are presented, in Section 3 the simulated and the

EEG data are briefly discussed, in Section 4 the results are
presented and in Section 5 conclusions are given.

2 METHODS

2.1 sLORETA
A commonly used method for the 3D localization of the sources
of the electromagnetic activity of the brain is the so-called low
resolution electromagnetic tomography, implemented in the
LORETA software (Pascual-Marqui et al., 1994). LORETA is
suggested as an improvement of the minimum norm estimate
(Hämäläinen and Ilmoniemi, 1994). The minimum norm
estimate has a main disadvantage in that superficial sources
are preferred over deep sources due to the fact that the
current density vector is not weighted for the solution of the
minimization problem. LORETA overcomes this problem using
as weights the norm of the columns of the lead field matrix (the
matrix that transforms current density of the sources to
extracranial measurements), thus giving truly 3D solutions.
Additionally, it provides “smooth” solutions in terms of the
minimum weighted Laplacian, which are more plausible as
neighboring neurons tend to have coherent waveforms. The
way to achieve a meaningful 3D unique solution is by
sacrificing spatial resolution, namely the brain volume is
discretized in v � 2394 voxels considered as separate dipoles
and thus the name low resolution electromagnetic tomography.
The forward model is defined as:

m � Gd (1)

where m ∈ Rc is the vector of measurements at a certain time
point, c ∈ N is the number of channels, d ∈ R3v is the vector of
current densities of the v voxels (for each voxel a 3D vector is
considered) and G ∈ Rc×3v is the lead field matrix. The discrete
problem is:

mind‖BWd‖, under the constraintm � Gd (2)

where W ∈ R3v×3v is a diagonal matrix with Wii � ‖Gi‖, Gi is the
ith column of G and B is the discrete Laplacian operator 3v × 3v

FIGURE 1 | Illustration of network types: (A) random, (B) small world, and (C) scale-free.
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matrix [for more details on the computation of B see the
Appendix of (Pascual-Marqui et al., 1994)]. The unique
solution for the current densities is:

d* � Tm (3)

with T�(WBTBW)−1GT [G(WBTBW)−1GT]†, where the †
exponent denotes the Moore-Penrose pseudo-inverse.

In (Pascual-Marqui, 2002) an improvement of LORETA is
presented suggesting that it achieves zero localization error due to
a standardization of the current densities. This improvement is
termed standardized low resolution brain electromagnetic
tomography (sLORETA) and provides a better resolution with
v � 6239 voxels. The followed procedure is exactly the same as in
LORETA but the estimation d* is finally standardized by its
variance. This is actually similar to the work conducted in (Dale
et al., 2000) utilizing standardization as well but in a different way
from that in sLORETA, which conversely achieves exact
localization. More precisely, the covariance matrix Sd* of the
estimated current density d* is computed and the standardized
current densities are:

d*
i T [Sd*]ii{ }−1d*

i (4)

where d*i ∈ R3 is the current density estimate at the ith voxel and
[Sd* ]ii ∈ R3×3 is the ith diagonal block of matrix Sd* .

2.2 Causality Network Estimation
For the estimation of the causality networks we use two
Granger causality measures, one linear, and one nonlinear,
and both in the time domain making use of dimension
reduction and being capable of estimating direct causal

effects from high-dimensional time series (Koutlis and
Kugiumtzis, 2016; Siggiridou et al., 2019).

2.2.1 RCGCI
The measure restricted conditional Granger causality index
(RCGCI) is the well-known linear stochastic model-based
measure of conditional Granger causality index (CGCI) but
based on a restricted (sparse) vector autoregressive (VAR)
model (Siggiridou and Kugiumtzis, 2016). The CGCI makes
use of the unrestricted VAR model (U-model) of all the lagged
variables up to a maximum lag (order) p so that in total there are
Kp terms, where K is the number of observed variables. Applying
a selection scheme using augmented VAR models, called
modified backward-in-time selection, a small subset of lagged
variables are selected in the sparse VAR model to constitute the
U-model for RCGCI. For high-dimensional systems with sparse
coupling structure, the selected subset may have cardinality much
smaller than Kp. The restricted model (R-model) is derived by
excluding the lagged terms of the driving variable X, so that if the
sparse VAR U-model contains no lagged terms of X then RCGCI
� 0. If it contains lagged terms of X then RCGCI is computed by
the log ratio of the fitted error variances of the U-model and
R-model, sU

2 and sR
2, respectively, as for the CGCI

RCGCIX→Y � log
s 2
R

s 2
U

. (5)

2.2.2 PMIME
The measure partial mutual information from mixed embedding
(PMIME) is a normalized version of the partial transfer entropy

FIGURE 2 | (A) Electrode positions assumed for the sLORETA on the simulated data. (B) One epoch with an ED episode. The vertical lines represent the start and
end points of the ED, respectively, and the time order is with respect to the ED start (0 time at start).
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(Schreiber, 2000; Papana et al., 2012) restricted to the selected
mixed embedding vector, formed by selecting progressively from the
set of all delayed variables the most relevant ones to the future of the
response variable (Kugiumtzis, 2013). The selection relies on
information measures, mutual information (MI) and conditional
mutual information (CMI). In particular, in the first step of the
selection scheme, the lagged variable w with the highest mutual
information (MI) to the responseY (one time step ahead, yt+1), I(yt+1;
w), is selected and constitutes the current subset of lagged variables
wt. For each subsequent step, the lagged variable w with the highest
CMI to the response given the current subset, I(yt+1;w|wt), is selected
and added to wt. The significance of CMI (MI for the first step) is
tested at each step and the selection scheme terminates when it is
found statistically not significant. Similarly to RCGCI, if the derived
subset does not include any lagged terms of the driving variable X
then PMIME � 0. If it includes, the information of the lagged terms
of X about the response is evaluated by the CMI of the lagged terms
of X in wt, wx

t , and the response given all other components in wt,
normalized by themutual information of all the lagged terms and the
response

PMIMEX→Y � I(yt+1;wx
t |wy

t ,w
z
t )

I(yt+1;wt) , (6)

where wy
t and wz

t are the lagged terms of the response Y and the
remaining variables Z in wt, respectively, so that wt �
[wx

t ,w
y
t ,w

z
t ].

Both causality measures include an internal criterion to
determine the presence of the driving of one variable to

another and in that case a positive value of RCGCI or PMIME
quantifies the strength of the driving, otherwise the measure is
zero. This leads to a weighted matrix with zero and weighted
connections of driving strength, thus the binarization of the
causality network is performed just by accepting the positive
values as existing causal effects.

2.3 Network Metrics
We select five network metrics, which capture different
characteristics of the network structure (Rubinov and Sporns,
2010). These metrics are computed on the adjacency matrices
formed by the positive PMIME or RCGCI values for each ordered
pair of variables and regard the causality network estimated from
the multivariate time series.

The five network metrics quantify different properties of
the network with binary directed or non-directed
connections. The centrality property of the network is
quantified by the mean, degm, and standard deviation (SD),
degSD, of the degree distribution over the nodes. The
characteristic path length, λ, is used as index of functional
integration. The small-worldness index, SWi, quantifies the
presence of small-world structure in the network, which
suggests the combination of functional segregation and
functional integration in a network. As an index of
resilience we consider the assortativity coefficient, r,
quantifying the preference of network nodes to attach to
other nodes of similar degree, typically defined as the
correlation coefficient between the degrees of two nodes.

FIGURE 3 | The initial scale-free coupling structure among the variables is used to generate the K � 20 time series from the CMG system hypothesized to be in the
sensor space. Then, sLORETA derives the respective time series in the source space and finally the PMIME is used to estimate the causal effects and give the causality
networks in both the sensor and the source levels.
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2.4 Evaluation Index
In the focus of the study is the discrimination of different
connectivity structures in the sensor and source space, and we

consider the three network types, i.e., random (RAND), small
world (SW), and scale-free (SCF) (see Figure 1). We consider a
number of realizations of multivariate time series from each network

FIGURE 4 |Histograms for the standard deviation of the degree, degSD, for 50 realizations of each network type: (A) random (RAND), (B) small-world (SW), and (C)
scale-free (SCF). At each panel, there are three histograms, for the initial network, the network estimated in the sensor space, and the network estimated in the source
space, as given in the legend.

FIGURE 5 | Scatter plots of network metrics estimated on 50 realizations of random (RAND) and small-world (SW) network types, where in the x-axis is the metric
for the true network and in the y-axis for the estimated network in the sensor and source space, as shown in the legend. The metrics are SWi in (A), degSD in (B), λ in (C)
and r in (D).
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type and compute the causality networks and subsequently the
network metrics for each realization. For each pair formed from
any two of RAND, SW, and SCF, the evaluation index area under
receiver operating characteristic curve (AUROC) (Fawcett, 2006) is
employed to quantify the overlapping of the two distributions of the
network metric in the two network types. For the simulation study,
the AUROC is computed for each pair of network types of the
original causality network (given by the system equations) and the
estimated causality networks in the sensor and source space.

3 MATERIALS

In the simulation study, the synthetic systems are considered to
evolve in the sensor space. One could argue to consider the source
space instead, but we do not follow this line here for two reasons.
First, the assumption of the sensor space as the space of the
generated time series is a natural choice since the starting data,
the acquired EEGmeasurements, are in the sensor space. Secondly,
the generation of data in the source space is a hard task and can be
realized under rather unrealistic simplifications, e.g., assuming the
same activity in all vertices (voxels) in a ROI on the cortical mesh
(Silva Pereira et al., 2017). We consider three systems of different
type. The two first systems are deterministic chaotic dynamical
systems while the third is a linear multivariate stochastic process.

The two first systems are coupled systems, i.e., are formed from a
number of subsystems of the same type coupled to each other. The
first system is in discrete time and the second in continuous time.

3.1 Simulated Data
The system of coupled Hénon maps (CHM) (Kugiumtzis, 2013)
is a system of coupled chaotic maps defined as

FIGURE 6 | Distribution of network metric values for three different network types (RAND, SW, and SCF) computed on the initial network and on the networks
estimated by PMIME on the sensor space and on the source space, as shown in the legend. The PMIME is computed on simulated time series of the CMG system. The
metrics are SWi in (A), degm in (B), degSD in (C), λ in (D) and r in (E).

TABLE 1 | Average AUROC values from the three AUROC values computed in the
three binary classification tasks, RAND vs. SW, RAND vs. SCF, and SW vs.
SCF, for the five network metrics (labels in the first row), the three dynamical
systems (labels in the first column) and for the initial networks, the networks from
the sensor space and the networks from the source space.

SWi degm degSD λ r

CMG initial 0.999 1 1 0.995 0.856
sensor 0.997 0.878 0.995 0.828 0.842
source 0.546 0.839 0.633 0.768 0.713

CHM initial 1 1 1 0.993 0.866
sensor 0.99 0.957 0.988 0.924 0.713
source 0.523 0.781 0.706 0.678 0.613

VAR initial 0.999 1 1 0.993 0.888
sensor 0.951 0.953 0.993 0.949 0.729
source 0.739 0.841 0.855 0.851 0.559
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xj,t � 1.4 − ∑K
i�1Cijxi,t−1

∑K
i�1Θ(Cij)

+ 1 − ∑K
i�1Cij

∑K
i�1Θ(Cij)( )xj,t−1[ ]

2

+ 0.3xj,t−2

(7)

where j � 1, 2, . . . , K is the variable index, K denotes the number
of variables and Cij is the coupling strength (considering xi as the
driving variable and xj as the response variable). The Θ(Cij) is the
Heaviside function, being one if Cij > 0 and zero if Cij � 0. For this
system, we consider K � 20 variables coupled with strength Cij �
C � 0.2 for the non-vanishing terms according to each of the three
network types (RAND, SW, SCF). For each network type, 50
realizations are generated and the time series have length
N � 2048.

The system of coupled Mackey-Glass (CMG) (Senthilkumar
et al., 2008; Kugiumtzis, 2013) is a system of coupled identical
delayed differential equations defined as

_xj(t) � −0.1xj(t) +∑K
i�1

Cijxi(t − Δ)
1 + xi(t − Δ)10, (8)

where j � 1, 2, . . . , K is the variable index, and Δ is the delay
parameter. For this systemwe considerΔ � 100 time units (for the
uncoupled system each equation defines a chaotic system of
correlation dimension close to 7) and Cij � C � 0.1. The
solution is run in Matlab (Natick, Massachusetts: The
MathWorks Inc.) using the function “dde23” and then

sampled at 4 time units. Further details for the generation of
the CMG time series are given in (Kugiumtzis, 2013). The setting
is as for CHM, K � 20, 50 realizations of each of the RAND, SW,
and SCF network types and N � 2048.

The third systems is a linear stochastic VAR process (Basu and
Michailidis, 2015) on K � 20 variables and order p � 1,

xt � Axt−1 + et, (9)

where xt is the state vector of length K and et is the white noise
vector of length K following Gaussian distribution with zero
mean and unity covariance matrix. The components of the square
coefficient matrix A are zero or positive determined by the
selected network of type RAND, SW, or SCF. Initially, the
non-vanishing coefficients are set to 0.9 (the rest are set to
zero) and then they are iteratively reduced until the
stationarity condition is fulfilled. We get 50 multivariate time
series for each of the three network types of length N � 2048.

The PMIME is used to estimate the connectivity for the two
first nonlinear systems and the RCGCI for the third linear system,
as being the most appropriate measures to capture the causality
effects in each system. This is so because the objective here is to
have an appropriate measure that estimates best the causality
network from the time series in the sensor and source space.

All the computationally generated data are treated as if they
were EEG signals (in the sensor space) in order to transform them
with sLORETA (to the source space) and the K � 20 variables are

FIGURE 7 | Distribution of network metric values for three different network types (RAND, SW, and SCF) computed on the initial network and on the networks
estimated by PMIME on the sensor space and on the source space, as shown in the legend. The PMIME is computed on simulated time series of the CHM system. The
metrics are SWi in (A), degm in (B), degSD in (C), λ in (D) and r in (E).
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considered as electrode positions on the scalp, more precisely:
FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz,
CP2, CP4, P3, P1, Pz, P2, P4. These positions are selected in order
to cover a sufficient area of the brain rather than concentrating on
a small region, as shown in Figure 2A.

For each of the 50 realizations, the hypothesizedmulti-channel
(K � 20) time series in the sensor space is transformed with
sLORETA to v � 6239 source space signals, which consequently
are separated in ROIs and averaged, thereby resulting in K � 20
source space time series. The ROIs are selected with the option of
“all nearest voxels” in the sLORETA software, which separates the
voxels in mutually disjoint regions of the nearest to the selected
electrodes voxels.

3.2 EEG Data
For the real data analysis, EEG data from three epileptic patients
at rest are used. In order to avoid the confounding variables of
diverse structural substrates and varying localizations of the
epileptic zone, which typically characterize focal epilepsies, we
used data from patients suffering from Genetic Generalized
Epilepsies. From the initial recording of 60 channels, channels
containing artifacts were rejected, i.e., 16 channels for subject 1, 9
channels for subject 2, and 14 channels for subject 3. The EEG
data of the artifact-free channels were band-pass filtered in
(0.01,70) Hz, downsampled to 200 Hz, and re-referenced to

infinity (Yao, 2001), a re-referencing scheme found to be more
appropriate for connectivity analysis (Qin et al., 2010). Epochs
containing epileptiform discharge (ED) were selected, 7 epochs
from subject 1, 3 epochs from subject 2 and 10 epochs from
subject 3. An exemplary epoch from subject 1 is shown in
Figure 2B. Each epoch contains a pre-ED period of 10 s, a
spontaneous ED of duration from 2.19 to 5.71 s and a post-
ED period of 10 s.

The sLORETA software is used for the transformation of the
EEG signals to the source space. First, the electrode positions are
selected and then the transformation matrix is generated by the
software. Consequently, the signals are transformed to the source
space giving a large number of v � 6239 time series. In accordance
with the simulation study, a number of 44 ROIs corresponding to
the 44 scalp electrodes for subject 1 are selected and 44 time series
for the source space are obtained, and the same was done
accordingly for the artifact-free channels of the other two
subjects.

After the transformation of the time series, both the sensor and
source time series are split in sliding overlapping windows of 2 s
with a sliding step of 0.5 s to profile the brain network
characteristics and all their changes during the epochs. The
causality estimation is performed with PMIME and then
characteristics of the causality networks are estimated by the
network metrics previously presented.

FIGURE 8 | Distribution of network metric values for three different network types (RAND, SW, and SCF) computed on the initial network and on the networks
estimated by PMIME on the sensor space and on the source space, as shown in the legend. The PMIME is computed on simulated time series of the VAR system. The
metrics are SWi in (A), degm in (B), degSD in (C), λ in (D) and r in (E).
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4 RESULTS

Before presenting the results of the simulation study, it is
elaborated that a linear transformation may change the
connectivity of a set of variables in a significant degree.
Although the employed methodology (sLORETA) is not a
linear transformation, the following simplistic example is
indicative of the changes a transformation in general can
induce. Let us assume a linear VAR(1) process on K variables

xt � Axt−1 + et, (10)

where the coefficient matrix A defines the connectivity matrix of
the original system, xt � [x1,t, . . . , xK,t] is the vector of the state of
K variables at indexed time t and et � [e1,t, . . . , eK,t] is the vector of
noise terms at time t having normal distribution ei,t ∼N(0, σ2), i �
1, . . . , K, and covariance matrix Σet � σ2IK, where IK is the
identity matrix of size K × K. Consider a linear transformation
of xt

yt � Hxt, (11)

whereH is a matrix of size K × Kwith det(H) ≠ 0. Solving Eq. (11)
with respect to xt and substituting it in Eq. (10), the VAR (1) for yt
is obtained as:

yt � HAH−1yt−1 +Het � Byt−1 + et′ , (12)

where the input noise vector et′ is correlated (the noise covariance
matrix is not diagonal) indicating also the presence of
instantaneous causality, which however is not relevant here, as
we estimate only the lag causality. In analogy to the connectivity
of the original VAR(1) system, the connectivity of the
transformed VAR(1) system is determined by the coefficient
matrix B � HAH−1. Thus, a variety of different connectivity
structures for the transformed system can be obtained,
dependent on the form of H, with the only constraint being
that the initial and the transformed system have connectivity
matrices with the same eigenvalues. Also, it is noteworthy that the
transformation matrixH � Q−1

A , where the columns ofQA are the
eigenvectors of A, leads to a diagonal B and subsequently a
linearly transformed VAR(1) system with no connections
among its variables, regardless of its initial connectivity structure.

4.1 Simulation Study
In Figure 3, the steps of the procedure followed in the simulation
study are illustrated in an example for the CMG system. Initially,
a network of a predefined type (RAND, SW, or SCF) is defined, in
order to form the coupling relationships in the system equations,
for the generation of the 50 simulated time series of each network
type in the hypothesized sensor space. Then, sLORETA is used to
transform the time series to the source space. The causal effects
for all pairs of observed variables are estimated by a causality
measure (PMIME for CMG in Figure 3) in both the sensor and
the source space, resulting in the respective causality networks. It
is observed that the form of the time series is rather different
before and after the sLORETA transformation. More precisely,
the source space time series are less oscillatory and show spikes at
various times contrary to the initial time series.

Regarding the causality network estimation, for the example in
Figure 3 the PMIME has a satisfactory performance on the sensor
space time series capturing the original scale-free structure. The
causality network of the transformed time series in the source
space is qualitatively different from the original network, as
expected from the previous analytical example. This is
quantitatively confirmed for instance by the network metric
degSD that takes the values 5.33 and 2.35, respectively, for the
initial structure and the source space estimation. In Figure 4,
aggregate results from the 50 realizations are shown for all three
network structures, i.e., the initial network, the network estimated

FIGURE 9 | Upper panel: One epoch of S1 comprising a 10 s pre-ED
period, an ED lasting 5.71 s and a 10 s post-ED period. Three time windows
are highlighted (one in the pre-ED period, one during the ED and one in the
post-ED period) and the respective causality networks are presented
right under the arrows. Lower panel: the same but for the sLORETA
transformed time series.
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in the sensor space and the network estimated in the source space.
The similarity of the degSD between the original network and the
estimated network in the sensor space as well as their dissimilarity
to the estimated network in the source space are striking for the
cases of RAND and SW networks. For SCF networks, the PMIME
does not estimate with the same high accuracy the initial network
(see specific results in (Koutlis and Kugiumtzis, 2016)) and
therefore the histograms of degSD for the sensor and source
space networks differ significantly from the respective
histogram for the initial network.

The matching of the metrics of the estimated network to the
true network can be seen collectively in the scatter plots for each
network metric and for both RAND and SW network types in
Figure 5. Results are not shown for the characteristic degm being
constant for the true networks and the SCF network type as for all
but the network metric r the metric of the true network is rather
constant across the 50 realizations. The network metrics SWi,
degSD, and λ computed on the sensor space tend to match well
with the respective metrics of the true networks whereas for the

source space the respective metrics are more spread and have the
tendency to overestimate or underestimate the metrics of the true
network (over or under the diagonal in Figures 5A–C,
respectively). For the metric r in Figure 5D the values of the
true networks are at the same range for RAND and SW network
types so that at first look r values seem to spread about the same
for both sensor and source space. A careful look would discern the
alignment of the r values for the sensor space along the diagonal
and indeed the Pearson correlation coefficient values are for
RAND network type 0.84 for sensor space as opposed to 0.01
for source space and for SW network type 0.67 and −0.28,
respectively.

Establishing that the connectivity changes significantly under
the sLORETA transform, we investigate now whether the
transform preserves the discriminative information that allows
for correct classification of the different initial coupling
structures. For this, we examine the discrimination of the
three network types in the sensor and source space. In
Figure 6, results for the discriminative ability of the network

FIGURE 10 | The profile of five network indices on the sensor (green line with “o”marker) and on the source space (red line with “+”marker) for 7 epochs of S1 given
in the row panels: (A) SWi, (B) degm, (C) degSD, (D) λ, (E) r.
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metrics are presented for the CMG system, where the estimated
networks are derived by the PMIME.

It is observed that the values of all network metrics for the
initial network and the network estimated on the sensor space
range in a similar scale. This includes also the case of degSD, where
though the initial connections are not preserved well in the sensor
space with the PMIME for SCF networks (see Figure 4C), still the
SCF networks can be clearly discriminated with degSD from
RAND and SW networks. The values of the network metrics
for the source space are in some cases similar with those of the
initial networks, e.g., SWi on RAND network, but in most cases
they range in different scales. This result indicates that the
transformation to the source space changes significantly the
structure of the causality network. The discriminative
information of the network metrics, regarding the three
network types, remains in the sensor space estimation at a

larger degree than in the source space. This result is confirmed
by the average AUROC values for the differences in the three
pairs of the RAND, SW, and SCF network types, presented in
Table 1. While the AUROC values for the networks estimated in
the sensor space are high and similar to these for the initial
networks, the respective AUROC values for networks estimated
in the source space are much lower. However, in almost all of the
discrimination tasks of Table 1 we obtain a p-value < 0.01 after
ANOVA hypothesis testing for equal mean AUROC in the
RAND, SW and SCF network types, with the exception of
source space estimation of SWi on CMG, source space
estimation of SWi on CHM, source space estimation of r on
CHM and source space estimation of r on VAR.

In Figure 7, results for the discriminative ability of the
network indices are presented for the CHM system in the
same way as shown earlier for the CMG system in Figure 6.

FIGURE 11 | The profile of five network indices on the sensor (green line with “o”marker) and on the source space (red line with “+”marker) for 3 epochs of S2 given
in the row panels: (A) SWi, (B) degm, (C) degSD, (D) λ, (E) r.
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Similarly to the CMG case, the values of all network indices for
the initial network and the network estimated on the sensor space
range in a similar scale. In contrast, the values of the network
indices for the networks estimated on the source space range in
different scales with those of the initial networks in most of the
cases. Again, this is confirmed with the results of AUROC in
Table 1.

In Figure 8, the respective results for the VAR system are
presented. Here, the causality networks are estimated with the
linear causality measure RCGCI, which is more appropriate (and
simple) for the linear VAR process. Regarding the range of
network index values, in many cases the initial network, the
sensor space network and the source space network share the
same range of values, e.g., for the random network type and all
measures or the scale-free network and SWi and λ. Also, the
discriminative information of the network indices is preserved in

the sensor space in all cases, but in the source space only for SWi
and λ, as it is shown also in Table 1.

4.2 EEG Data Analysis
For the EEG data analysis, the epochs from three subjects that
contain epileptiform discharges (ED) are considered. The EDs
of the 7 epochs of Subject 1 (S1) have duration from 2.19 to
5.71 s and the EDs of the 9 epochs of Subject 3 (S3) from 1.94 to
5.63 s, whereas the 10th epoch is exceptionally long at 29.05 s.
The 3 epochs of Subject 2 (S2) have all very short EDs of
duration 1.40, 1.80, and 2.09 s. Each epoch consists of a 10 s
pre-ED period, an ED period and a 10 s post-ED period. The
epoch is split in sliding overlapping windows of 2 s duration
and 0.5 s step on which the causality estimation is performed
with PMIME. As shown in Figure 9, for each window a
causality network is estimated from the initial time series

FIGURE 12 | The profile of five network indices on the sensor (green line with “o” marker) and on the source space (red line with “+” marker) for 10 epochs of S3
given in the row panels: (A) SWi, (B) degm, (C) degSD, (D) λ, (E) r.
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and from the time series obtained after the sLORETA
transformation.

Characteristics of the causality networks are estimated by
network metrics at each time window and the profiles of the
metrics are shown in Figure 10 for S1, Figure 11 for S2, and
Figure 12 for S3. It is observed that the network indices degm and
λ in both the sensor and the source space have similar estimated
values during the epochs, with subtle differences at various times,
e.g., for S1 the coefficient of determination R2 is 0.52 and 0.28,
respectively. In contrast, SWi shows significant differences in the
source space at many time points, e.g., for S1 R2 � 0.02, which is in
agreement with the simulation study.

The interest is mainly in the pre-ED and ED periods where the
brain state changes abruptly at the ED onset, whereas from ED to
post-ED the change is gradual as the brain state recovers from the
ED. To quantify the differences in the three states, before the ED
(pre-ED), within the ED (ED) and after the ED (post-ED), we
computed the AUROC for pre-ED vs. ED, pre-ED vs. post-ED
and ED vs. post-ED in both spaces (sensor and source) and all
network indices. The results for S1 and S3 are shown in Table 2,
while for S2 statistical comparison is not possible as the EDs in the
three episodes are very short.

The network index degm discriminates well the pre-ED
from ED period in all episodes of the two subjects with
average AUROC value 0.88 for the sensor space for both
S1 and S3 and 0.80 for S1 and 0.84 for S3 for the source space.
In the post-ED period, degm recovers its initial level
gradually.

For the network index λ the respective AUROC values are
0.85 and 0.84 for S1 and S3 for the sensor space while for the
source space the corresponding AUROC are 0.75 and 0.78,
respectively. The other two indices, SW and r, have low
discrimination ability, but still the AUROC values are higher
for the sensor space than for the source space for both
subjects S1 and S3. These findings are also confirmed by
the independent sample t-test for equal means of pre-ED
and ED, as shown in Table 3, where for more episodes
at the sensor space than at the source space the
discrimination is established for the stringent significance
level of 0.01.

The results show that the network characteristics do
change after the transformation to the source space at a
varying degree, so that the discrimination of the pre-ED
vs. ED period is less significant. This result is not in
agreement to a recent report of qualitatively similar results
of connectivity structure in the source activity from
reconstructed scalp EEG data and the connectivity from
corresponding electrocorticographic sources in primates
(Macaca mulatta) (Papadopoulou et al., 2019).

5 DISCUSSION

In this work, the level of preservation of the main network
structure when estimated on the original data, also called the
sensor space, and data transformed to the so-called source space
has been investigated. The transformation is performed using the
software sLORETA and the causality effects among the system
variables are estimated with a linear method (RCGCI) and a
nonlinear information based method (PMIME). After the
causality network estimation, certain network characteristics
are estimated by network indices in order to compare the
respective network topologies in the two spaces (sensor and
source).

We performed a simulation study first in order to compare the
results to the predefined ground truth, defined in the sensor
space. Admittedly, the true brain system is in source space and
physiologically it would be more appropriate to define the
simulation systems in the source space as done in (Brunner
et al., 2016; Anzolin et al., 2019; Van de Steen et al., 2019). In
contrast to these studies, where causal relationships of distinct
sources are investigated, our study is on the overall structure of
causality networks, requiring large scale systems that could only

TABLE 2 | Average AUROC values over the 7 epochs of S1 and the 10 epochs of
S3 for three discrimination tasks (pre-ED vs. ED, pre-ED vs. post-ED, ED vs.
post-ED), both spaces (sensor, source) and five network metrics (labels in the
first row).

SWi degm degSD λ r

7 epochs of S1

sensor space

pre-ED vs. ED 0.74 0.88 0.78 0.85 0.65
pre-ED vs. post-ED 0.65 0.61 0.58 0.62 0.57
ED vs. post-ED 0.68 0.77 0.79 0.76 0.62

source space

pre-ED vs. ED 0.59 0.80 0.77 0.75 0.60
pre-ED vs. post-ED 0.69 0.67 0.79 0.64 0.57
ED vs. post-ED 0.60 0.70 0.69 0.67 0.58

10 epochs of S3

sensor space

pre-ED vs. ED 0.73 0.88 0.74 0.84 0.75
pre-ED vs. post-ED 0.71 0.78 0.73 0.77 0.80
ED vs. post-ED 0.62 0.71 0.66 0.74 0.65

source space

pre-ED vs. ED 0.68 0.84 0.79 0.78 0.67
pre-ED vs. post-ED 0.87 0.80 0.99 0.71 0.83
ED vs. post-ED 0.62 0.74 0.72 0.64 0.60

TABLE 3 | Results of the independent sample t-test for equal means of pre-ED
and ED for subjects S1 and S3 and the five network indices as given in the first
row. The numbers correspond to the ED episodes of S1 and S3 for which the p-
value of the test is < 0.01 (for each subject first row is for the sensor space and
second row for the source space).

SWi degm degSD λ r

S1 sensor 2 6 7 1 3 5 6 7 1 3 6 7 1 3 5 6 7 4
source 1 3 5 7 1 2 3 5 3 5 7

S2 sensor — 1 3 7 10 3 2 3 4 —

source 2 4 2 4 4
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be realized under simplifications in the source space, e.g,. in (Silva
Pereira et al., 2017) this was attempted assuming the same activity
in all vertices (voxels) in a ROI on the cortical mesh. On the other
hand, it is common to assume the simulation systems at the
domain of the acquired data (here the scalp EEG). Thus, the
simulation systems refer to the observed dynamics, and the focus
of the study is on the change of the overall network structure of
the high-dimensional coupled system under the inverse
transform defined by sLORETA.

Three different network types were considered as initial
coupling structures for three high-dimensional coupled
dynamical systems: K � 20 coupled Mackey-Glass systems
(CMG), K � 20 Hénon coupled maps (CHM) and the linear
vector autoregressive process of order one on K � 20 variables
(VAR). The objective was first to designate the differences in the
topology of the causality networks in the two spaces, and then to
assess whether the information the network metrics hold
regarding the discrimination of the three network types was
preserved after the transformation to the source space. Then
we proceeded to EEG data analysis with illustrative cases from
recordings of three epileptic patients that contain epileptiform
discharges (EDs). The objective was again to compare the
differences in the topology of the estimated causality networks
in the sensor and in the source space. In addition, we tried to
clarify the degree to which the topology of the networks held
discriminative information regarding the pre-ED period vs. the
ED and in which space the discrimination was more clear.

In the simulation study, first we showed with an analytical
example that a linear transformation of the system variables can
change considerably the coupling structure of the dynamical
system, but it can preserve some characteristics e.g. the
eigenvalues of its adjacency matrix (similar derivation was
obtained in Van de Steen et al., 2019). Then, the simulation
results showed that the estimated causality networks have, as
expected, considerable differences in terms of the topology
characteristics. Finally, the ability of certain characteristics to
discriminate the initial coupling structures is reduced at a varying
degree after the transformation to the source space. We note here
that causality estimation inaccuracy (false positives or negatives)
exists also in the sensor space (the domain of true dynamics) due
to many sources, such as the time series length, the size in
conjunction with the density of the true coupling network,
and the type of inherent dynamics and causal relationships
(the latter may encounter the common source problem related
to volume conduction for EEG). However, the utilized measures
RCGCI and PMIME were found to perform well in high-
dimensional coupled systems and therefore they were used
here to allow for a better assessment of the differences in the
estimated networks in sensor and source space.

In the EEG data analysis, we showed that the characteristics of
the causality network topology were altered at varying degree.
Here, the small-worldness index was found to change most under
the transform to source space and had a very different profile at
overlapping windows across the epochs that contain ED. The
average degree of the causality networks was the most
discriminative characteristic regarding the pre-ED vs. ED task.
Also the characteristic path length showed good discrimination

ability for the same task. For both indices the ability to
discriminate the two periods was better in the sensor space
than in the source space. The clinical EEG data are essentially
a case study providing complementary evidence that clearly
corroborates the basic conclusion of the simulation analysis.
Further studies, on the basis of our preliminary findings, are
warranted including a larger number of subjects.

We have tactically left out of the design of the connectivity
analysis the issue of field spread and volume conduction. These
factors may affect the results of connectivity analysis in the sensor
space and subsequently the source space. It is not known as to what
extent the volume conduction affects through the inverse transform
the connectivity analysis in the source space (Schoffelen and Gross,
2009), but there is reported evidence from simulation studies that it
does (Anzolin et al., 2019). Functional connectivity measures
suggested in the literature to account for volume conduction,
such as the imaginary coherence (Nolte et al., 2004), have been
considered when comparing connectivity in sensor and source space
(Schoffelen and Gross, 2009; Lai et al., 2018; Demuru et al., 2020).
However, these measures are bivariate (allow for indirect
connections) and thus not suitable to estimate the network
structure, which is the main objective of this work. The utilized
causality measures here are multivariate and when estimating a
causal effect they account for the presence of all other observed
significant sources, including to some extent the common source due
to volume conduction. Certainly, they do not explicitly account for
zero-lag effects brought about by volume conduction. One of the two
measures used in the study has been recentlymodified to account for
zero-lag effects, called PMIME0 (Koutlis et al., 2019).We focused on
measures of lag-causality here and leave extension to other causality
measures including zero-lag effects to future work.

We have also refrained from discussing the different solutions
for the inverse transform and chose the sLORETA as one of the
most popular transforms. Certainly, the estimated connectivity
network in source space depends on the utilized inverse
transform, and this is also an open research topic gaining so
far little attention, e.g., two tested inverse transforms were found
to give distinctly different connectivity network characteristics in
source space (Lai et al., 2018).

In view of the increasing usage of source analysis in diverse
areas of neuroscience, the above data suggest that further studies
in order to clarify the relationship between sensor- and source-
derived data are warranted.
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