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Introduction: Renal transplant biopsies provide insights into graft health and

support decision making. The current evidence on links between biopsy scores

and transplant outcomes suggests there may be numerous factors affecting biopsy

scores. Here we adoptmeasurement science approach to investigate the sources of

uncertainty in biopsy assessment and suggest techniques to improve its robustness.

Methods: Histological assessments, Remuzzi scores, biopsy processing and

clinical variables are obtained from 144 repeat biopsies originating from 16

deceased-donor kidneys. We conducted sensitivity analysis to find the

morphometric features with highest discriminating power and studied the

dependencies of these features on biopsy and stain type. The analysis results

formed a basis for recommendations on reducing the assessment variability.

Results: Most morphometric variables are influenced by the biopsy and stain types.

The variables with the highest discriminatory power are sclerotic glomeruli counts,

healthy glomeruli counts per unit area, percentages of interstitial fibrosis and tubular

atrophy as well as diameter and lumen of the worst artery. A revised glomeruli

adequacy score is proposed to improve the robustness of the glomeruli statistics,

whereby aminimumof 104 µm2 of cortex tissue is recommended to keep type 1 and

type 2 error probabilities below 0.15 and 0.2.

Discussion: The findings are transferable to several biopsy scoring systems. We

hope that this work will help practitioners to understand the sources of statistical

uncertainty and improve the utility of renal biopsy.
KEYWORDS

pre-transplantation biopsy, Remuzzi score, measurement uncertainty, reproducibility,
glomerular adequacy, sensitivity analysis
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1 Introduction

Renal transplant biopsy is a valuable tool to obtain insights into

the functional and structural health of a donor kidney Williams

et al. (1). Evidence suggests that kidney assessment via pre-

transplant biopsies can increase the pool of available donor

kidneys by including functionally healthy organs from older

donors that may have been otherwise discarded Remuzzi et al. (2)

Vathsala et al. (3). At the same time, retrospective studies failed to

establish correlation between the biopsy scores and the transplant

outcomes, and the need for research on improving the practice has

been recognised Eccher et al. (4) Chen et al. (5) Jadav et al. (6).

Several renal biopsy scoring systems exist that attempt to quantify

the health of key structures of the kidney including vasculature,

glomeruli, and scarring Solez et al. (7); Racusen et al. (8);

Munivenkatappa et al. (9) De Vusser et al. (10); Remuzzi et al. (11).

The renal biopsy is motivated by the assumption that the tissue

morphology is a better predictor of graft quality than donor age and

clinical history alone. A further assumption is that the biopsy is

statistically representative of the entire kidney, and hence the biopsy

score reflects the graft health. However, the score may be affected by

other factors such as natural variability, tissue preparation, staining,

imaging, pathologist’s assessment and scoring method Haas (12)

Yong et al. (13) Huang et al. (14).

From the measurement science (metrology) perspective, one

would say that the viability of the kidney for transplant is the

quantity being measured (measurand) through the biopsy scoring

(e.g., Remuzzi) calculation (measurement model) based on the

measurement of the key morphological features (observable

quantities) JCGM 200 (15). This measurement is marred by the

variabilities in biopsy preparation, image acquisition and assessment,

morphological variability within the kidney (natural variability), and

the fact that biopsy scores are imperfect estimates of kidney health.

While there are many efforts to improve the consistency of the

imaging process, pathology assessment and biopsy preparation, the

quantification of the uncertainty of the scoring process and methods

to reduce this uncertainty remain to be addressed. This work takes

first steps towards closing this gap using the metrological concepts

outlined in the Guide to the expression of Uncertainty in

Measurements (GUM) JCGM 104 (16).

Our study uses the clinical and morphometric data of 144

biopsies stemming from 16 kidneys of 12 deceased donors to

estimate the inter- and intra- donor variability. Firstly, we identify

the most statistically robust morphological features on Whole Slide

Images (WSI). Secondly, we investigate how the biopsy processing

steps affect the measurement of those features, and thirdly we provide

suggestions on reducing the uncertainty of those measurements.
2 Methods

The study aimed to identify the impact of the biopsy processing,

morphometric assessment, and intra-patient tissue variability on the

measurement of morphological features and the Remuzzi score.

Different biopsy retrieval [punch, core and wedge Yong et al. (13)

Liapis et al. (17)] and staining techniques [Haematoxylin and Eosin
Frontiers in Nephrology 02
(H&E) and Periodic Acid-Schiff (PAS) Chan (18); McManus (19)]

were used to mimic the variations typical in a multi-centre multi-

laboratory setting. All biopsies were acquired from 16 discarded

kidneys stemming from 12 deceased donors enrolled into the

PreImplantation Trial of HIstopathology in renal Allograft

(PITHIA) clinical trial Ayorinde et al. (20) Pettigrew (36). The

reasons for organ discard were donor quality (n = 7), high biopsy

score (n= 1), suspected malignancy (n= 3), sub-optimal perfusion (n=

2), renal artery thrombosis resulting from retrieval damage (n= 2),

and complex cystic lesions (n= 1). Punch, core and wedge biopsies

were repeated three times on each kidney, yielding 9 biopsies per

kidney and 144 biopsies in total. Following a review by a qualified

pathologist, 19 biopsies were excluded from the evaluation due to

tissue folds or incomplete specimens. Each of the remaining 125

biopsies yielded two histological sections, of which one was stained

with H&E and the other PAS stains. 250 WSIs were acquired using a

3DHISTECH Panoramic DESK scanner at 40x magnification with

0.12 µm per pixel. The above process is illustrated in Figure 1.
2.1 Variable categories

The variables collected for the study were categorised as 1) biopsy

processing variables (staining type, biopsy technique, presence of

medulla); 2) donor-related variables; 3) morphometric variables. The

full list of the variables is provided in Supplementary Table 2.

The morphometric variables included cortex area, total, healthy

and sclerotic glomeruli [suffering from glomerulosclerosis (GS)]

counts, area of Interstitial Fibrosis (IF), area of Tubular Atrophy

(TA), wall thickness of the worst artery, lumen diameter of the

worst artery, full diameter of the worst artery and presence of

medulla on the slide. The worst artery definition is based on the

Banff 1997 Working Classification of Renal Allograft Pathology

Racusen et al. (8); Lopes et al. (21).

Morphological assessments were performed following semi-

blinded and unblinded assessment protocols. In the unblinded

protocol, glass slides were assessed on-microscope by an

experienced renal histopathologist. In the semi-blinded

assessment, digital slides were evaluated by six non-specialist

pathologists supervised by an experienced pathologist. To exclude

the influence of prior knowledge on the assessment, the slides were

evaluated in a random order, whereby one morphometric variable

(GS, TA, etc.) was measured at a time.

All assessments for a single kidney were performed by a single

pathologist to eliminate the inter-observer variability on organ level.

2.1.1 Derived variables
The morphological assessments described above were used to

compute 14 derived variables, including the variables used in the

Remuzzi scores (percentages of GS, IF and TA, and wall thickness to

lumen ratio), the scores themselves and the transplant decision

(single transplant for a score lower than 4, double transplant for a

score of 5 or 6 or discard if the score is larger than 7). The variables

and the formulae used to calculate them are provided in Table 1.

The thresholds for Remuzzi scores used in this work are

provided in Table 2.
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2.1.2 Intensive morphometric variables
Area-dependent (extensive) variables such as glomeruli counts

were used to derive area-independent intensive variables by

dividing them by the kidney cortex area measured on slide. The

resulting area-independent intensive variables are denoted as “per

unit area”, for example “sclerotic glomeruli counts per unit area”. A

list of extensive and intensive morphometric variables and the

corresponding computation methods is provided in Table 1.

54 of 250 WSIs contained medulla. For those images, cortex area

does not coincide with biopsy area. In our dataset, all glomeruli, IF

and TA measurements were annotated on the combined cortex and

medulla tissues. As medulla area measurements were not acquired,

we could not compute intensive variables for these images and refer

to them further as “missing values”.
2.2 Data analysis

The data analysis followed several stages illustrated in Figure 2.

Firstly, derived and intensive variables were computed as described

in section 2.1. Secondly, the best kidney health indicators (i.e., the
Frontiers in Nephrology 03
variables that show low intra-donor variance and high inter-donor

variance) were determined using a sensitivity analysis. Thirdly,

dependencies between the biopsy processing steps and the

morphometric variables were assessed using statistical testing to

determine whether biopsy processing affects the morphological

variables measured value. The calculation details are provided in

appendix 1.1.3 and section 2.2.1. All calculations and data analysis

were implemented using MATLAB version R2022b The

MathWorks Inc. (22).

2.2.1 Sensitivity analysis of biopsy morphology to
kidney health status

Sensitivity analysis was used to identify the morphometric

variables most indicative of inter-donor variations in kidney

health. While no data on the kidney functional health was

available, one could assume that morphological characteristics of

kidneys vary between donors, reflecting individual variabilities and

donor clinical history (Supplementary Table 3). This inter-donor

variability can be used as an estimator of the graft health. We

further assume that kidneys from the same donor have similar

morphological properties. Using these two assumptions, we obtain
FIGURE 1

Biopsy acquisition and image selection.
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the inter- and intra-donor variances and estimate the

discriminating power of a variable as the fraction of variance

explained by differences between donors. Inter- and intra-donor

variance for vessel-related morphometric variables such as wall

thickness were calculated using PAS-stained WSI to reflect current

clinical practice.

2.2.2 Dependence testing
The impact of biopsy processing methods on morphometric

variables was assessed through statistical dependence testing. A

ranking process was used prior to the testing to ensure the

variations attributed to biopsy processing were not masked by

the variations arising from inter-kidney variability. For the

ranking, the variable values were grouped by variable and by

kidney, ordered and assigned ranks. Rank ties (i.e., when two or

more images from a kidney have the same value for a variable)

were resolved by assigning an average of two adjacent ranks. In

each kidney, the ranks were divided by the number of observations

per kidney. An example of rank computation is provided in

appendix 1.1.2.
Frontiers in Nephrology 04
The variable dependencies were tested by performing the c2 test
for pairs of categorical variables and the Anderson-Darling k-

samples test for continuous/categorical variable pairs Scholz and

Stephens (23); Trujillo-Ortiz (24).

In these tests, the null hypothesis is “the two variables are

independent”. Rejecting the null hypothesis means that the data

suggests that the two variables are dependent with the probability

defined by the False Detection Rate (FDR). The tests that reject the

null hypothesis indicate that the biopsy processing variable is

dependent on the morphometric variable. The tests can be

affected by Type 1 and 2 errors. A Type 1 error occurs when two

independent variables are declared as dependent (falsely rejecting

the null hypothesis). A Type 2 error occurs, conversely, when two

dependent variables are declared as independent (falsely accepting

the null hypothesis). When multiple tests are run on a set of variable

pairs (78 tests), FDR is the proportion of Type 1 errors across all

tests, i.e., the proportion of tests that declared two independent

variables as dependent. In this work the FDR was kept below 1.5%

by using the Benjamini and Hochberg correction Benjamini and

Hochberg (25); Williams et al. (26).
2.3 Designing an adequacy criterion for
glomeruli counts

The fraction of sclerotic glomeruli or percentage of GS is an

important marker of kidney health. However, the “true” GS

percentage in cortex is unknown, as the glomeruli statistics in the

biopsy may not be representative of other cortex regions and are

subject to measurement uncertainty. In this work we compute the

uncertainty in percentage of GS from first principles for kidneys with
TABLE 1 Intensive and extensive morphometric variables.

Morphometric variable and unit Computation method variable type

Biopsy depth and width (µm)
Total cortex area (µm2)
Medulla presence (boolean)
Artery puncture (boolean)
Sclerotic, and total glomeruli count (count)
Healthy glomeruli count (count)
Healthy, sclerotic, and total glomeruli per unit area (µm−2)

Artery, arteriole, and vessel count (count)
Artery, arteriole, and vessel per unit area (µm−2)

Sclerotic glomeruli percentage (%)

IF and TA area (µm2)
IF and TA percentage (%)

Vessel and lumen diameter (µm)
Wall thickness measured (µm)
Wall thickness to lumen diameter ratio (unitless)
Remuzzi score, glomeruli ({0,1,2,3})
Remuzzi score, tubular atrophy ({0,1,2,3})
Remuzzi score, interstitial fibrosis ({0,1,2,3})
Remuzzi score, artery ({0,1,2,3})
Total Remuzzi score ({0,…,11,12})
Transplant decision
(single transplant, dual transplant, discard)

Measured on slide
Delineated on slide
Identified on slide
Identified on slide
Counted on slide
Glomeruli count −Sclerotic glomeruli count

Count
Total cortex area
Counted on each slide

Count
Total cortex area

Sclerotic glomeruli count
Total glomeruli count

· 100

Delineated on slide
Area

Total cortex area
· 100

Measured on the worst artery
Measured for the worst artery
Computed for the worst artery
See Table 2
See Table 2
See Table 2
See Table 2
See Table 2
See Table 2

Extensive
Extensive
Intensive
Intensive
Extensive
Extensive
Intensive

Extensive
Intensive

Intensive

Extensive
Intensive

Intensive
Intensive
Intensive
Intensive
Intensive
Intensive
Intensive
Intensive
Intensive
TABLE 2 Threshold values for the four components of the Remuzzi
score. Thresholds for IF and TA are identical.

% sclerotic
glomeruli %IF & %TA

vessel wall
to
lumen ratio

sub-score

[0,2]
(2,20]
(20,50]
(50,100]

[0,6]
(6,20]
(20,50]
(50,100]

[0,0.5]
(0.5,0.8]
(0.8,1.2]
(1.2,∞)

0
1
2
3
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varying burden of GS.We use statistical testing theory to compute the

minimal number of glomeruli n☆ to assess in order to limit the

probability of Type 1 (declaring the “true” percentage of GS lower

than it is in reality) and Type 2 (declaring the “true” percentage of GS

higher than it is in reality) errors to chosen levels. The total number of

glomeruli per unit area is collected from 239 (82%)WSIs. Multiplying

n☆ by the glomeruli density per unit area, we obtain a

recommendation for the cortex area required to reduce the

uncertainty in glomeruli statistics. Calculation details and theory

are provided in appendix 1.1.3.
3 Results

High intra-donor variability was observed in all morphometric

variables in this study, including the four variables contributing to

the Remuzzi score (Figure 3).
Frontiers in Nephrology 05
The magnitude and likely sources of this variability are

discussed below.
3.1 Sensitivity analysis

The aim of sensitivity analysis was to identify the variables that

were least affected by intra-donor variability while retaining the

ability to discriminate between donors (section 2.2.1), using the

latter as an estimator of graft health.

Table 3 compares the contributions of inter- and intra-donor

variabilities to the total variance of morphometric variables and

Remuzzi scores.

From the variables related to the glomeruli, IF and TA, the

percentage of TA (58.60%), the percentage of IF (55.89%), the

number of sclerotic glomeruli (45.35%), and the number of healthy

glomeruli per unit area (41.34%) have the highest explained variance.
FIGURE 2

Data processing and analysis steps.
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Among the artery-related variables, the lumen and artery

diameter show largest fraction of variance explained by inter-

donor variability (36.18% and 32.51% respectively).

The total Remuzzi score appears to be a slightly better estimator

of kidney health than IF and TA sub-scores alone (53.8% vs. 52.5%

and 50.4% of variance explained by inter-donor differences).

Notably, the original morphometric variables (percentages of IF

and TA) outperform the Remuzzi score and their corresponding

sub-scores (58.6% and 55.9% of variance explained by inter-

donor variability).
3.2 Dependence of morphometric variables
and biopsy processing

78 statistical tests were performed for pairs of morphometric

and biopsy processing variables as described in section 2.2.2. The

null hypothesis (i.e., there is no link between the variables in the

pair) was rejected for 18 variable pairs illustrated in Figure 4. All 18

rejected tests had p ≤ 0.001 and the expected FDR (in the

probabilistic term) is below 0.015.

The tests and the p-values are listed in Supplementary Table 4.
Frontiers in Nephrology 06
The statistical tests revealed the following results. The biopsy

technique affected the depth and width of the biopsy, the total

cortex area and thus the extensive variables such as glomeruli

counts, healthy glomeruli count, area of IF and TA, and sclerotic

glomeruli count.

The staining technique was associated with the percentages and

areas of TA and IF, the IF and TA scores, the total Remuzzi score,

the transplant decision and with the risk of missing values for the

area of IF and TA (e.g., when the image did not contain sufficient

information to measure these areas).

Overall, PAS staining was associated with higher percentages of

IF, and TA in comparison to H&E as shown in Supplementary

Figures 2, 3.
3.3 Adequacy criterion

Statistical testing theory was used to determine the minimum

glomeruli count n☆ required to limit the probabilities of Type 1 and

Type 2 errors (i.e., under- and over-estimating the percentage of

GS) to a = 0.15 and b = 0.2 respectively. The values for a and bwere
chosen to provide sufficient confidence in result while minimising a
FIGURE 3

Percentage of GS (top-left), wall thickness to lumen ratio (top-right), percentage of TA (bottom-left), and percentage of IF (bottom-right) grouped by
kidney. Left/right Kidneys from the same donor share a number (PL1/PR1). The background colour separates the associated Remuzzi sub-scores
ranging from 0 (bottom) to 3 (top).
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risk of graft injury. The calculation details (and the appropriate way

to compute n☆ for different values of a and b) are provided in

appendix 1.1.3.

For a biopsy with n☆= 156 glomeruli, if the true percentage of

GS exceeds 50, a < 0.15, and if GS is ≤ 42.5%, b < 0.2. For biopsies
Frontiers in Nephrology 07
where percentage of GS lies between 42.5% and 50%, more

glomeruli are required to control the probability of Type 2 error.

In our sample of 250 images, 90% contained more than 1.5

glomeruli per µm2 (Figure 5), suggesting that a biopsy surface area

of 104µm2 has 90% chance to provide enough glomeruli. At the

same time, only 16 slides had glomeruli count of ≥ 156, indicating

high uncertainties in glomeruli statistics.
4 Discussion

This work investigated the factors that may affect the robustness

of the common morphometric variables and the resulting Remuzzi

scores. As many of the explored variables are used in other scoring

systems such as Banff, De Leuven and MAPI Solez et al. (7);

Munivenkatappa et al. (9) De Vusser et al. (10), we believe the

findings described below will be relevant to many practitioners

using renal biopsies.
4.1 Statistically robust
morphometric variables

The sensitivity analysis (section 3.1) identified six

morphometric variables with highest discriminating power, i.e.,

with low intra-donor variability and high inter-donor variability:

1-2) the percentages of IF and TA; 3-4) the sclerotic glomeruli count

and the number of healthy glomeruli per unit area; 5-6) the lumen

and diameter of the worst artery. The presence of the sclerotic

glomeruli count in the variables with highest variance explained by

inter-donor variability is surprising as this is an extensive variable,

impacted by biopsy area.
TABLE 3 Inter- and intra-donor variance of morphometric variables and
Remuzzi scores.

variable name % variance explained by

Intra-donor
variability

Inter-donor
variability

Sclerotic glomeruli count
Healthy glomeruli per unit area
Sclerotic glomeruli per unit area
Percentage of sclerotic glomeruli
Glomeruli per unit area
Glomeruli count
Healthy glomeruli count

54.65
58.66
61.65
65.01
67.43
81.33
81.88

45.35
41.34
38.35
34.99
32.57
18.67
18.12

Percentage of TA
Percentage of IF
Area of IF
Area of TA

41.4
44.11
65.70
68.01

58.60
55.89
34.3
31.99

Lumen of the artery
Diameter of the artery
Wall thickness of the artery
Wall thickness/lumen
Artery count

63.82
67.49
71.81
75.63
82.32

36.18
32.51
28.19
24.37
17.68

Total Remuzzi score
TA score
IF score
Artery score
Glomeruli score

46.22
47.50
49.58
66.18
71.41

53.78
52.5
50.42
33.82
28.59
The variables are grouped by categories: glomeruli, IF and TA, vessels, Remuzzi scores.
FIGURE 4

Dependencies between morphometric (left) and biopsy processing (right) variables. Colour band thickness is proportional to statistical significance
(p<0.001 for all pairs).
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From all morphometric variables, only the percentages of IF and

TA were identified as reliable discriminators between donors with

58.6% and 55.6% of variance explained by inter-donor differences.

The remaining variability may be attributable to biopsy processing

and to tissue non-uniformity within a kidney. Conversion of

individual continuous morphological variables (such as percentage

of TA) to categorical variables in the Remuzzi score was associated

with reduced discriminatory power (that is, decreased fraction of

variance explained by inter-donor variability). These results suggest

that further work is needed to identify robust morphological variables

and to find ways of combining them into a single score, for example

by assigning weights to the score components Sethi et al. (27).

As the study was based on the measurements from discarded

kidneys and did not have transplant outcome data, inter-donor

variability was used as indicator of graft health. Other estimators of

graft health such as Kidney Donor Patient Index (KDPI) [Rao et al. (28)

Time (29)] could provide additional insights, but the study dataset did

not provide the ethnicity information required for KDPI computation.

Recent evidence suggests that the KDPI might not be appropriate to

define a cut-off in the decision-making process of accepting or declining

a kidney graft Dahmen et al. (30) Villanego et al. (31).
4.2 Normalisation techniques

Dependency tests showed that the biopsy technique has a strong

impact on biopsy area and, consecutively, on the extensive

morphometric measurements such as glomeruli counts. We

suggest using intensive, e.g., area-normalised variables for the

biopsy assessment to account for variations in biopsy surface area.

The association between the staining technique and the

measurement of glomeruli, IF, and TA support the practice of
Frontiers in Nephrology 08
using both PAS and H&E stains. In environments with

computational pathology facilities, PAS stain could be simulated

using virtual staining techniques to reduce the tissue processing

efforts in time-critical setting of renal biopsy de Haan et al. (32).

Despite all efforts to control for observer variability and

processing all biopsies in the same laboratory, our results

demonstrated high intra-patient variability that could be

explained by tissue heterogeneity, (for example, due to a presence

of localised injury), variations in biopsy preparation (such as stain

concentration), or variations in scanner response. Normalisation

techniques such as colour calibration should be implemented to

minimise these variabilities Ji et al. (33).
4.3 Biopsy adequacy

Statistical testing showed that at least 156 glomeruli counts are

needed to limit Type 1 (declaring percentage of GS smaller than it

is) and Type 2 (declaring percentage of GS larger than it is) errors

below 15% and 20% respectively (section 3.3). Only 16 from 250

slides fulfilled this criterion, suggesting that the statistical power of

glomeruli counts in renal biopsies may be too low. The insufficient

glomeruli statistics may be one of the factors explaining the lack of

correlation between renal biopsy scores and transplant outcomes

Cockfield et al. (34), where the reported median number of

glomeruli per biopsy is 25. This result is consistent with and

expands on other recommendations Corwin et al. (35).

We believe that the reliability of renal biopsy measurements can be

improved by increasing the biopsy surface area. This increase could be

achieved through taking several slices through the biopsy to yield

sufficient glomeruli statistics or taking several smaller biopsies from

different kidney regions. The time burden associated with the image

analysis could be reduced by use of computer-based image analysis tools.
5 Conclusions

Morphometric variables and Remuzzi scores are affected by the

biopsy processing and evaluation techniques, resulting in large

variations in scores and transplant decisions for the same kidney.

The sclerotic glomeruli count, number of healthy glomeruli per unit

area, the percentages of IF and TA as well as the diameter and lumen of

the worst artery had the highest proportion of inter-patient variability

and thus were identified as most robust morphometric variables.

With exception of the percentages of IF and TA, intra-donor

variability dominated over the inter-donor variability in all

morphometric variables, suggesting that biopsy processing and

tissue heterogeneity may overshadow the differences between

individuals. We believe that the variations introduced by different

biopsy processing methods can be accounted for by developing

normalisation techniques.

As for the tissue heterogeneities, further research is needed to

determine the optimal location of the biopsy to yield most consistent

results and improve the biopsy reliability and reproducibility.

We propose a glomerular adequacy criterion of 156 glomeruli to

control Type 1 and 2 errors in percentage GS to 15% and 20%. The
FIGURE 5

Cumulative distribution functions of glomeruli counts per unit area
(in µm-2) by biopsy technique. Only the biopsies without medulla
(cortex-only biopsies) are considered.
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glomerular density distribution observed in our study suggests that the

minimum cortex surface area to yield this number of glomeruli should

be 104 µm2. Designing similar adequacy criterion for non-uniform

tissue regions (section 2.3, appendix 1.1.3) could be useful to improve

the GS reliability in presence of heterogeneity. This approach could be

adapted to evaluate the surface area requirements for other

morphometric variables such as percentage of IF and TA.

Our findings suggest that the reproducibility of morphological

measurements in renal biopsies needs improvement. This

improvement can be achieved through several measures. Firstly, it is

essential to identify and use morphological features that have little

variation within a single kidney, while reflecting inter-donor differences

indicative of kidney health. Secondly, biopsy quality criteria such as

minimum required surface area that control the measurement

uncertainty need to be defined and followed. Thirdly, development

of normalisation methods to account for variations in biopsy

processing is needed to improve score reliability and interpretability.

We hope that this study will help practitioners understand the

sources of uncertainty in renal biopsy assessment and drive further

work on improving the diagnostic utility of renal biopsy.
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