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Short-term therapy with R568
ameliorated secondary
hyperparathyroidism but does
not prevent aortic valve
calcification in uremic rats
Asmahan Abu-Snieneh1†, Irina Gurt2†, Suzan Abedat1,
Chaim Lotan1, Michael Glikson2 and Mony Shuvy2*

1Heart Institute, Cardiovascular Research Center, Hadassah-Hebrew University Medical Center,
Jerusalem, Israel, 2Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of
Medicine, Hebrew University, Jerusalem, Israel
Introduction: Renal failure associated aortic valve calcification (AVC) is the result

of hyperphosphatemia and hyperparathyroidism. Calcimimetics is an effective

tool for management of secondary hyperparathyroidism. Our goal was to

evaluate the effect of the medical intervention with calcimimetic R568 on the

AVC process.

Methods and results: The experimental design consisted of administering a

uremia-inducing phosphate-enriched diet to rats for six weeks. Rats received a

daily R568 injection at different times. Biochemical analysis demonstrated

increased urea (34.72 ± 3.57 vs. 5.18 ± 0.15 mmol/L, p<0.05) and creatinine

(293.93 ± 79.6 vs. 12.82 ± 1.56 µmol/L, p<0.05). R568 treatment markedly

reduced parathyroid hormone (PTH) levels in both treated groups (192.63 ±

26.85, 301.23 ± 101.79 vs. 3570 ± 986.63 pg/mL, p<0.05), with no impact on

serum calcium and phosphate. von Kossa staining showed increase in AVC in

uremic rats compared to control (1409 ± 159.5 vs. 27.33 ± 25.83, p<0.05). AVC

was not affected by R568 in both groups (3343 ± 2462, 1593 ± 792 vs. 1409 ±

159.5, NS). Similarly, the inflammatory marker CD68 was elevated in uremic rats

(15592 ± 3792 vs. 181.8 ± 15.29, p<0.01), and was not influenced by R568

treatment (8453 ± 818.5, 9318 ± 2232 vs. 15592 ± 3792, NS). Runt-related

transcription factor 2 (Runx2), the regulator of osteoblast differentiation, was

upregulated in uremic rats (23186 ± 9226 vs. 3184 ± 2495), that accompanied by

elevated levels of Osteopontin (158395 ± 45911 vs. 237.7 ± 81.5, p<0.05) and

Osteocalcin (22203 ± 8525 vs. 489.7 ± 200.6, p<0.05). R568 had no impact on

osteoblastic markers (Runx2: 21743 ± 3193, 23004 ± 10871 vs. 23186 ± 9226, NS;

osteopontin: 57680 ± 19522, 137116 ± 60103 vs. 158395 ± 45911, NS;

osteocalcin: 10496 ± 5429, 8522 ± 5031 vs. 22203 ± 8525, NS).

Conclusion: In an adenine-induced uremic rat model, we showed that short-

term R568 therapy had no effect on AVC. Treatment with R568 decreased PTH

levels but had no effect on high phosphate levels. Regression of AVC necessitates

not only a decrease in PTH levels, but also a decline in phosphate levels. To
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achieve improved outcomes, it is advisable to consider administering a

combination of R568 with other medications, such as calcium supplements or

phosphate binders. Additional studies are required for further evaluation of the

potential treatment of chronic kidney disease (CKD)-associated AVC.
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Introduction

Aortic stenosis (AS) is the most common reason for aortic valve

replacement in the United States and Europe (1). The two most

notable characteristics of AS are aortic valve calcification (AVC)

and valve thickening (2, 3). Currently, no therapy can halt AVC

progression, therefore valve replacement is the sole treatment

option for patients with severe AS.

Over the last decade, numerous studies have shed light on the

active and regulated process of AVC. These studies have revealed

that AVC involves inflammation (4), alterations in extracellular

matrix, and the transformation of aortic valve interstitial cells

(AVICs) into osteoblasts, which are responsible for bone

formation bone-producing cells (5). The culmination of these

processes leads to the calcification of valve leaflets, ultimately

resulting in valve stenosis (6).

Renal failure (RF) has emerged as a significant risk factor for

AVC, with approximately 40% of patients suffering from end-stage

renal disease developing AVC and AS (7). In the last two decades,

population-based studies demonstrated that between 28 and 85% of

chronic kidney disease (CKD) patients developed AVC, whereas 6 –

13% of patients on hemodialysis displayed severe AS. This is a

significantly higher prevalence compared to what is found in the

general population, where approximately 25% of individuals over

65 have AVC (8). The prevalence and extent of AVC in this

population is attributed to mineral metabolism such as

hyperphosphatemia and hormonal changes that are likely to

promote AVC development and progression.

Secondary hyperparathyroidism (SHPT), commonly develops

during stages 3 and 4 of CKD, may lead to cardiovascular

calcifications by other mechanisms including an impaired effect of

parathyroid hormone (PTH), and a decreased calcium-sensing

receptor (CaR) expression on cardiovascular structures (9).

Unregulated mineral metabolism, increased levels of phosphorus

and the calcium-phosphorus product (Ca×P), contribute to the

onset of vascular calcification. Elevated phosphate and PTH levels

in CKD are associated with increased vascular calcification, arterial

stiffness, and the risk of cardiovascular events. SHPT triggers the

release of phosphate and calcium from bones, leading to increased

ectopic calcification. Elevated levels of PTH are correlated to AVC in

RF, observed in both animal studies and human subjects (10).
02
Vitamin D analogs are often used to treat hyperparathyroidism;

however, this treatment can lead to elevated serum levels of both

calcium and phosphate, consequently exacerbating vascular

calcification (11).

In CKD, the kidneys’ capacity to remove phosphorus from the

blood diminishes, leading to elevated serum phosphorus levels.

Prolonged hypocalcemia, hyperphosphatemia, reduced calcitriol,

and heightened fibroblast growth factor-23 (FGF-23) levels all

contribute to increased synthesis and release of PTH. Phosphate

retention and elevated FGF-23 levels decrease calcitriol production,

thereby causing an additional indirect pathway for elevated PTH

synthesis (12–14). The persistence of these stimuli results in a

gradual decline in the expression of CaR in the parathyroid glands,

reducing the sensitivity of these glands to changes in serum calcium

levels and calcitriol, which may indicate irreversible parathyroid

gland hyperplasia.

CaR, a class C G-protein-coupled receptor located on the

surface of parathyroid chief cells, is pivotal in calcium-mediated

signaling within these cells, regulating both PTH secretion and

synthesis (15). This receptor has significant implications for

maintaining proper calcium balance by sensing changes in

extracellular ionized calcium concentration, thus being an

attractive target for the development of treatment compounds,

such as calcimimetics. Calcimimetics alter the structural

conformation of the CaR and stereo-selectively enhance its

sensitivity to Ca2+. Phenylalkylamines, like NPS R-568, directly

affect the CaR. As far as investigated, the impact of these

compounds on the function of parathyroid cells mirrors that of

extracellular Ca2+; specifically, they induce rises in [Ca2+]i by

mobilizing intracellular Ca2+ and facilitating extracellular Ca2+

influx, consequently inhibiting PTH secretion. Initial findings

suggest that these phenylalkylamine compounds also hinder b-
adrenergic receptor-triggered elevation in cyclic adenosine

monophosphate (cAMP) formation in a manner sensitive to

pertussis toxin, akin to extracellular Ca2+ (16). In animal studies,

administration of the calcimimetic R568 provoked a rapid and

dose-dependent decrease in serum PTH and calcium

concentrations (17–19). Cinacalcet (CINA) has emerged as a

powerful tool in the management of SHPT. Notably, recent

studies shown that by suppressing PTH, CINA can effectively

attenuate vascular remodeling and calcification in models of CKD
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(20). Animal models have demonstrated remarkable success in

preventing or reversing vascular calcification with this class of

compounds (21–25).

Based on these findings, we sought to evaluate if AVC process is

influenced by medical intervention with R568, which regulates the

level of PTH that are affected by abnormal phosphate levels. We

previously described our CKD model for AVC that is based on a

high-adenine (0.75%) and phosphate-enriched (1.5%) diet, causing

significant renal insufficiency and AVC (26). High-adenine diet

induces severe tubular injury characterized by extensive renal cystic

dilatation and deposition of 8-dihydroxyadenine. Adenine

accumulation in the renal proximal tubules led to elevated serum

creatinine, phosphate, and PTH within 2-3 weeks. In the present

study, we focused on the pharmacological effect of R568 on uremic

rats: we administered the drug at various points and evaluated its

impact at various stages of AVC. We aimed to assess if there is a

certain stage in which pharmaceutical interventions.
Materials and methods

Animal model for CKD-associated
valve disease

Eight-week-old male Sprague-Dawley rats (n=22, 250 g) were

purchased from Envigo RMS (Israel) Ltd. Animals were housed

under specific pathogen-free conditions with a 12-hour light/dark

cycle (lights on 07:00–19:00), in an environmentally-controlled

room at a temperature of 23 ± 2°C and humidity of 55% ± 10%.

Animals were randomly divided into four groups: six rats (control

group) received regular diet and three groups received high-adenine

(0.75%) phosphate-enriched (1.5%) diet (HAHP diet). Four rats

received saline intraperitoneal (IP) injection (HAHP + saline); six
Frontiers in Nephrology 03
rats received daily 10 mg/kg of R568 (calcimimetic) IP injection

during the last three weeks of the study (HAHP + R568 week 4-6);

six rats received 10 mg/kg of R568 IP injection during the last two

weeks of the study (HAHP + R568 week 5-6) (Figure 1). After six

weeks, all animals were euthanized by anesthesia with 5% isoflurane

in oxygen (4 L/min). Blood was collected by direct heart puncture

and aortic valves were immediately harvested and kept in -80°C (for

protein extraction) or in 80% ethanol (for paraffin section). The

study was approved by the Hebrew University Ethics Committee for

the Care and Use of Laboratory Animals (permit no. 146944,

approval number MD-15646-5). The study was conducted in

accordance with ARRIVE Guidelines.
Effect of diet on biochemical profile

Plasma was analyzed for creatinine, urea, calcium and phosphate

using the VITROS 5.1 FS chemistry system (Ortho-Clinical

Diagnostics; Johnson & Johnson, Rochester, NY). Plasma PTH was

measured by PTH ELISA 1-84 assay (Quidel; Athens, Ohio, USA).
Von Kossa staining

Serial cross-sections of the valve were stained with von Kossa to

assess the structure and mineral deposits. They were incubated for

90 minutes with 5% silver nitrate (Sigma-Aldrich) under a 60-watt

white lamp. After washing with deionized water, sections were

incubated for five minutes with 5% sodium thiosulfate (Sigma-

Aldrich) to remove unreacted silver. Images were obtained with an

EVOS M5000 microscope and analyzed with ImageJ software.

Calcified areas were normalized to valve unit area, as previously

reported (27).
FIGURE 1

Study protocol. Twenty-two eight-week-old male Sprague-Dawley rats were used for the study. After 6 weeks, all animals were euthanized at the
same time point. Blood tests were performed at the end point.
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Immunofluorescence staining

Rat aortic valves were harvested upon sacrifice, fixed with 4%

buffered formaldehyde and embedded in paraffin. For antigen

retrieval, 5-µm sections were incubated 10 minutes at 60°C with

Antigen Unmasking Retrieval solution (H-3300, Vector

Laboratories), washed with phosphate-buffered saline (PBS),

blocked with 3% bovine serum albumin (BSA), and incubated

with antibodies to osteocalcin, Runx-2, osteopontin, and CD68

(Santa Cruz Biotechnology Inc.; CA, USA) at 4°C overnight. After

washing with PBS, the sections were incubated for one hour with

Cy5-conjugated secondary antibody at room temperature. Nuclear

counterstaining was performed with 4,6-diamidino-2-phenylindole

(DAPI). Images were obtained with an EVOS M5000 fluorescent

microscope. Four random areas from different parts of the valves

were analyzed by Image Pro-Plus version 7.0 (Media Cybernetics;

Rockville, MD, USA) software.
Western blot analysis

Aortic valves were suspended in RIPA buffer (#89900, Thermo

Scientific) with protease inhibitor cocktail (#87786, Thermo

Scientific). Twelve micrograms of total protein was analyzed by

Western blot. To verify, osteopontin and RUNX2, with nearly

overlapping molecular weights of 55 kDa and 65 kDa

respectively, were loaded onto separate gels.

Antibodies for immunoblotting: anti-Runx-2 (sc-390351,

Santa-Cruz Biotechnology Inc.; CA, USA, dilution 1:100), anti-

osteopontin (Ab11503, Abcam; Cambridge, UK, dilution 1:300),

anti-actin (Cf-0869100, MP Biomedical, dilution 1:500), and

secondary antibodies (Jackson Laboratories; Bar Harbor, ME,

USA). Band intensity quantitation was done by using

ImageJ software.
Statistical analysis

Results are presented as means ± standard deviation (SD).

Nonparametric Kruskal-Wallis one-way analysis followed by

Dunn’s post-hoc correction was performed with Prism 9

(GraphPad Software, Inc., San Diego, CA, USA). All performed

tests were two-tailed, and a difference of p<0.05 was considered

statistically significant.
Frontiers in Nephrology 04
Results

The effect of R568 treatment on kidney
and parathyroid function

Rats in all three groups that received HAHP diet developed

kidney dysfunction, which was indicated by increased serum levels of

creatinine and urea (creatinine: 293.93 ± 79.6, 221.15 ± 35.4, 194.48 ±

13.5 vs. 12.82 ± 1.56 µmol/L, p<0.05 vs. control; urea: 34.72 ± 3.57,

38.7 ± 2.9, 38.9 ± 2.3 vs. 5.18 ± 0.15 mmol/L, respectively, p<0.05 vs.

control). We observed increased serum levels of phosphate and

decreased serum levels of calcium in uremic animals, confirming

impaired mineral metabolism (Table 1). Serum PTH levels were

markedly elevated in uremic rats, and R568 administration abolished

SHPT in both treated groups (192.63 ± 26.85, 301.23 ± 101.79 vs.

3570 ± 986.63 pg/mL, p<0.05 vs. HAHP + saline). Treatment with

R568 has no significant effect on serum calcium and phosphate levels

in uremic rats (Ca: 1.8 ± 0.06, 1.9 ± 0.03 vs. 2.18 ± 0.28; Phos: 6.02 ±

0.53, 5.09 ± 0.4 vs. 4.97 ± 0.5).
The effect of R568 treatment on aortic
valve calcification

The HAHP diet led to a significant increase in AVC in all three

groups, as evidenced by von Kossa staining (1409 ± 159.5 vs. 27.33 ±

25.83, p<0.05 vs. control). However, it does not seem that R568

treatment had any effect on calcification (Figure 2), and there were

no significant changes in AVC in valves of rats in both treated

groups (3343 ± 2462, 1593 ± 792 vs. 1409 ± 159.5).
The effect of R568 treatment on
osteoblastic marker expression

In aortic valves of uremic rats, increased CD68 appearance

was found compared to controls (15592 ± 3792 vs. 181.8 ± 15.29,

p<0.01 vs. control); moreover, in both R568-treated groups

no significant difference with untreated uremic animals was found

(8453 ± 818.5, 9318 ± 2232 vs. 15592 ± 3792) (Figures 3A, B). Runt-

related transcription factor 2 (Runx2), the key regulator of

osteoblastogenesis, presented seven-fold more in aortic valves of

uremic rats compared to controls (Figures 3C, D). Like for CD68,

R568 treatment had no effect on Runx2 immunofluorescence in
TABLE 1 Biochemical evaluation. Biochemical profiles of the phosphate-enriched uremic diet group, phosphate-enriched uremic group with 3 weeks
of R568 treatment, phosphate-enriched uremic group with 2 weeks of R568 treatment, and a control group that was fed a regular diet.

Creatinine (µmol/L) BUN (mmol/L) Ca (mmol/L) Phos (mmol/L) PTH (pg/ml)

Control 12.82 ± 1.56 5.18 ± 0.15 2.65 ± 0.04 3.31 ± 0.11 587.9 ± 55.42

HAHP + Saline 293.93 ± 79.6 b 34.72 ± 3.57 2.18 ± 0.28 4.97 ± 0.51 3570 ± 986.63

HAHP + CINA w 4-6 221.15 ± 35.4 a 38.7 ± 2.9 a 1.8 ± 0.06 b 6.02 ± 0.53 b 192.63 ± 26.85 d

HAHP + CINA w 5-6 194.48 ± 13.5 a 38.9 ± 2.3 a 1.9 ± 0.03 a 5.09 ± 0.4 a 301.23 ± 110.79 c
Results are mean ± SE, analized by nonparametric Kruskal-Wallis one-way analysis followed by Dunn’s posthoc comparisons; a P< 0.05 vs control; b P< 0.01 vs control; c P< 0.05 vs HAHP +
Saline; d P< 0.01 vs HAHP + Saline.
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aortic valves of treated animals (21743 ± 3193, 23004 ± 10871 vs.

23186 ± 9226). We verified Runx2 immunofluorescence results

by western blot, showing again no change in protein levels after

R568 (Figure 4A). Raised Runx2 levels promote differentiation of

mesenchymal cells to osteoblast and cause expression of

osteoblast markers.
Frontiers in Nephrology 05
We observed significantly increased immunofluorescence of

Osteopontin and Osteocalcin in valves of rats that received a

HAHP diet compared to controls group (osteopontin: 158395 ±

45911 vs. 237.7 ± 81.5, p<0.05 vs. control; osteocalcin: 22203 ± 8525

vs. 489.7 ± 200.6, p<0.05 vs. control). As expected, no difference

between R568- and saline-treated animals was detected
A

B

C

FIGURE 2

The effect of R568 treatment on aortic valve calcification. (A) Representative images of Hematoxylin-eosin (H&E) staining of aortic valve sections
obtained from different groups (n=2-3 rats/group). The images were taken at 10x magnification, bar: 300µm. (B, C) Representative images (B) and
quantitation (C) of von Kossa staining of aortic valve section obtained from different groups (n=2-3 rats/group). Valvular calcification was observed
by von Kossa stain (brown color) in uremic rats. The images were taken at 10x magnification, bar: 300µm. Data are means ± SD, analyzed by
Kruskal-Wallis one-way analysis followed by Dunn’s post hoc correction, *p<0.05 vs. control.
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(osteopontin: 57680 ± 19522, 137116 ± 60103 vs. 158395 ± 45911;

osteocalcin: 10496 ± 5429, 8522 ± 5031 vs. 22203 ± 8525) (Figure 5).

We confirmed Osteopontin immunofluorescence results by

western blot (Figure 4B). Like Runx2, R568 treatment had no

effect on increased Osteopontin protein levels in both

treated groups.
Frontiers in Nephrology 06
Discussion

In the present study, we demonstrated that short-term R568

treatment had no effect on AVC in an adenine-induced uremic rat

model. Similar to our previous work (28), a high adenine diet

induced RF in rats, validated by elevated creatinine and blood urea
A

B

D

C

FIGURE 3

The effect of R568 treatment on early osteoblast markers expression in aortic valve. (A, B) Representative images (A) and quantification (B) of CD68
staining of aortic valve sections obtained from different groups (n=2-3 rats/group). The positive immunofluorescence for CD68 (pink) was observed;
4,6-diamidino-2-phenylindole (blue) stained nuclei. The images were taken at 10x magnification, bar: 300µm. (C, D) Representative images (C) and
quantification (D) of Runx2 staining of aortic valve sections obtained from different groups (n=2-3 rats/group). The positive immunofluorescence for
Runx2 (pink) was observed; 4,6-diamidino-2-phenylindole (blue) stained nuclei. The images were taken at 10x magnification, bar: 300µm. Data are
means ± SD, analyzed by Kruskal-Wallis one-way analysis followed by Dunn’s post hoc correction, *p<0.05 vs. control.
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nitrogen (BUN) levels. Although R568 treatment markedly reduced

serum PTH levels, it had no impact on elevated phosphate levels in

uremic rats. It is noteworthy that serum phosphate levels are

significantly associated with AVC prevalence in CKD patents

(29). As we showed, phosphate is essential for the initiation of the

calcification process and elevated PTH level had no promote to

AVC without increased phosphate levels (28). Decreased calcium

levels were not influenced by treatment. Collectively, these findings

denoted that R568 is a very efficient treatment of SHPT but is not

capable of influencing mineral metabolism in uremic rats. One of

the phases of AVC is infiltration of immune cells in the injured

endothelium covering leaflets of the aortic valve. CD68 is a

transmembrane glycoprotein that is highly expressed by human

monocytes and tissue macrophages. CD68 presence was increased

in uremic animals compared to controls, and R568 treatment had

no influence on CD68 levels. Furthermore, increased levels of

Runx2 were not affected by R568 treatment. As anticipated,

following Runx2 increase, we found elevated levels of

Osteopontin and Osteocalcin in uremic rats. No significant

difference in Osteopontin and Osteocalcin levels between R568-

and saline-treated rats was observed. Likewise, R568 treatment had

no effect on osteoblast marker expression in aortic valves, and there

were no significant changes in levels of Runx2, Osteopontin

and Osteocalcin.
Frontiers in Nephrology 07
The progression of CKD causes SHPT as well as mineral and

bone metabolism disease, and results in renal osteodystrophy and

cardiovascular diseases. Recent studies have demonstrated the

involvement of PTH in the development of calcified lesions, and

strategies lowering PTH levels, including calcimimetics and

parathyroidectomy, attenuate the progression of vascular

calcification in CKD patients and uremic animal models (30–33).

The major treatment for SHPT in CKD patients is calcimimetics,

together with active vitamin D. In experimental studies, both

calcimimetics – R568 and AMG641 – were shown to reduce

high-serum PTH in uremic rats with SHPT without increasing

serum calcium or phosphate, in contrast to active vitamin D sterols,

thereby preventing the development of extraskeletal calcification

(34). R568 was also shown to delay the progression of both aortic

calcification and atherosclerosis in uremic apolipoprotein E-

deficient mice (35). Similarly, the administration of R568

decreased calcitriol-induced aortic calcification in rats that

underwent 5/6 nephrectomy (36) and R568 attenuated media

calcification and proliferation of vascular smooth muscle and

endothelial cells (37).

In chronic hemodialysis patients with SHPT, CINA treatment

inhibits vascular and valvular calcification. In the ADVANCE trial,

360 hemodialysis patients were randomized to CINA or placebo

and underwent baseline and follow-up computed tomography scans
A

B

FIGURE 4

The effect of R568 treatment on osteoblast markers protein expression in aortic valve. Representative images and quantitation of (A) Runx2 and
(B) osteopontin western blot of aortic valve sections obtained from different groups (n=2-3 rats/group). Data are means ± SD.
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to assess coronary artery and aortic calcification (24). While the

primary outcome, the Agatston score of coronary artery

calcification, did not reach statistical significance (p=0.073), aortic

and mitral valve calcification scores were significantly lower in the

CINA group, and the progression of coronary artery calcification

scores was slightly slower (24).
Frontiers in Nephrology 08
The disparity in our results may be attributed to the limited

treatment duration, was sufficient to decrease PTH levels but

insufficient to observe subsequent metabolic consequences. As

previously shown (17), regression of AVC requires not only

reduction of PTH levels but also decline in phosphate levels and

increase of serum calcium. Our CKD animal model produced rapid-
A

B

D

C

FIGURE 5

The effect of R568 treatment on late osteoblast markers expression in aortic valve. (A, B) Representative images (A) and quantification (B) of
osteocalcin staining of aortic valve sections obtained from different groups (n=2-3 rats/group). The positive immunofluorescence for osteocalcin
(pink) was observed; 4,6-diamidino-2-phenylindole (blue) stained nuclei. The images were taken at 10x magnification, bar: 300µm. (C, D)
Representative images (C) and quantification (D) of osteopontin of aortic valve sections obtained from different groups (n=2-3 rats/group). The
positive immunofluorescence for osteopontin (pink) was observed; 4,6-diamidino-2-phenylindole (blue) stained nuclei. The images were taken at
10x magnification, bar: 300µm. Data are means ± SD, analyzed by Kruskal-Wallis one-way analysis followed by Dunn’s post hoc correction, *p<0.05
vs. control.
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onset kidney disease with extensive tubule-interstitial fibrosis,

tubular atrophy, crystal formation, and marked vessel

calcification. Due to the rapid disease progression, it becomes

challenging to observe the course of functional and structural

damage in the cardiovascular system and the long-term

implications of treatment approaches. To achieve improved

outcomes, it is advisable to consider administering a combination

of R568 with other medications, such as calcium supplements or

phosphate binders.

In a study by Block et al., a total of 19,186 patients were

enrolled; 5,976 of them received CINA and had 24-month follow-

up. The study found a significant survival benefit with lower rates of

adjusted cardiovascular mortality (HR,0.76; 95% CI,0.66-0.86) and

all-cause mortality (HR,0.74; 95% CI,0.67-0.83) associated with

CINA prescription in patients receiving intravenous active

vitamin D analogue (20).

Meanwhile, recent studies revealed that suppression of PTH by

CINA markedly attenuates vascular remodeling and calcification in

uremia (21–24). CINA suppressed these calcification-related

alterations by reducing serum PTH, calcium, phosphate, and the

calcium-phosphorus product in a 5/6 nephrectomy rat model (23).

Long-term CINA treatment reduced aortic calcification by more

than 50% (21, 25). Moreover, studies in mice confirmed these

results and reported delayed progression of atherosclerosis with

CINA (21). Importantly, in all these animal studies (21–23, 25),

medications were provided at the beginning of the study and,

therefore, assessment the impact of the proposed intervention in

preventing ectopic calcification but not in treating established

calcification. Additionally, the treatment period in each of those

animal studies lasted for six weeks or more, and CINA treatment

had an effect on mineral metabolism. Additionally, the diversity of

results may be explained by the complexity of the calcification

process and varied pathways altered at different types of

ectopic calcification.
Limitations

In our CKD in vivo model, hyperphosphatemia and other

metabolic abnormalities are introduced at the same time.

Therefore, SHPT had a role in the development of calcification.

Additionally, treatment duration was brief, which was sufficient to

reduce PTH levels but not to lessen the calcification of the aortic

valve. Our focus was solely on R568 treatment, without considering

potential combination approaches. As mentioned earlier, solely

reducing PTH levels is insufficient to reverse AVC. It imperative to

concurrently lower serum phosphate levels to effectively address the

calcification issue. Achieving this goal may involve a combination

strategy such as using R568 in conjunction with phosphate binders,

active vitamin D metabolites, or calcium supplements.
Conclusions

Short-term R568 treatment effectively lowers serum PTH levels,

however, it does not influence mineral metabolism, thus lacking an
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effect on AVC. The pivotal role of hyperphosphatemia and related

metabolic changes in initiation of AVC and promoting osteoblast

transformation in our experimental CKD model is evident.

Additional studies are required to comprehensively assess the

potential therapeutic strategies for managing AVC in the context

of CKD.
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