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Renal cell carcinoma (RCC), particularly the clear cell subtype (ccRCC), poses a

significant global health concern due to its increasing prevalence and resistance to

conventional therapies. Early detection of ccRCC remains challenging, resulting in

poor patient survival rates. In this study, we employed a bioinformatic approach to

identify potential prognostic biomarkers for kidney renal clear cell carcinoma (KIRC).

By analyzing RNA sequencing data from the TCGA-KIRC project, differentially

expressed genes (DEGs) associated with ccRCC were identified. Pathway analysis

utilizing the Qiagen Ingenuity Pathway Analysis (IPA) tool elucidated key pathways

and genes involved in ccRCC dysregulation. Prognostic value assessment was

conducted through survival analysis, including Cox univariate proportional hazards

(PH) modeling and Kaplan–Meier plotting. This analysis unveiled several promising

biomarkers, such as MMP9, PIK3R6, IFNG, and PGF, exhibiting significant

associations with overall survival and relapse-free survival in ccRCC patients. Cox

multivariate PH analysis, considering gene expression and age at diagnosis, further

confirmed the prognostic potential of MMP9, IFNG, and PGF genes. These findings

enhance our understanding of ccRCC and provide valuable insights into potential

prognostic biomarkers that can aid healthcare professionals in risk stratification and

treatment decision-making. The study also establishes a foundation for future

research, validation, and clinical translation of the identified prognostic biomarkers,

paving the way for personalized approaches in the management of KIRC.
KEYWORDS

renal cell carcinoma, prognostic biomarkers, bioinformatics analysis, TCGA-KIRC,
Qiagen IPA, survival analysis, cox proportional-hazards model
1 Introduction

Kidney cancer is the seventh most prevalent cancer in men and the 10th most common

cancer in women, accounting for 5% and 3% of all adult malignancies in men and women,

respectively. The average age for diagnosis is 60 years old, with a notable gender disparity existing

for receiving a diagnosis. Renal cell carcinoma (RCC) is a sneaky neoplasm that accounts for 2%

of all cancer diagnoses and fatalities globally and is expected to becomemore prevalent (1). More

developed regions like Europe andNorth America have a higher incidence of kidney cancer than
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less developed ones like Africa and South America. An estimated

372,000 persons worldwide are affected by kidney cancer each year (2).

Of all primary renal neoplasms, 80% to 85% are RCCs, which

develop within the renal cortex whereas 8% of cancers are transitional

cell carcinomas, which develop in the renal pelvis. RCCs, often known

as kidney cancers, are a class of histologically identified tumors that

can be characterized by several genetic alterations. Renal cancer has

several diverse subtypes, each of which has a unique histology,

distinctive genetic and molecular changes, and hence unique

response to treatment. The three main RCC subtypes (with ≥5%

incidence), which account for 75%, 15%, and 5% of RCCs, are clear

cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC

(chRCC), respectively (2). Other subtypes of RCC like transitional cell

carcinoma, Wilms tumor, and renal sarcoma have ≤1% total

incidence and are very rare. Approximately 30% of individuals

experience recurrence following the complete removal of the initial

tumor. All RCC subtypes are largely unresponsive to conventional

chemotherapy and radiation therapy (3).

The pathologic stage and nuclear grade largely determine the

prognosis for ccRCC (4). Clear cell tumors feature well-defined cell

boundaries and translucent, empty (water-clear) cytoplasm. Variable

levels of lipid and glycogen can be seen in the cytoplasm. Radial or partial

nephrectomy is the main form of treatment. Despite having mixed

results, chemotherapy and immunotherapy are utilized on individuals

with metastatic illness. Its clinical symptoms usually appear in later

stages, and due to its high morbidity and mortality, early detection and

accurate prognosis are critical for improving patient treatment and

outcomes, but there are several challenges associated with these goals.

The widespread adoption of RNA-seq has heightened the demand

for bioinformatics skills and computational resources to analyze large-

scale biological data efficiently and unraveling molecular complexities

in genomics research. For this study, RNA-seq data were analyzed. It

initially involves isolation of total RNA from target tissues or cells,

which then entails building DNA libraries followed by sequencing with

a next-generation sequencing approach. RNA-seq data have several

advantages over other transcriptome methods, like RNA-seq offers a

better resolution and dynamic range, making it more sensitive and can

reliably estimate gene expression at a wider range of levels. By RNA-seq

data, one can find novel transcripts, alternative splicing events, and

non-coding RNAs, and detect known transcripts and quantify these. It

also does not possess any bias in the selection of probes, in contrast to

microarrays, which depend on pre-designed probes. The availability of

such type of data in publicly accessible databases, such as The Cancer

Genome Atlas (TCGA) (https://www.cancer.gov/tcga) and Genotype-

Tissue Expression (GTEx) databases (https://www.gtexportal.org/

home/), has provided researchers with comprehensive datasets for

various cancer types, including ccRCC.

A massive amount of research on various aspects of ccRCC has

been done (5, 6), including analysis of the cross-model features of

ccRCC for prognosis prediction (7) or indulgence of artificial

intelligence for studying the pathomics and genomics of RCC (8).

However, in this study, we have taken a computational approach to

analyzing the DEGs and carrying out the network analysis and

pathways involved in ccRCC. Here, we have identified potential

prognostic biomarkers for ccRCC using data from the TCGA by

selecting the RNA-seq data under the project ID, TCGA-KIRC
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(kidney renal clear cell carcinoma). We uncovered differentially

expressed genes (DEGs) associated with ccRCC using the R

programming language. These identified DEGs were analyzed for

pathways enrichment using the Qiagen Ingenuity Pathway Analysis

(IPA) tool to gain insights into the dysregulation of key pathways

involved in ccRCC. We selected the top 10 candidate genes from the

gene interaction networks of the identified DEGs. These genes were

further investigated by gene expression profiling and survival

analysis. The identified candidate genes including the overall

survival (OS) and relapse-free survival (RFS) along the Cox

multivariate analysis led to a set of three genes as potential

biomarkers for ccRCC in the present study.

2 Methods

The complete summarized workflow adopted for the RNA-seq

analysis of the TCGA-KIRC data has been described in Figure 1.

Each method used is described in detail below.

2.1 Data screening from the
TCGA database

In this study, we obtained the RNA-seq data for KIRC from the

widely recognized TCGA database. Leveraging the TCGA biolinks R

package, the dataset, which encompassed a total of 613 samples, was

downloaded. Within this dataset, 541 samples represented tumorous

tissue, providing valuable insights into the gene expression profiles

associated with KIRC. The remaining 72 samples were designated as

normal, serving as a vital reference for understanding the gene

expression patterns in non-cancerous kidney tissue.

2.2 Data pre-processing and identification
of DEGs

Data pre-processing and identification of DEGs were conducted

through a systematic pipeline, employing various essential steps
FIGURE 1

Summarized workflow of carrying out RNA-seq analysis of the
TCGA-KIRC project.
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facilitated by the edgeR package of Bioconductor (9). The data were

imported, organized, filtered, and normalized to ensure robustness

and accuracy in subsequent analyses.

To address potential false positives, a p-value correction was

carried out, utilizing the Benjamini–Hochbergmethod. A significance

threshold of adjusted p-value less than 0.05 was strictly applied to

identify the top genes exhibiting significant differential expression.

Additionally, a log2FC value of ±2 was utilized to discern upregulated

and downregulated genes within our dataset. Subsequently, the

visualization of DEGs was achieved through the implementation of

the ggplot2 package, generating a volcano plot.

2.3 Pathway analysis of differentially
expressed genes and the selection of
candidate genes

Pathway analysis of the DEGs was performed using the widely

acclaimed IPA tool (version – 90348151) by Qiagen. The DEGs

were analyzed by Qiagen IPA for its “Core Analysis,” where the

default settings were used, with a significance threshold of p-value <

0.05 and a log2FC cutoff of ±2. This rigorous analysis allowed us to

uncover the crucial biological pathways significantly affected by the

DEGs, providing invaluable insights into the underlying molecular

mechanisms. From the list of pathways obtained, the pathways with

a threshold equivalent to the p-value of 0.05 were considered.

To gain a comprehensive understanding of the gene interactions

within each pathway, the “My Pathways”module of IPA was explored

for constructing gene interaction networks to decipher the intricate

relationships between the genes. This module also incorporated the

“Molecule Activity Predictor (MAP),” which utilizes a vast knowledge

base derived from manual curation of scientific literature to predict

gene/molecule activation or inhibition. The selection of candidate

genes followed this; here, the top 10 DEGs that were involved in most

of the pathways were considered for downstream analysis.

2.4 Gene expression profiles and
survival analysis

The gene expression profiles were analyzed using the GEPIA2

web server, a powerful online tool designed to explore and visualize
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RNA-seq data from two prominent projects, namely, TCGA and the

GTEx database (10). The GEPIA2 web server offers a comprehensive

suite of functionalities, including the generation of box plots to depict

the expression patterns of selected candidate genes.

To assess the prognostic significance of the identified candidate

genes, survival analysis including the Kaplan–Meier plots for the OS

and RFS was conducted using the same GEPIA2 platform. This

feature of GEPIA2 utilizes the Cox proportional hazards model, a

widely accepted statistical method for survival analysis, to calculate

the hazard ratio (HR).

Cox multivariate statistical analysis was used to assess the

simultaneous effects of multiple variables on survival outcomes in

cancer research. The gene expression data related to the candidate

genes and clinical data were downloaded from the Xena Functional

Genomics Explorer by the University of California Santa Cruz

(https://xenabrowser.net/) (11). The analysis was performed using

the survival package of R software, where the covariates include the

demographic details of patients, i.e., age at initial diagnosis. The p-

value for this analysis was set at 0.05.
3 Results

3.1 Data processing and identification of
differentially expressed genes

Principal component analysis (PCA) of the downloaded dataset

led us to the identification of outliers that were filtered from the

dataset using the R programming language. A total of 13 samples

were filtered from a set of 613 samples as these were outliers in their

respective groups. PCA obtained after processing the data clearly

demarcated the normal (66) and tumor (534) samples, making a total

count of 600 samples (Figure 2). Using the edgeR-limma pipeline, we

identified 1,447 DEGs including 492 upregulated genes and 955

downregulated genes in the TCGA-KIRC dataset, after the FDR

analysis using the Benjamini–Hochberg method. This has been

visualized via the Volcano plot shown in Figure 3, where the red

color represents upregulated genes, while the blue color represents

downregulated genes. (A full list of up- and downregulated genes has

been provided in the Supplementary Data Sheet “DEGs list”).
FIGURE 2

PCA plot for the KIRC dataset using R programming language (after processing the raw data).
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3.2 Pathway analysis of DEGs using IPA

The core analysis in Qiagen IPA resulted in the 19 pathways that

were associated with statistically significant DEGs, as seen in Table 1.

Some of the highly downregulated pathways include CREB Signaling

in Neurons, Phagosome Formation, and the S100 Family Signaling

Pathway, while pathways like the Pathogen-Induced Cytokine Storm

Signaling Pathway, IL-17 Signaling, and IL-4 Signaling pathway are

upregulated. Dysregulation of all these pathways has been found in

the progression of different types of cancers.

After the pathways analysis, gene networks were constructed to

determine how the identified DEGs in KIRC interact with each

other and the genes/molecules present in the default pathway taken

from the Ingenuity knowledge base. The gene interaction networks

for the above-mentioned pathways (Figure 4A) and legends are

shown in Figure 4B. (The gene interaction networks for the rest of

the pathways are available in the Supplementary Image Data).
3.3 Selection of candidate genes

The data obtained from the IPA was subject to rigorous analysis

to identify the most crucial genes driving the dysregulation of

numerous pathways. To ensure a robust selection, we focused on

the top 10 DEGs deciphered from pathway enrichment criteria that

might have pivotal roles in the pathogenesis of KIRC. PIK3C2G,

PIK3R5, PIK3R6, MMP9, VEGFA, CREB3L3, IFNG, PGF, GRM1,

and RASD1were identified as the top 10 DEGs. These selected genes

were contributing important functions in at least seven distinct

pathways (detailed in the Supplementary Data Sheet “Top 10

candidate genes”). The involvement of these genes in critical

cellular pathways sheds light on their potential as key drivers of

KIRC pathomechanistic progression (12–14).
FIGURE 3

Volcano plot for the identified DEGs, showing up- and downregulated genes in red and blue color, respectively.
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TABLE 1 IPA pathway analysis result. Top 19 pathways involved in the
DEGs of KIRC.

S. No. Ingenuity Canoni-
cal Pathways

Molecules z-score

1 Pathogen-Induced Cytokine
Storm Signaling Pathway

26 3.138

2 Role of Osteoblasts in
Rheumatoid Arthritis
Signaling Pathway

21 2.4

3 Wound Healing
Signaling Pathway

20 1.342

4 IL-17 Signaling 17 1.213

5 IL-4 Signaling 16 1

6 Neuroinflammation
Signaling Pathway

25 0.894

7 Ovarian Cancer Signaling 15 0.333

8 LPS/IL-1 Mediated Inhibition of
RXR Function

17 0

9 ERK/MAPK Signaling 17 0

10 Natural Killer Cell Signaling 17 -0.728

11 Neurovascular Coupling
Signaling Pathway

18 -1.213

12 Chaperone Mediated Autophagy
Signaling Pathway

19 -1.606

13 Breast Cancer Regulation
by Stathmin1

41 -1.718

14 FAK Signaling 50 -1.98

15 Neuroprotective Role of THOP1
in Alzheimer’s Disease

18 -2.138

(Continued)
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3.4 Gene expression profiles and
survival analysis

The gene expression profiles of the top 10 candidate genes in the

form of boxplots for both tumor and normal samples are shown in

Figure 5. To evaluate their prognostic significance, comprehensive

survival analyses were conducted for OS and RFS. The Kaplan–

Meier plots were generated, accompanied by HRs and their
Frontiers in Nephrology 05
respective 95% confidence interval (CI) ranges. Among the 10

candidate genes, MMP9 exhibited an HR of 1.7 (log-rank p =

0.019), PIK3R6 showed an HR of 1.6 (log-rank p = 0.042), CREB3L3

showed an HR of 0.62 (log-rank p = 0.024), and IFNG presented an

HR of 1.5 (log-rank p = 0.041) in association with OS (Figure 6).

Additionally, MMP9 demonstrated a substantial HR of 2.4 (log-

rank p = 0.00067), and PGF showed a remarkable HR of 2.3 (log-

rank p = 0.00072) in association with RFS (Figure 7).

Based on these findings, MMP9, PIK3R6, IFNG, and PGF

emerged as potential candidates for prognostic biomarkers in

KIRC. For a concise overview, a summary of the survival analysis,

along with pertinent statistical data, is presented in Table 2. This

highlights the key findings of the survival analyses and underscores

the clinical significance of the identified genes as potential

prognostic markers in KIRC. It was observed that the expression

of PIK3C2G was not significant in KIRC (Figure 5), prompting its

exclusion from further analysis.

Cox multivariate analysis was employed to comprehensively assess

the prognostic significance of all nine candidate genes (Figure 8). The
TABLE 1 Continued

S. No. Ingenuity Canoni-
cal Pathways

Molecules z-score

16 G-Protein Coupled
Receptor Signaling

45 -2.236

17 S100 Family Signaling Pathway 55 -2.292

18 Phagosome Formation 52 -2.496

19 CREB Signaling in Neurons 42 -3.086
B C

D E F

A

B

A

FIGURE 4

(A) Gene interaction networks. (A) IL-4 signaling, (B) phagosome formation, (C) pathogen-induced cytokine storm signaling, (D) CREB signaling in
neurons, (E) IL-17 signaling pathway, and (F) S100 family signaling pathway. (B) The color scheme used for the nodes that represent our dataset, as
well as the ones that are predicted using the “Molecule Activity Predictor (MAP)” tool from the “My Pathway” module of IPA.
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covariates age, gender, and tumor stage were considered for this

method. No significant results were obtained in the case of gender

and tumor stage; however, the results for age as a covariate were

significant. The covariate “age at initial diagnosis” exhibited an HR of

1.03, with a remarkable 95% CI ranging from 1.02 to 1.05. The highly

significant p-value of <0.001 indicates that, for each additional year of

age at diagnosis, the risk of adverse outcomes in KIRC patients escalates

by a factor of 1.03 or 3%. This trend consistently persisted throughout
Frontiers in Nephrology 06
the analysis, underscoring the critical influence of age on patient

outcomes. Among the nine genes, MMP9, IFNG, and PGF displayed

HR values greater than 1, implying their association with an increased

risk of adverse outcomes in KIRC patients. Furthermore, these three

genes demonstrated statistical significance with p-values of 0.05 or less,

reinforcing their potential as robust prognostic indicators. Conversely,

the gene PIK3R6 exhibited weak statistical significance and was

consequently excluded from further consideration.
FIGURE 5

Gene expression profiles of the top 10 genes using the expression analysis module in the GEPIA-2 tool (PIK3C3G, PIK3R6, PIK3R5, MMP9, VEGFA,
RASD1, IFNG, CREB3L3, GRM1, and PGF), p-value < 0.05 (red = tumor, gray = normal).
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4 Discussion

ccRCC is the most prevalent subtype of RCC, with a 5-year

survival rate of less than 10% (15). However, post-treatment

survival with Lenvatinib and Pembrolizumab showed an

increased median OS of 53.7 months (16). ccRCC is very rare to

be diagnosed at an early stage, hence lowering the survival rate of

patients. Therefore, more research for early diagnosis of this disease

and more precise treatment needs to be provided, lowering the

death rate.
Frontiers in Nephrology 07
Pathway analysis from IPA showed that the pathways highly

downregulated have been reported in Phagosome Formation, CREB

Signaling in Neurons, and S100 Family Signaling Pathway, while

pathways related to immune profiling like the Pathogen-Induced

Cytokine Storm Signaling Pathway, IL-17 Signaling, and IL-4

Signaling pathway are upregulated by our identified 492

upregulated genes and 955 downregulated DEGs. Cyclic

adenosine monophosphate (cAMP) is an important second

messenger; the proliferation, differentiation, death, and

immunological responses of cells are just a few of the biological
FIGURE 6

Overall survival of the top 9 genes using the survival analysis module in GEPIA-2. The dysregulation of genes MMP9, PIK3R6, and IFNG is involved in
the poor prognosis of KIRC.
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FIGURE 7

Relapse-free survival of the top 9 genes using the survival analysis module in GEPIA-2. The dysregulation of genes MMP9 and PGF is highly
responsible for the recurrence of KIRC.
TABLE 2 Survival analysis results, * sign represents the potential prognostic biomarkers, i.e., MMP9, PIK3R6, and IFNG in the case of OS; MMP9 and
PGF in the case of RFS.

Gene

Overall Survival (OS) Relapse-Free Survival (RFS)

HR Log-rank p HR Log-rank p

MMP9* (↑) 1.7 0.019 2.4 0.00067

PIK3R6* (↑) 1.6 0.042 1.4 0.2

IFNG* (↑) 1.5 0.041 1.1 0.65

(Continued)
F
rontiers in Nephrology
 08
 frontiersin.org

https://doi.org/10.3389/fneph.2024.1349859
https://www.frontiersin.org/journals/nephrology
https://www.frontiersin.org


Verma et al. 10.3389/fneph.2024.1349859
processes that cAMP can control. Any dysregulation or

modification of cAMP signaling, i.e., CREB signaling, may result

in immunological dysfunction, illness, or cancer as well as cell

metabolic disorders (14). It is important to note that phagosomes

are cellular compartments responsible for engulfing and digesting

foreign particles. The downregulation of the Phagosome formation

pathway in the context of cancer may have several implications,

such as immune evasion and affecting tumor-associated

macrophages, creating an immunosuppressive environment. In

vivo and in vitro experimentation on tumor-associated markers

and their phagocytic function have elucidated multiple outcomes

that are plausible in the tumor microenvironment (17). The

proteins in the S100 family perform a variety of intracellular and

extracellular functions. They work with a variety of receptors and

signal transducers to control pathways that govern inflammation,

cell differentiation, proliferation, and apoptosis (12). Dysregulation

of the cytokine signaling pathway brought on by pathogens is a

major factor in the initiation and spread of cancer. There is an

abnormal cytokine and growth factor expression in a variety of

malignancies, including lymphomas and solid tumors, including IL-

6 and IL-10 (13, 18). These improperly functioning cytokines can

serve as autocrine growth factors that encourage the survival,

multiplication, and invasion of tumor cells (19). There is evidence

that IL-17 mediates the release of additional proinflammatory

cytokines and chemokines, particularly from the smooth muscle

and pulmonary epithelium (20).

The results obtained from the survival analysis showed that the

genes MMP9, PIK3R6, and IFNG are associated with decreased OS,

while MMP9 and PGF are associated with increased chances of

recurrence (RFS) of KIRC. These genes had an HR value ≥ 1.5 and a

log-rank p-value of less than 0.05. Moreover, the Cox multivariate

analysis of these candidate genes where the age at initial diagnosis

was considered as a covariate results in the exclusion of the PIK3R6

gene due to its low statistical significance. Hence, the genes MMP9,

IFNG, and PGF are identified as potential prognostic biomarkers for

the KIRC.

MMPs are fascinating genes associated with the development of

cancer, functional angiogenesis enhancement, invasion, metastasis,

and evasion of immune surveillance. These genes are typically

elevated in cancer, and murine studies suggest a role in tumor-
Frontiers in Nephrology 09
associated tissue remodeling (21). According to the research carried

out from a pan-cancer perspective, it has been shown that the

prognostic value of MMPs is limited to ccRCC (22). As seen in the

results, the MMP9 gene, which is upregulated in this dataset, had

HR values of 1.7 and 2.4 in the OS and RFS, respectively, with high

significance rates.

PIK3R6 is highly upregulated and is involved in the dysregulation

of 14 different pathways. As per the survival analysis results obtained,

this gene resulted in poor prognosis, as the high expression of PIK3R6

decreases the OS rate. Moreover, in a recent study, the relationship

between dysregulated lipid metabolism genes (LMGs) and ccRCC

progression was investigated. Here, they established a novel risk score

model, according to which the PIK3R6 gene was predicted to have a

poor prognosis, higher immune pathway activation, and cancer

development (23). However, later in this analysis, PIK3R6 was

removed from the list due to its low significance rate.

PGF is a member of the VEGFA family and is highly involved in

cell proliferation and growth factor activity (24). It has been seen

that the plasma levels of PGF can be employed as a standalone

prognostic factor for RCC due to their substantial connection with

clinical characteristics and VEGF levels (25). The high HR value of

2.3 and the log-rank p-value of 0.0007 make this gene highly

significant and a potential prognostic marker for KIRC after MMP9.

IFNG is known for assisting in the prevention of neoplastic

disease (26) and is a potent activator of macrophages. Inhibiting

growth, making tumor cells more susceptible to death, increasing

the expression of MHC class I and class II, and promoting

antitumor immune activity are all effects of IFNG. Shorter lung

cancer survival has been associated with decreased IFNG serum

levels (27). Nevertheless, the opposite is observed in KIRC, where

high expression of IFNG, instead of suppressing the tumor, results

in lowering the survival rate by almost 1.5 times as compared to its

lower expression. This contradiction might be context-dependent,

and further research to elucidate the underlying mechanism

is needed.

Apart from these four genes, CREB3L3, which is highly

upregulated in the KIRC dataset, shows that an increase in its

expression increases the OS of KIRC patients; a similar profiling for

this gene has been reported in the Human Proteome atlas.

According to previous studies, the genes of the CREB family
TABLE 2 Continued

Gene

Overall Survival (OS) Relapse-Free Survival (RFS)

HR Log-rank p HR Log-rank p

PGF* (↑) 1.5 0.063 2.3 0.00072

PIK3R5 (↑) 0.92 0.7 0.74 0.27

VEGFA (↑) 0.84 0.42 0.61 0.064

RASD1 (↓) 0.79 0.27 1.4 0.15

CREB3L3 (↑) 0.62 0.024 1.1 0.72

GRM1 (↓) 0.61 0.031 0.6 0.071

PIK3C2G (↓) -NA- -NA- -NA- -NA-
(↑) = Upregulated genes; (↓) = Downregulated genes. NA: Not Applicable.
frontiersin.org

https://doi.org/10.3389/fneph.2024.1349859
https://www.frontiersin.org/journals/nephrology
https://www.frontiersin.org


Verma et al. 10.3389/fneph.2024.1349859
behave differently, most of which have a tumor-suppressing nature

like the gene CREB3L3, which is identified as a low-risk gene having

high expression in the case of bladder cancer (28). It was also found

that high expression of CREB3L3 helps in the bad prognosis of
Frontiers in Nephrology 10
gastric cancer (29). It might be possible that this gene, being a low-

risk gene, prevents KIRC progression.
5 Conclusion

In conclusion, this comprehensive research delves into the

identification of potential prognostic biomarkers for ccRCC using

transcriptome data analysis. The results shed light on the

dysregulation of critical pathways associated with immune

response, angiogenesis, and cytokine signaling in ccRCC.

Through survival analysis, MMP9 emerged as a robust prognostic

marker for both OS and RFS, with high expression levels correlating

with adverse outcomes. This is followed by PIK3R6 and IFNG

whose high expression levels had poor survival outcomes. PGF also

showed promising potential as a prognostic marker for recurrence.

The Cox multivariate analysis provided additional support to the

prognostic significance of MMP9, IFNG, and PGF, considering the

age at diagnosis as a covariate. However, IFNG’s role appeared

context-dependent, as IFNG, being a tumor-suppressing gene,

promotes tumor progression as observed in the results. Therefore,

further research is needed to elucidate the underlying mechanisms.

These findings contribute significantly to our understanding of

ccRCC and have important clinical implications. The identification of

prognostic biomarkers like MMP9 and PGF can aid in risk

stratification and treatment decision-making, potentially leading to

more precise and personalized approaches for patients with ccRCC. In

the quest for early detection and more effective treatments, this study

paves the way for continued investigation, validation, and potential

clinical translation of these identified prognostic biomarkers.
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