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Immune monitoring of
allograft status in kidney
transplant recipients

Hwarang S. Han* and Michelle L. Lubetzky

Division of Nephrology, Department of Internal Medicine, Dell Medical School, University of Texas at
Austin, Austin, TX, United States
Kidney transplant patients require careful management of immunosuppression

to avoid rejection while minimizing the risk of infection and malignancy for the

best long-term outcome. The gold standard for monitoring allograft status and

immunosuppression adequacy is a kidney biopsy, but this is invasive and costly.

Conventional methods of allograft monitoring, such as serum creatinine level,

are non-specific. Although they alert physicians to the need to evaluate graft

dysfunction, by the time there is a clinical abnormality, allograft damage may

have already occurred. The development of novel and non-invasive methods of

evaluating allograft status are important to improving graft outcomes. This

review summarizes the available conventional and novel methods for

monitoring allograft status after kidney transplant. Novel and less invasive

methods include gene expression, cell-free DNA, urinary biomarkers, and the

use of artificial intelligence. The optimal method to manage patients after kidney

transplant is still being investigated. The development of less invasive methods to

assess allograft function has the potential to improve patient outcomes and allow

for a more personalized approach to immunosuppression management.
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Abbreviations: ABMR, antibody-mediated rejection; ADMIRAL, assessing AlloSure dd-cfDNA, monitoring

insights of renal allografts with longitudinal surveillance; AI, artificial intelligence; ATP; adenosine

triphosphate; BK, BK polyoma virus; cfDNA, cell-free DNA; DART, circulating donor-derived cell-free

DNA in blood for diagnosing active rejection in kidney transplant recipients; dd-cfDNA, donor-derived cell-

free DNA; dnDSA, de novo donor-specific antibody; DSA, donor-specific antibody; ESRD, end-stage renal

disease; eGFR, estimated glomerular filtration rate; FOXP3, forkhead box P3; HLA, human leukocyte antigen;

iBOX, Integrative box; IP-10, interferon-inducible protein 10; KFRE, kidney failure risk equation; kSORT,

kidney solid organ response test; MMDx, molecular microscope diagnostic system; mRNA, messenger RNA;

NPV, negative predictive value; PPV, positive predictive value; PTLD, post-transplant lymphoproliferative

disorder; rRNA, ribosomal RNA; SNP, single-nucleotide polymorphisms; TCMR, T-cell mediated rejection;

TRAC, transplant rejection allograft check; TTV, torque teno virus.
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1 Introduction

Kidney transplantation is the treatment of choice for patients

with end-stage renal disease (ESRD) (1). However, kidney

transplant recipients require lifelong immunosuppression to

prevent rejection. Acute rejection during the first year after

transplantation is a major risk factor for graft loss (2).

Immunosuppression management has traditionally focused on

preventing early rejection, requiring high dosages of medications

that may be appropriate for some patients but can lead to unwanted

side effects in others. Although this strategy has reduced the rates of

early rejection, long-term outcomes have not improved

substantially (3, 4). Calcineurin inhibitors, while key to reducing

rejection rates, are also known to cause chronic allograft changes

and higher doses are associated with increased risks of transplant

associated infections (5). Improved methods are needed to

individualize immunosuppression for each patient to ensure

adequate coverage, while reducing the risks of chronic allograft

changes and infection.

Typically, allograft dysfunction is signaled by a rise in serum

creatinine or proteinuria. That said, by the time clinical signs arise,

significant damage in the allograft may have already occurred.

Protocol biopsy studies have routinely demonstrated the presence

of rejection in otherwise clinically stable patients (6, 7).

Immunosuppression adjustment has typically been reactionary,

with doses being increased in the setting of rejection and lowered

in the setting of infection or cancer. Increasing rates of post-

transplant lymphoproliferative disorder (PTLD) and infections

are seen as consequences of being over immunosuppressed (8, 9).

Ultimately finding the right balance will require an individualized

approach that will utilize many different tools available to

transplant physicians. This review will discuss the current

available methods for allograft monitoring and discuss novel

methods that can be used together to improve post-

transplant management.
2 Invasive methods of
allograft monitoring

The gold standard for diagnosis of allograft dysfunction is the

kidney biopsy. The procedure is invasive and not without risk of

complications (10). A study of 2,514 kidney transplant biopsies over 5

years found that minor complications occurred in about 20% of cases,

and major complications occurred in about 1.9% of cases (11). Minor

complications included transient hematuria, small hematoma, and

small fistula formation. Major complications included needing a

blood transfusion, hospitalization, interventional radiology

procedure, and surgical intervention. Major complications are more

common in for-cause biopsies when compared to protocol biopsies

(2.7% and 0.3%, respectively). Additionally, there is great variability

when it comes to interpretation of biopsy results. Histological

assessment has its limitations and pathology readings have been

noted to be subjective and inconsistent (12–14). Despite the
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limitations and risks of biopsy, gene expression and histologic

analysis of biopsy tissue can help clinicians better interpret and

utilize information gained from tissue samples.

To improve histologic assessment and inter-reader variability,

novel techniques have been developed that utilize gene expression

profiles of kidney biopsy tissue. Gene expression of biopsy tissue

can provide important information in terms of both diagnosis and

prognosis of allograft dysfunction. The MMDx® (molecular

microscope diagnostic system, One Lambda, West Hills, CA) is a

microarray-based test that uses machine learning to assess the risk

of kidney transplant rejection. The test analyzes messenger RNA

(mRNA) expression from a biopsy sample to identify patterns

associated with rejection (15). The MMDx has been shown to

have good correlation with histological findings, and it may be

useful when histological results are borderline or inconclusive (16).

MMDx has the potential to not only add additional information to

the biopsy in question, but also lessen the need for repeat biopsies.

Analysis of histologic features has also been demonstrated to be

a good predictor of allograft failure. A large multicenter study found

that graft scarring, interstitial inflammation, tubulitis and micro-

circulation inflammation in combination with the presence of

donor specific antibodies (DSA) could predict rates of estimated

glomerular filtration rate (eGFR) decline over time (17). The

information gleaned from biopsies is likely to remain valuable,

and when combined with newer noninvasive tests, it will provide

even greater insights into the overall health of the allograft.
3 Non-invasive tests of
allograft function

Graft damage and rejection can occur in the absence of an acute

rise in serum creatinine. Historically, the only way to do determine

changes in allograft status before graft dysfunction would be to

perform protocol biopsies. Given the aforementioned risks of the

procedure, less than half (46%) of the high-volume transplant

centers (defined by annual kidney transplants greater than 50) in

the United States perform protocol biopsies (18). This has led to the

development of alternative tests that can non-invasively assess

allograft function. Some are widely available for use in a clinical

setting and others are less well known and/or not clinically

available. These tests include measurements of gene transcripts in

the blood, tests of lymphocyte function, donor derived cell free

DNA analysis, alloantibodies, and monitoring for post-transplant

infections (19).
3.1 Immune monitoring

Gene expression testing in the blood is a minimally invasive

method that can be used to monitor kidney transplant patients. The

most widely used is TruGraf® (Eurofins Transplant Genomics,

Framingham, MA), which utilizes DNA microarray technology to

determine whether a patient’s gene expression is more similar to a
frontiersin.org
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reference population with adequate immunosuppression than that

with inadequate immunosuppression (20, 21). A study of 99 kidney

transplant recipients with stable renal function and biopsy-confirmed

rejection reported that gene expression (TruGraf) had a low positive

predictive value (PPV) of 48% while the negative predictive value

(NPV) was more acceptable at 89% for rejection (sensitivity was 71%

and specificity was 75%) (22). AlloMap® Kidney (CareDx, Brisbane,

CA) uses next-generation sequencing and targeted RNA sequencing

technology for gene expression profiling to assess immune quiescence

(23). A study assessing 235 specimens (AlloMap Kidney) matched

with histological results (66 rejection and 169 without rejection) from

222 patients showed NPV of 87% to 95%, but PPV was only 18% to

40% for allograft rejection (sensitivity was 70% and specificity was

66%) (24). Another gene expression test available for assessing

rejection is the kSORT® (kidney Solid Organ Response Test,

Immucore, Norcross, GA). The kSORT looks at relative mRNA

expression levels to detect patients who are at higher risk of

rejection (25). Despite promising results in early studies, a large

retrospective multicenter study of 1,763 samples from 1,134 patients

found that kSORT could not be validated for acute rejection in the

first year after transplantation (p = 0.46) (26). The kSORT is being

refined to improve its performance (27). Although the above tests are

promising, utilization s limited; given that they have a low PPV and

high NPV, they are mostly helpful when the result is negative.

The use of urinary biomarkers for immune monitoring is an

ideal choice because the kidney essentially acts like a “flow

cytometer” filtering graft infiltrating cells into the urinary space

(28). Some of the first studies of mRNA expression in the urine

looked at expression of granzyme B and perforin, which are both

integral parts of the cytotoxic T-cell response in allograft rejection.

These studies found that elevated levels of granzyme B and perforin

were potentially diagnostic of acute rejection (29, 30). Since this

discovery, many other urinary markers are being studied with

promising potential (31). A study of 83 kidney transplant

recipients indicated that forkhead box P3 (FOXP3) mRNA in

urine could be used to predict acute rejection with 90% sensitivity

and 73% specificity (32). One of the largest urinary biomarkers

studies to date evaluated 485 kidney transplant recipients and found

that CD3ϵ mRNA, interferon-inducible protein 10 (IP-10) mRNA,

and 18S ribosomal RNA (rRNA) levels in the urine could

distinguish between T-cell mediated rejection (TCMR) and no

rejection during the first-year post-transplant (33). Additionally,

this study demonstrated that these urinary markers began to rise

before any clinical signs of graft dysfunction and therefore could

predict the development of acute rejection if monitored early in the

post-transplant course. Urine mRNA profiling has also been shown

to be able to identify both types of rejections, interstitial fibrosis,

tubular atrophy, and BK nephropathy (34–36). Unfortunately, there

are currently no commercially available urinary biomarker tests.

Tests of lymphocyte function have shown some promise in

assessing the overall immunosuppression of a given patient.

ImmuKnow® (immune cell function assay, Eurofins Viracor,

Lenexa, KS) measures the concentration of adenosine

triphosphate (ATP) from CD4+ T-cells after stimulation to
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monitor the immune response of transplant patients (37). The

test assigns patients into three categories based on their intracellular

ATP levels: low (<225 ng/ml), moderate (226-524 ng/ml), and

strong (>524 ng/ml). Lower ATP levels were correlated with “over

immunosuppressed state” and increased risk of infection while the

higher ATP levels were correlated with rejection, suggesting that

patients should be aimed towards the moderate zone (38). However,

there is significant overlap between stable and infected patients in

the moderate range, which limits the test’s generalizability (39, 40).

Although this test is clinically available, its usage has been limited.

There are other functional cell-based tests. The Pleximark®

(Plexision, Pittsburgh, PA) looks at allo-antigen-specific T-

cytotoxic memory cells but has only shown to measure likelihood

of TCMR (41). A test looking at allo-antigen-specific B-cells

(PlexABMR®, Plexision, Pittsburgh, PA) is being developed to be

able to measure the risk of antibody-mediated rejections (ABMR).

One of the more promising technologies that is clinically available

is the use of donor derived cell-free DNAs (dd-cfDNA) testing.

cfDNA is non-encapsulated DNA that can be released after cells

have been injured. In solid organ transplantation, dd-cfDNA has

been investigated as a potential biomarker for allograft rejection (42).

Single-nucleotide polymorphisms (SNPs) are used to differentiate dd-

cfDNA from recipient-cfDNA. Three commercially available dd-

cfDNA tests are in the United States: Allosure® (CareDx, Brisbane,

CA) which analyzes 405 SNPs across all somatic chromosomes,

Prospera® (Natera, Austin, TX) which analyzes over 13,000 SNPs

of 4 select chromosomes, and TRAC® (transplant rejection allograft

check, Eurofins Viracor, Lenexa, KS) which uses a proprietary

number of SNPs (43–45). Recently, the ADMIRAL study assessed

1,094 kidney transplant recipients and followed for 3 years. Results

revealed that dd-cfDNA (Allosure) levels were significantly higher in

patients with clinical and subclinical rejection than in patients

without rejection. The mean dd-cfDNA level was 0.23% in the

absence of rejection and 1.6% in the presence of rejection (p <

0.001) (46). PPV for rejection was only 59% and the NPV was better

at 87% when threshold percentage of dd-cfDNA was 1% (sensitivity

was 64% while specificity was 73%). These results suggest that dd-

cfDNA is a promising biomarker for graft rejection, but it is worth

noting its limitations. Evidence from the DART study showed that

dd-cfDNA may not reliably identify TCMR type 1A or borderline

rejections (47). Allograft tissue breakdown caused by other factors,

such as BK nephropathy and urinary tract infections, can increase dd-

cfDNA levels in the absence of rejection (48). The PPV is relatively

low, meaning that a positive test result does not always indicate

rejection. However, the high NPV suggests that a negative test result

is a good indication that there is no rejection.

Test combining dd-cfDNA and gene expression have emerged

as a solution to improve the diagnostic capabilities. The biggest

benefit of these combined tests is the improved PPV. A post-hoc

analysis study of 208 patients with biopsy and blood sample results

showed that the PPV improved to 81% when both gene expression

(TruGraf) and dd-cfDNA (TRAC) were positive (NPV of 88% when

both tests were negative) (49). The study also suggested that gene

expression profiling might detect TCMR better while dd-cfDNA
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might better detect ABMR. However, it is worth mentioning that

there have been recent restrictions imposed on Medicare

reimbursement for dual biomarkers, which will likely affect their

availability (50).
3.2 Monitoring for alloantibodies

Donor-specific antibodies (DSAs) are produced by the recipient

against the donor’s human leukocyte antigens (HLA) molecules.

DSAs can cause ABMR, which is a major cause of graft loss after

kidney transplantation (51). DSAs can be identified before kidney

transplantation, and these pre-existing DSAs are associated with an

increased risk of early rejection. DSAs that are found for the first time

after kidney transplantation are called de novo DSAs (dnDSAs). The

presence of DSA has been associated with declined eGFR over time

(17). DSAs can cause allograft injury by activating complement

cascade or by non-complement mediated mechanisms (52).

Around 13% to 30% of kidney transplant recipients develop

dnDSA, and presence of dnDSA is associated with poorer

outcomes (53). For example, one study following 508 renal

transplant patients (64 with dnDSA) reported that recipients

without dnDSA had eGFR decline of 0.65 mL/min/1.73m2 per year

and presence of dnDSA led to eGFR decline of 3.63 mL/min/1.73m2

per year (p < 0.001) (54). The risk factors for developing dnDSAs

include inadequate immunosuppression but also infections such as

BK virus and cytomegalovirus (55). Current guidelines from the

Transplantation Society recommend monitoring for DSA in patients

with DSA pre-transplant when immunosuppression is being reduced

(in the setting of infection or for other reasons), when there is

concern for non-adherence, and in patients with a rejection episode

(56). Some evidence suggests that the presence of DSAs alone,

without biopsy-proven rejection or acute inflammation, may not be

associated with graft failure, highlighting our continued reliance on

kidney biopsy (57). That said, the frequency of monitoring DSAs is at

the discretion of the transplant center.
3.3 Monitoring for viral infections

BK polyomavirus is a common DNA virus that infects people of

all ages and remains latent in the genitourinary cells (58). The

abbreviation BK comes from the name of the first patient in whom

the virus was isolated in 1971 (59). BK virus is normally benign in

healthy individuals with functional T-cells but can cause

tubulointerstitial nephritis, and in some cases, ureteral stenosis in

transplant recipients (60, 61). Around 10% to 30% of kidney

transplant recipients develop BK viremia within their first year of

post-transplant (62). The treatment of choice for BK viremia is

reduction in immunosuppression and therefore close monitoring

for BK viremia in the early post-transplant period has now become

standard of care.

Torque teno virus (TTV) is a non-pathogenic virus that is

almost ubiquitous worldwide, with 90% of healthy individuals and
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up to 100% of transplant recipients infected (63). TTV is insensitive

to conventional antiviral drugs used in transplantation, but it has

the potential to be used as a marker of immune status in transplant

recipients. TTV actively replicates and over 90% of the viruses are

cleared by the immune system daily. T-cell function is thought to be

crucial for viral control (63, 64). Observational studies have shown

that low TTV load is associated with a higher risk of rejection, while

high TTV load is associated with a risk of infection (65, 66).

A multicenter prospective study is currently underway to assess

the non-inferiority of TTV-guided immunosuppression in kidney

transplant recipients (67).
4 Prognostication

Kidney transplant recipients could benefit from improved

planning if graft loss can be predicted. As previously stated,

histological assessment, gene expression profiling of biopsy, and the

presence of DSA have shown potential for prognostication. Proteinuria

has also commonly been used to predict poor prognosis (68). Other

prediction tools may also be useful. A study recently examined four

variables (age, sex, eGFR, and albuminuria) kidney failure risk equation

(KFRE) in kidney transplant recipients (69). Study demonstrated that

in patients with an eGFR of < 45 mL/min/1.73 m2, the KFRE predicted

risk of ESRD in 2 and 5 years (concordance statistic of 0.88 and 0.83

respectively) at 1-year post-transplant.
4.1 Artificial intelligence

Artificial intelligence (AI) is a rapidly developing field with the

potential to revolutionize medicine. One area where AI is being

explored is in the prediction of kidney transplant outcome. The

iBox (Integrative Box) is an AI-based scoring system, which was

developed by analyzing 32 potential prognostic factors in 7,557

kidney transplant recipients (70). The score is computed by

combining data from eGFR, proteinuria, histological scores, and

DSA profiles to predict the risk of long-term kidney transplant loss

(concordance statistic of 0.81). The iBox also has potential in its use

as a surrogate endpoint for clinical trials to help advance novel

therapies (71, 72). As AI technology continues to improve, it is

likely that AI-based tools will become more widely used. More

studies are needed to confirm the clinical utility of such tools and to

investigate whether data from novel tests can improve these

prognostic tools.
5 Conclusions

Improvements in immunosuppressive medications,

antimicrobial regiments, and surgical techniques have improved

short-term outcomes for kidney transplant recipients over the years.

There is still a large gap in our knowledge about how to achieve

better long-term outcomes. Personalizing immunosuppressive
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therapy may be one way to reduce late allograft losses, especially as

the organ waitlist continues to grow. Currently, no single non-

invasive test is accepted as a reliable alternative to histological

assessment. The strong negative predictive values of dd-cfDNA and

gene expression have potential to lessen the need for routine

biopsies. Monitoring for the presence of DSA and viral infections

can be also used as a surrogate marker of over- or under-

immunosuppression. In combination with some of the currently

available blood biomarker testing, clinicians can potentially identify

clinically stable patients at low risk for rejection (normal dd-
Frontiers in Nephrology 05
cfDNA/gene expression and no DSA), clinically stable patients at

higher risk for rejection (dnDSA, abnormal dd-cfDNA/gene

expression), and those who are over-immunosuppressed (BK

viremia) so that adjustments to immunosuppression can be made

accordingly and ideally before any graft damage occurs. Figure 1

presents a schemata of post-transplant monitoring and how

clinicians can potentially utilize the different tools available for

allograft monitoring to help personalize immunosuppression. This

review is not exhaustive and there are other methods to monitor

immune status in kidney transplant recipients that are available and
FIGURE 1

Schematic chart showing conventional and novel immune and status monitoring options during specific scenarios. Specific scenarios in green and
conventional methods are shown in blue while novel tests are shown in yellow. BK, BK polyoma virus; dd-cfDNA, donor-derived cell-free DNA; DSA,
donor-specific antibody; MMDx, molecular microscope diagnostic system; TTV, torque teno virus.
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under investigation. Kidney transplant biopsy remains the gold

standard for immune and allograft monitoring, and its overall

assessment of allograft dysfunction will continue to improve as

less invasive complementary methods emerge.
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