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Dialysis resource allocation in
critical care: the impact of the
COVID-19 pandemic and the
promise of big data analytics

Farrukh M. Koraishy* and Sandeep K. Mallipattu

Division of Nephrology, Department of Medicine, Stony Brook University Hospital, , Stony Brook, NY,
United States
The COVID-19 pandemic resulted in an unprecedented burden on intensive care

units (ICUs). With increased demands and limited supply, critical care resources,

including dialysis machines, became scarce, leading to the undertaking of value-

based cost-effectiveness analyses and the rationing of resources to deliver

patient care of the highest quality. A high proportion of COVID-19 patients

admitted to the ICU required dialysis, resulting in a major burden on resources

such as dialysis machines, nursing staff, technicians, and consumables such as

dialysis filters and solutions and anticoagulation medications. Artificial

intelligence (AI)-based big data analytics are now being utilized in multiple

data-driven healthcare services, including the optimization of healthcare

system utilization. Numerous factors can impact dialysis resource allocation to

critically ill patients, especially during public health emergencies, but currently,

resource allocation is determined using a small number of traditional factors.

Smart analytics that take into account all the relevant healthcare information in

the hospital system and patient outcomes can lead to improved resource

allocation, cost-effectiveness, and quality of care. In this review, we discuss

dialysis resource utilization in critical care, the impact of the COVID-19

pandemic, and how AI can improve resource utilization in future public health

emergencies. Research in this area should be an important priority.

KEYWORDS

critical care, resource deployment, dialysis, COVID-19, big data, artificial intelligence,
machine learning
1 Introduction

In the United States, the cost of an intensive care unit (ICU) stay is approximately

$4,300 per day, and the total annual critical care cost is estimated to be approximately $108

billion, which is 13.2% of total hospital costs and 4.1% of the national health expenditure

(1). The past decade has seen an increasing demand for critical care due to longer life

expectancy, greater comorbidity burden, and better survival rates in the ICU (1–4). “Access

to critical care” is defined based on the patient’s capacity to benefit from the available
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resources (5). Often the sickest patients admitted to the ICU have

the highest capacity to benefit in terms of reduction in mortality

risk, making admissions of these patients more cost-effective

(measured by the cost per life-year saved) than those of patients

with a lower risk of death (6). Due to the increasing demands and

limited resources and budgets, critical care has become a scarce

resource, leading to the undertaking of value-based cost-

effectiveness analysis (CEA) and resource rationing to achieve the

most efficient and effective patient care (2).

The resource utilization policies in the ICU should be guided

not just by resources, but also by the goals of equity of access and

prevention of both short- and long-term morbidity and mortality

(2). Although clinician judgment can be effective at identifying the

patients who would benefit most, very large volumes of valuable

real-time ICU data are underutilized. Artificial intelligence (AI)-

based data analytics are being utilized in multiple data-driven

healthcare services such as decision support (7–9), prediction of

disease trends and outcomes (10), and long-term health (11). AI

also has tremendous potential to improve the optimization of

healthcare system utilization (12) through the analysis of

extremely large datasets. In this review, we will discuss how AI

can improve the utilization of scarce critical care resources, using

the lessons learned from dialysis utilization during the COVID-

19 pandemic.
2 Dialysis resource management in
critical care

2.1 Utilization of dialysis in critically
ill patients

Dialysis is one of the most common procedures utilized in the

ICU (13). Although neither of the two most commonly used

modalities—continuous kidney replacement therapy (CKRT) and

intermittent hemodialysis (IHD)—offers a significant survival

advantage over the other (14), IHD is the more common

modality of choice, and CKRT is typically recommended for

patients with hemodynamic instability and those with high levels

of intracranial pressure (15, 16). CKRT is also used in fluid

management (especially when the obligate intake is large), burns,

sepsis, and heart and liver failure patients (17). The choice of

modality has been variable and is based on local ICU practices

and the availability of resources (18). CKRT is more costly than

IHD. In a base-case analysis, CKRT was found to cost $3,679 more

than IHD per patient (19). In addition to machine cost, there is a

significant cost associated with the large volume of dialysis and

replacement fluids involved in CKRT (20). In addition, whereas

CKRT is typically conducted by the ICU nurse taking care of the

patient, IHD requires dialysis nurses, which adds to the personnel

cost (21). Several studies have looked at the cost-effectiveness of

CKRT compared with IHD (20, 22–24). In a post-hoc analysis of the

BEST Kidney Study, using data from 53 centers across 23 countries,

Srisawat et al. reported that the median cost per day was $289.60

(IQR $830.8–$116.8) greater for CKRT than for IHD, and that
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reducing the replacement fluid volumes increased the cost savings

(20). In another study of critically ill patients with AKI, despite the

greater initial cost of CKRT in the ICU, the 5-year total cost,

including the cost of dialysis dependence, was lower for CKRT than

for IHD (24). In a recent systemic review of seven published CEAs

of CKRT vs. IHD, Singh et al. reported a marginal quality-adjusted

life year (QALY) gain for CKRT, and that the cost-effectiveness of

CKRT was mainly due to the long-term dialysis dependence

rates (23).
2.2 Cost estimation for dialysis utilization in
the ICU

Cost estimation in critical care is confounded by other factors

such as pre- and post-ICU healthcare and the clinical diversity of

patients, making the average daily ICU cost variable from one

patient to another (2). Minimizing ICU costs can potentially be

plagued by “cost shifting”, that is, greater costs incurred in the

provision of non-ICU health services for the same patient.

Unfortunately, most of the earlier published CEAs in critical care

have focused on short-term outcomes such as ICU mortality and

length of stay. However, the estimation of long-term outcomes,

such as Health-Related Quality of Life (HRQOL) (25),

socioeconomic impact of critical illness (26), and measures of

longer-term morbidity and mortality in ICU survivors are crucial

to more accurately determining cost-effectiveness and guiding

decision-making on resource utilization (2). Patient-centered

outcomes and societal perspectives are very important to

improving the quality of CEA (27–29). In a study of 959 patients

with AKI who were treated with dialysis in the ICU and followed up

for 3 years, the main factors found to be associated with major

adverse kidney events (death, incomplete kidney recovery, or

development of end-stage kidney disease [ESKD]) were severity

of illness and use of CKRT (vs. IHD) during the ICU admission

(30). In another study looking at ICU survivors, the QOL, although

lower at 3 months post-discharge, was similar at the 1- and 4-year

follow-ups among those admitted to the ICU with acute kidney

injury (AKI) requiring dialysis and those without AKI (31).

Therefore, both short- and long-term healthcare expenditure and

outcomes in critically ill patients with AKI should be analyzed for

robust cost estimation. The factors traditionally used in the

allocation of dialysis are summarized in Table 1.
3 Impact of the COVID-19 pandemic
on dialysis allocation

3.1 Critical care resource allocation during
the COVID-19 pandemic

Healthcare emergencies such as natural disasters and infectious

disease pandemics exert a severe impact on critical care resources

and require the creation of comprehensive policies on resource

allocation (32). The influenza pandemics at the start of the 21st
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century, such as the H5N1 (“bird flu”) and H1N1 (“swine flu”)

pandemics, resulted in acutely limited availability of mechanical

ventilators (33), and triage protocols for resource deployment based

on the Sequential Organ Failure Assessment (SOFA) score (34)

were created to allocate access to critical care resources (35, 36).

However, critical care triage during pandemics simply based on

physiological scores such as SOFA has its limitations, and protocols

should be modified based on other data, such as those related to

outcomes, as they emerge in real-time (36).

The coronavirus disease 2019 (COVID-19) (37) pandemic

resulted in an unprecedented burden on critical care units,

leading to the reassessment of the existing pandemic utilization

and allocation policies to better prepare ICUs for the unique

challenges posed by COVID-19 (38). At the start of the pandemic

in the United States, an Expert Panel Report of the Task Force for

Mass Critical Care and the American College of Chest Physicians

recommended a triage system to guide critical care resource

management toward the patients who were most likely to benefit

while maintaining the standard of care (32). Over the last 3 years,

the emergence of new variants, variable isolation protocols, mass

vaccination policies across nations and regions, and evolving

therapies have led to difficulties in enforcing resource allocation

policies that need to be constantly adapted in line with the changing

face of the COVID-19 pandemic (39). This has led to the

recognition of the importance of utilizing large real-time datasets

for institutional planning and resource allocation to ensure

standards of care under crisis and to meet the egalitarian and

utilitarian principles of clinical practice.
3.2 Allocation of dialysis during the
COVID-19 pandemic

AKI is common in patients with COVID-19 (40, 41) and is

associated with in-hospital complications and mortality (41–47). A
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high proportion of COVID-19 patients admitted to the ICU,

especially in the first year of the pandemic, required CKRT (48–

50), resulting in a major burden on critical care resources. Assessing

the risk of respiratory failure and the need for ventilators were not

immediately recognized as priorities when treating patients with

COVID-19, and similarly, the impact of dialysis-requiring AKI was

not fully understood until later in the pandemic (51, 52). In addition

to dialysis machines, there was a major increase in demand for all

components of hospital dialysis programs, including nursing staff,

technicians, and consumables such as dialysis filters and solutions

and anticoagulation medications (53). In addition to patients who

developed AKI, dialysis requirements also increased for patients

with ESKD, who also had significantly increased rates of ICU

admission (53).

This crisis led to the development of resource management

policies in acute dialysis units across hospitals (53). The shortage of

CKRT machines led to the creation of regional and institutional

policies on increasing supply and developing stockpiles of CKRT

machines (54, 55). Some academic centers adopted crisis protocols

of prolonged intermittent kidney replacement therapy (56) or

accelerated venovenous hemofiltration (57), and CKRT devices

could be shared between patients. This novel strategy entailing

the sharing of tools among patients undergoing CKRT in ICUs in

close geographical proximity reduced nursing workloads and the

need for machine transportation (58). However, the sharing

protocols increased the demands of dialysis fluids due to the

increased flow rates required for effective clearance. To address

this demand, some centers adopted the policy of “fixed hours” on

CKRT (51). Alternate dialysis strategies such as sustained low

efficiency dialysis (SLED) that utilize the hospital water supply,

hence minimizing the need for consumable dialysis solutions, were

adopted in some centers (59). However, the drawback with SLED

was the requirement of a dialysis nurse since most ICU nurses are

not trained in this modality. To address the issue of nursing staff

shortage, at our institute we adopted the remote telemonitoring of

dialysis treatments, which was found to be safe, reliable, and

minimized the risk of staff exposure (60). Some hospitals also

employed acute peritoneal dialysis (APD) to expand their

capacity and to tackle the shortage of hemodialysis machines

(61). However, the role of APD in critically ill patients with

COVID-19-related respiratory failure is limited by the risks of

ventilatory compromise, especially in patients with requirements

for high levels of oxygen, positive end-expiratory pressures, or

proning (61, 62). The increased hypercoagulability seen in

COVID-19 patients posed another challenge, due to the reduced

filter life span and constant need to change filters, leading to

increased costs and nursing workload (63). This led to the

enforcement of anticoagulation protocols to minimize filter

clotting. There is a dearth of data on CEAs in critical care dialysis

allocation during the COVID-19 pandemic. One study of patients

with ESKD comparing dialysis modality found that IHD was

associated with a greater cost than PD during the COVID-19

pandemic (64). Finally, another challenge was the arrangement of

outpatient dialysis centers, especially for new patients who required

long-term dialysis. The development of isolation protocols and the

arrangement of isolation rooms in chronic dialysis units with
TABLE 1 Factors traditionally linked to the cost of dialysis in the ICU.

Dialysis-
related costs

Staff-
related
costs

Hospital-
related
costs

Patient-related
costs

Dialysis machines ICU nurse
vs. dialysis
nurse

ICU beds Dialysis access
placement

Dialysis solutions Nursing
time

Patient
monitoring
devices

Need for large dialysis
volumes and adequate
clearance

Dialysis filters (type
and life span) and
dialysis tubing

Technician
time

Patient and
machine
transport

Hypercoagulable state

Anticoagulation
medications

Clinician
time

Need for vasopressors
during dialysis-related
hypotension

Other intravenous
solutions such as
calcium and saline
ICU, intensive care unit.
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limited resources did not occur at a rate equal to the rapid increase

in demand. This led to prolonged hospitalizations.

In summary, a large number of factors are involved in dialysis

resource allocation to critically ill patients, especially during public

health emergencies (Table 2). Using large datasets and smart

analytics that can take into account all the relevant healthcare

information in the hospital system could lead to efficient and cost-

effective dialysis resource allocation in future public

health emergencies.
4 The role of big data and AI in
optimizing utilization and allocation of
dialysis resources

4.1 Overview of big data and AI in
healthcare

The use of advanced information technologies to improve

healthcare has seen a rapid advancement since the turn of the

millennium owing to the rapid progress made in computer science

and information technology (65). Modern health data analytics is

focused on high-quality, efficient, and cost-effective care delivery

and personalized medicine (66–70). This requires the ability to

capture, integrate, and analyze heterogeneous unstructured and

structured data in real-time from healthcare systems (71).

Healthcare systems such as ICUs generate very large volumes of

data constantly. The rapidly evolving AI techniques such as

machine learning (ML) have the ability to analyze extremely large

datasets, learn patterns, and identify non-linear associations and

causal relationships (72, 73).

Healthcare data analytics include “data-driven” methods that

include ML and pattern recognition algorithms and are categorized

as supervised (classification) and unsupervised (clustering) learning

models (74). “Knowledge-driven” methods include logic-based

knowledge modeling and reasoning algorithms based on clinical

data (75) and can be more readily applied to clinical decision-

making (72). The applications of these models include “decision

analytics” (e.g., the diagnosis and treatment of diseases), “predictive

analytics” (e.g., using real-time data to predict health outcomes),

“prescriptive analytics” (e.g., the simulation of future outcomes),

“comparative analytics” (e.g., using data to compare impact of two

different interventions on an outcome), and “semantic analytics”

(e.g., using large datasets to understand complex relationships

between the variables for hypothesis generation and testing) (72).

As the volume of data provided by ICUs and complexity of

healthcare data have increased tremendously, there is an increasing

need to develop general-purpose frameworks that allow non-

experts to be able to easily apply complex AI algorithms to health

management (72). It is important that non-AI experts understand

the various facets of healthcare data, such as “variety” (multiple

novel data sources such as biometrics and “omics” data), “veracity”

(source and accuracy of data), “volume” (amount of data),
Frontiers in Nephrology
 04
TABLE 2 Non-traditional data can be utilized for AI-based dialysis
resource allocation and CEAs in critically ill patients during healthcare
emergencies.

Dialysis/
staff

Hospital/
administration

Patient Outcomes
(short- and
long-term)

Hemodynamic
data

ICU budget Primary
diagnosis

ICU mortality

Ultrafiltration
data

Geolocalization of
dialysis services

Demographics
and zip codes

Hospital
mortality

Blood pressure
medications

Back-up resource
generation

Comorbid
medical/mental
conditions and
pain

Long-term
mortality

Stockpiles and
inventory of
dialysis
machines and
dialysis
catheters

Emergency policy
committees

Severity of
illness scores

Length of ICU
stay

Backup dialysis
staff

Redeployment
protocols

Medications
(outpatient and
inpatient)

Length of
hospital stay

Backup ICU
staff

ICU rooms Laboratory and
other tests
(outpatient and
inpatient)

Hospital
readmission
rates

Staff training Weekend coverage Baseline ESKD
and years on
dialysis

Duration of
acute dialysis
requirement

Social
distancing and
contact
tracking

Isolation rooms Ventilator and
vasopressor data

Days to
recovery from
AKI

Return-to-work
policies

Telemedicine
services

Nutritional and
functional status

Inpatient
nephrology
follow-up

PPE Crisis teams Long-term
dialysis access

Post-AKI CKD

Utilization of
APD and SLED

Daily census Infections,
antibiotics, and
vaccination data

Post-AKI ESKD

Data on
machine
sharing and
reduced dialysis
flow rates/
frequency/time

Inventory and
shipment tracking

Transplant
status

HRQOL

Anticoagulant
dosing

Pharmacy,
radiology, and
vascular surgery
services

Residence
location,
education level,
employment,
and
socioeconomic
status

Outpatient
nephrology
follow-up

Dialysis
prescription

Substance abuse

(Continued)
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“velocity” (the rate at which new data are generated), and, finally,

“value” (knowledge gained and potential for clinical application)

(76). All these data features are typically high in the ICU, making it

an ideal setting for intelligent data analytics. However, to apply the

correct analytical methods and to properly interpret the analysis, a

proper understanding of each of these facets of healthcare data

is critical.

4.2 The use of big data and AI in critical
care resource allocation

Data mining and AI technology are now being increasingly used

for human resource management systems and to improve

workflows and cost–benefit ratios in healthcare systems (77–79).

Previous studies have shown the utility of AI in the efficient

scheduling of operating rooms (80), improvement of patient

waiting times and staff workflow (81–84), reduction of hospital

discharge time and length of stay (85), efficient hospital bed

allocation (86), and the reduction of response time and hospital

costs (87).

AI and big data analytics have great applications in mobile

(“m”)-health (88) and in the recent pandemic, the use of tele-ICU in

care delivery has greatly increased, especially by hospitals in remote,

underserved settings (89). An intelligent remote monitoring system

with innovative data analytics has been developed for the post-ICU

monitoring of patients with COVID-19, which has the potential to

reduce the length of ICU stays (90).

The unprecedented challenge created by the COVID-19

pandemic and the constant emergence of new data has further

highlighted the importance of the integration of smart advanced

information technologies in healthcare (91). Sottile et al. recently

reported the use of smart analytics to predict mortality in patients

hospitalized with COVID-19 using electronic health record (EHR)

data (92). Cheng et al. reported the use of AI-based tools to predict

the risk of ICU transfer in patients admitted for COVID-19 (93).
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Therefore, the use of big data and AI-based technology has great

potential to improve the management and allocation of resources in

critical care.
4.3 The use of big data and AI in the
allocation of dialysis

There are many factors to consider in the management of

resources related to dialysis utilization. In one study conducted

among hospitalized patients requiring dialysis, factors such as

health insurance, ischemic heart disease, late referral to the

nephrologist, and the use of temporary vascular access for the

first dialysis were identified as the major factors contributing to an

increased length of hospital stay (94). Other studies have identified

that poorly controlled anemia, depression, and pain were factors

associated with the increased utilization of hospital dialysis

resources (95, 96). Limited health literacy was shown to

significantly increase the risk of hospitalization among patients on

chronic dialysis (97). As mentioned, the allocation of dialysis

resources was a major challenge during the COVID-19 pandemic

that required the development of emergency programs (98). The

shortage of resources also resulted in ethical challenges for patients,

families, clinicians, and policymakers for resource prioritization

(99, 100).

To ensure equity and justice, there is a critical need to harness

big data to maximize the cost-effective utilization of dialysis

resources while maintaining the standard of care in critically ill

patients. Although previous studies have identified important

factors that can be addressed to improve the management of

dialysis resources (51, 54–59, 61–63, 94–100), the availability of

large volumes of EHR data in dialysis patients is a prime resource

for the application of AI-based smart analytic tools for resource

management (Table 2). The use of AI-based data analytics is rapidly

increasing in the field of nephrology, and its application has

increased our understanding of disease pathogenesis, outcome

prediction, and the personalization of medicine (101). ML-based

analytic models have been shown to outperform clinician-based

predictions related to AKI (102–104). We have previously shown

the use of X-Boost-based machine learning algorithms to predict

the severity of AKI, the need for dialysis, and renal recovery in

patients with COVID-19 (105). Data from existing repositories such

as the EHR can help clinicians and administrators better triage

existing dialysis resources to the hospitals that are and the patients

who are predicted to need them most. Future research in this area

should be an important priority.
4.4 Knowledge gaps and challenges in the
use of big data and AI

As with any innovative technology, the hype and expectations

surrounding intelligent data analytics have to be modified based on

their limitations and drawbacks. The incorrect selection of datasets

or analytic tools, erroneous processing of data, and incorrect

interpretations of the results are major challenges that will need
TABLE 2 Continued

Dialysis/
staff

Hospital/
administration

Patient Outcomes
(short- and
long-term)

Missed and/or
incomplete
dialysis sessions

Imaging data

Dialysis refusal/
withdrawal

Resuscitation
data

Staff feedback Patient feedback

Wearable
devices

Health literacy

Health
insurance

Research data
ICU, intensive care unit; AKI, acute kidney injury; ESKD, end-stage kidney disease; HRQOL,
health-related quality of life; PPE, personal protective equipment; SLED, slow low-efficiency
dialysis; APD, acute peritoneal dialysis.
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to be overcome in a field such as healthcare where the health of

patients is at stake (Table 3). In a systemic review of 46 studies of the

use of ML models to predict AKI, a high risk of bias and lack of

external validation of the models was observed (102).

To develop the trust of the healthcare community in this

technology, the output data need to be clinically explainable and

the processes transparent (106). In addition to clinicians, it will also

be important to develop patient trust; hence, patient education will be

crucial. Explainable artificial intelligence (XAI) is the next frontier in

AI-based healthcare analytics (107). As with all aspects of healthcare

delivery, patient privacy and confidentiality are paramount (108) and

the privacy risks should be communicated to the patients and their

consent obtained (109). Several regulatory compliance steps for data

security might limit the use the AI systems until transparency and

understanding improve (110). Patient characteristics, the nature of

diseases, and the types of diagnostic tests and treatments can change

with time, and this needs to be accounted for when updating existing

AI tools and developing new ones. Rigorous checks on data quality

must be carried out, and the harmonization of data across different

EHRs in different health systems should be conducted before their

application for analysis. In our recent study on characterizing AKI in

patients with COVID-19, we leveraged EHR data in patients with

COVID-19 from 53 healthcare systems across the United States (41).

State-of-the-art data cleaning, quality control, and harmonization

processes were undertaken before the analytical steps (41). Finally,

the vulnerabilities of AI models to “adversarial attacks” should be

routinely monitored and appropriate precautionary and corrective

measures should be applied (111).

The development of laws, regulations, and guidelines for the use

of healthcare data and AI-based smart analytics needs to be
Frontiers in Nephrology 06
developed for use in all aspects of healthcare, including resource

allocation (112). Improved accuracy of the data and understanding

of AI tools would strengthen the healthcare community’s trust in

them (113).
5 Conclusions

The COVID-19 pandemic resulted in an unprecedented burden

on critical care units worldwide. Dialysis machines became scarce,

leading to value-based CEA and the rationing of resources to deliver

patient care of the best quality. AI-based big data analytics are now

being utilized in multiple data-driven healthcare services, including

the optimization of healthcare system utilization. Data from

existing repositories such as the EHR can help clinicians and

administrators to better triage existing dialysis resources to the

hospitals and patients who are predicted to need them most.

Although the application of AI-based big data analytics for

dialysis allocation in critical care holds a lot of promise, several

challenges need to be taken into consideration. Future research in

this area should be an important priority.
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TABLE 3 Key factors in the application of AI-based analytics of EHR data
for dialysis resource allocation.

Correct selection of datasets or analytic tools

Correct data processing

Rigorous data quality checks

Harmonization of data from different EHR systems

Data security

Correct interpretations of the results

Minimize bias

External validation of tools

Output data needs to be easily understood by clinicians (XAI)

Patient education

Patient privacy and confidentiality

Resource supply and demand monitoring

Incorporation of evolving disease management guidelines, especially during new
health emergencies such as epidemics/pandemics

Cyber security

Development of regulations and guidelines for the use of AI-based smart
analytics in patient care
AI artificial intelligence; XAI, explainable artificial intelligence; EHR, electronic health record.
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