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Aim: Chronic kidney disease (CKD) is a major complication of diabetes and a

significant disease burden on the healthcare system. The aim of this work was to

apply a predictive model to identify high-risk patients in the early stages of CKD

as a means to provide early intervention to avert or delay kidney

function deterioration.

Materials and methods: Using the data from the National Diabetes Database in

Singapore, we applied a machine-learning algorithm to develop a predictive

model for CKD progression in diabetic patients and to deploy the

model nationwide.

Results: Our model was rigorously validated. It outperformed existing models

and clinician predictions. The area under the receiver operating characteristic

curve (AUC) of our model is 0.88, with the 95% confidence interval being 0.87 to

0.89. In recognition of its higher and consistent accuracy and clinical usefulness,

our CKD model became the first clinical model deployed nationwide in

Singapore and has been incorporated into a national program to engage

patients in long-term care plans in battling chronic diseases. The risk score

generated by the model stratifies patients into three risk levels, which are

embedded into the Diabetes Patient Dashboard for clinicians and care

managers who can then allocate healthcare resources accordingly.

Conclusion: This project provided a successful example of how an artificial

intelligence (AI)-based model can be adopted to support clinical decision-

making nationwide.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fneph.2023.1237804/full
https://www.frontiersin.org/articles/10.3389/fneph.2023.1237804/full
https://www.frontiersin.org/articles/10.3389/fneph.2023.1237804/full
https://www.frontiersin.org/articles/10.3389/fneph.2023.1237804/full
https://www.frontiersin.org/journals/nephrology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneph.2023.1237804&domain=pdf&date_stamp=2024-01-08
mailto:andy.ta@ihis.com.sg
https://doi.org/10.3389/fneph.2023.1237804
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nephrology#editorial-board
https://www.frontiersin.org/journals/nephrology#editorial-board
https://doi.org/10.3389/fneph.2023.1237804
https://www.frontiersin.org/journals/nephrology


Fu et al. 10.3389/fneph.2023.1237804
1 Introduction

Chronic kidney disease (CKD) is a major complication arising

from diabetes, and around 25%–40% of patients with diabetes

develop diabetic kidney disease (1). Diabetes is not only one of

the most common diseases but also the leading cause of kidney

failure. In Singapore, diabetes accounts for two-thirds of cases of

end-stage kidney failure (ESKF) requiring dialysis, with the

prevalence being one of the highest in the world according to the

United States Renal Data System (USRDS)’s data (https://

adr.usrds.org/2021/end-stage-renal-disease/11-international-

comparisons). Diabetes leads to kidney damage via two main

pathways: chronic hyperglycemia and the activation of the renin–

angiotensin system. These processes ultimately induce glomerular

sclerosis, albuminuria, and kidney impairment (2). CKD is

projected to be the fifth leading cause of death globally by 2040

(3). Because it is often asymptomatic in the early stages, CKD is

usually diagnosed late. The treatment for patients with ESKF

requires substantial resources and is still a great challenge to a

healthcare system that is under resource limits and budget control.

The patients themselves also suffer from a significant loss of quality

of life and from the financial burdens affecting them as a result of

their condition.

It is critical to identify patients who are at high risk of kidney

function deterioration to avert or delay their progression to ESKF.

These patients could be treated in the early stages and be engaged

early on in their long-term kidney care plans. The Nephrology

Evaluation, Management and Optimization (NEMO) program was

introduced to optimize renal protection treatment earlier within the

primary care setting. Compared with diabetic patients not enrolled

in NEMO, the patients in the NEMO program had a 28% lower rate

of kidney function deterioration (https://www.healthhub.sg/a-z/

medical-and-care-facilities/nemo-programme-for-diabetic-kidney-

patients). However, the NEMO program focused only on patients

from one polyclinic cluster in Singapore and addressed only one

treatment parameter. Consequently, the Holistic Approach in

Lowering and Tracking Chronic Kidney Disease (HALT-CKD)

program, which is comprised of nephrologists from all public

hospitals in Singapore, was launched in 2017 as an enhanced and

extended version of the NEMO program. The HALT-CKD national

program targets and tracks a much broader cohort, that is, all CKD

patients from stage 1 to stage 4 in Singapore. It is also carried out at

all polyclinics across Singapore and aims to identify and control

evidence-based risk factors of CKD to delay CKD progression.

A prediction method of CKD progression has been studied in

some western countries’ populations to assist in the early

intervention of patients. Tangri et al. (4) developed a risk model

of CKD progression to ESKF in the Canadian population and found

a list of important indicators—age, sex, estimated glomerular

filtration rate (eGFR), and levels of urine albumin, serum calcium,

serum phosphate, serum bicarbonate, and serum albumin. Later,

this model was evaluated and recalibrated for multinational cohorts

(5). The method of Tangri et al. was also applied to predict the

probability and the timing of kidney failure that requires kidney

replacement therapy (6). Ramspeck et al. (7) selected 11 prediction

models on kidney failure and validated them on two large cohorts in
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Europe. The model’s performance on the validation cohorts was

considerably worse than on the original cohorts due to the narrower

patient mix of the validation cohorts. This result indicates the

necessity of retraining and even redesigning the CKD prediction

model when applying it to populations with different ethnicities.

Low et al. (8) followed 1,582 patients with type 2 diabetes

mellitus, from 2002 to 2014, and developed a logistic regression

model for CKD progression specifically for diabetic patients in one

Singapore hospital. In recent years, machine-learning algorithms,

such as random forest and XGBoost, were also used to create the

risk models of CKD progression, which showed a potential for

improvement from statistical methods (9, 10).

However, there are some limitations in the previous studies.

First, the study population did not cover the different ethnic groups

in Singapore and was not representative of all diabetic patients in

the country. Second, there was no clinical validation to confirm the

viability of the models and to demonstrate their clinical usefulness

in practice. Some studies did not even have validation datasets to

check the stability of the model’s performance.

In the current study, we developed a predictive model for CKD

progression in 5 years for diabetic patients in Singapore. Our study

used the nationwide medical data of patients in Singapore by

utilizing the two national systems: the National Diabetes Database

(NDD) and the Business Research Analytics Insights Network

(BRAIN). Our study result has been validated technically and

clinically by nephrologists from public hospitals, hence the

endorsement from the HALT-CKD program’s committee to

incorporate it into its action plan.
2 Materials and methods

2.1 Data collection and model
development/deployment platform

The patient data used in this study were from the National

Diabetes Database (NDD) within the Business Research Analytics

Insights Network (BRAIN) platform.

2.1.1 National Diabetes Database
The NDD consolidated data from multiple repositories across

Singapore. It was jointly developed by the Ministry of Health

(MOH) and the Integrated Health Information Systems (IHIS) in

Singapore to support the national “War on Diabetes” initiative,

which aims to enhance citizens’ awareness of diabetes and to create

a supportive environment to prevent and manage diabetes well

(https://www.moh.gov.sg/wodcj). Prior to the creation of the NDD,

each hospital had its own registry of diabetic patients. The diabetic

patients and their data were sat in silos, as shown in Figure 1. The

data may be overlapped and inconsistent due to different data

sources and criteria. The NDD standardized the criteria and

integrated data from multiple sources and kept it updated with

the new information. It aims to facilitate outreach, policy

intervention, and better clinical management for diabetic patients.

The NDD has provided high-quality data on diabetic patients in

Singapore since 2011. It covers nine major public hospitals in
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Singapore: Changi General Hospital (CGH), Singapore General

Hospital (SGH), KK Women’s and Children’s Hospital (KKH),

Seng Kang Hospital (SKH), Khoo Teck Puat Hospital (KTPH), Tan

Tock Seng Hospital (TTSH), National University Hospital (NUH),

Ng Teng Fong General Hospital (NTFGH), and Alexandra Hospital

(AH). It also covers three polyclinic clusters in Singapore:

Singhealth Group Polyclinics (SHP), National Healthcare Group

Polyclinics (NHGP), and National University Polyclinics (NUP).

The data include demographics, events, laboratory tests, diagnoses,

medications, foot screenings, eye screenings, procedures, clinical

measurements, finance, referrals, and mortality (see details in

Supplementary Figure 1).

2.1.2 Business Research Analytics
Insights Network

The NDD and the CKD prediction tools reside in the BRAIN

(11). The CKD prediction model was developed and deployed in the
Frontiers in Nephrology 03
BRAIN platform. The relevant data and predicted scores are stored

and aggregated in the NDD. These data are used to produce

dashboards for policymakers and clinicians (see examples in

Supplementary Figures 2, 3).
2.2 Study base cohort for the
model’s development

A retrospective study cohort consists of adult patients

diagnosed with diabetes and in the early stages of CKD before 1

January 2013 in Singapore. The study cohort was used to develop a

predictive model on CKD progression. Figure 2 shows the

formation of the study cohort with the exclusion criteria: (i)

patients not having type 1 diabetes or type 2 diabetes before 1

January 2013, (ii) patients not in CKD stage 1 or stage 2 in 2012, (iii)

patients aged < 18 years in 2013, and (iv) patients with missing
FIGURE 2

Definition of the study base cohort for the model’s development.
FIGURE 1

Formation of the National Diabetes Database.
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gender data. The definitions of the different stages of CKD were

based on the Kidney Disease Improving Global Outcome

Guidelines (KDIGO) with slight modifications (refer to

Supplementary Material for details). Patients who were at CKD

stages 3–5 were identified by two estimated glomerular filtration

rate (eGFR) readings that were more than 90 days apart to exclude

acute kidney injury episodes. The historical data of medication and

laboratory tests were extracted to analyze patients’ medical and

clinical conditions1.
2.3 Predictive model variables and
feature engineering

The dependent variable of the predictive model was defined as a

patient’s 5-year risk of CKD progression. That is, whether a

patient’s kidney damage will deteriorate into CKD stage 3 or

above in 5 years. Specifically, the model was trained on the study

base cohort to predict on 1 January 2013 their risk of CKD

progression in the next 5 years until 1 January 2018.

Independent variables of the model encompass five categories:

sociodemographic characteristics, blood pressure, diagnosis,

laboratory tests, and medication. Feature engineering was

conducted to convert the study data into these variables based on

previous studies of CKD progression and input from clinicians and

care managers. There were 177 variables generated initially, and

feature selection was performed using the backward feature

selection method to choose the most relevant features while

maximizing the model’s performance (12, 13) during model

training. The feature selection process was done by repeatedly

removing the variables that were not important according to the

feature importance of the XGBoost model or not contributing to the

model’s performance, until the variables in the final models were all

important in prediction, and the removal of any variable would lead

to a significant drop in the model’s performance. There were 25

variables selected to be included in the model.
2.4 Machine-learning model development

We used the Extreme Gradient Boosting algorithm (XGBoost)

to build the predictive model and grid search to fine-tune hyper-

parameters. The hyper-parameters included the maximum depth of

each decision tree (i.e., max_depth), the minimum sum of instance

weight (hessian) needed in a child (i.e., min_child_weight), and the

number of decision trees in the final model (i.e., nrounds). Our

model using XGBoost could handle the missing data directly due to

the sparse-aware split finding (14). The model was developed in R

(R is a programming language for statistical computing, created by

Ross Ihaka and Robert Gentleman).

The study cohort was randomly split into two datasets by

patient ID: a training dataset for the model’s development and a
1 The paper used 1-year medication data before 1 January 2013, and all past

data of laboratory tests before 1 January 2013 from 1 January 2005.
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test dataset for the model’s validation. Table 1 describes patients’

distribution in the two datasets. To avoid the overfitting problem

and to fine-tune the hyper-parameters, threefold cross-validation

was applied to the training dataset. Cross-validation separated the

data into several partitions, trained on different combinations of

partitions, and evaluated the remaining partitions. The model’s

performance was measured by three metrics: area under the curve

(AUC), positive predictive value (PPV), and sensitivity when PPV

and sensitivity have a trade-off relationship influenced by the risk

score threshold.
2.5 Technical and clinical validation of the
developed model

Technical validation of the model developed was performed

using a new cohort with 6-month shift test data. The new cohort

consisted of patients filtered using the same exclusion criteria as the

base cohort but shifting the ending date to 30 June 2013, instead of

31 December 2012. The patients in the base cohort were removed so

that the new cohort had no overlap with the base cohort. The

technical cohort contained 5,490 patients and their risk of CKD

progression in the next 5 years until 30 June 2018 was predicted

using our developed model.

One-year shift data (2013 cohort) were generated for clinical

validation by shifting the ending date of the cohort to 31 December

2013 and removing the patients overlapped with the base cohort or

the technical validation cohort. One thousand patients were

randomly selected from the 2013 cohort, and the same features

used by our model were provided to 20 clinicians across three

polyclinics groups. The clinicians were asked to assess the patients’

risk of CKD progression in the next 5 years; we then compared the

clinicians’ assessment with our model’s prediction.

The model package and the development script are available at:

https://github.com/beverly0005/CKD/tree/main.
3 Results

In the current study, we developed a model for CKD

progression in diabetic patients. Our study cohort contained

19,050 adult patients diagnosed with diabetes and CKD stages 1

and 2 before 2013; 37.3% of them deteriorated into CKD stage 3 or

above in 5 years. Table 2 shows the descriptive summary of the

study cohort. The training, test, and validation datasets all showed

similar characteristics as shown in Table 2.

Following our feature selection process, the original 177

variables were narrowed down to four categories of variables and

used for training our CKD model, as elaborated below. The

sociodemographic characteristics included age, gender, and race.

The diagnosis variable included diabetes duration, which was the

number of days from the earliest diabetes diagnosis date to the date

of prediction, i.e., 1 January 2013. The variables derived from the

laboratory test history included measurements of hemoglobin A1C,

albumin urine, glucose, hemoglobin, the urine albumin-to-

creatinine ratio, albumin serum, eGFR, alanine aminotransferase,
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triglycerides, high-density lipoprotein, low-density lipoprotein, and

total cholesterol. The glomerular filtration rate (GFR) is an

important metric that reflects kidney function, but measurement

requires a complicated and lengthy procedure. The eGFR is an

approximate to glomerular filtration rate. It is calculated using the

CKD-EPI equation based on serum creatinine, age, gender, and

ethnicity (non-Black www.kidney.org/content/ckd-epi-creatinine-

euqation-2009). The statistics of these laboratory tests are shown

in Table 2. The “prior” laboratory readings in Table 2 refer to the

test result closest to but at least 90 days before the latest laboratory

reading before 1 January 2013. This gives an indication of the

magnitude of the change in the laboratory results and provides a

sense of the progression of the patients’ clinical conditions

and parameters.

The medication data were standardized into the groups from

the Anatomical Therapeutic Chemical Classification (ATC) of

which the first level contains 14 main anatomical and

pharmacological groups (15). For example, an ATC code with the

first level “A” tells that the drug is related to the alimentary tract or

metabolism, while the ATC code with the first level “C” tells that the

drug acts on the cardiovascular system.

Figure 3 displays the important predictive factors for the CKD

progression in our model. Consistent with the findings in previous

studies (4, 16, 17), the leading factors include eGFR and albumin

urine concentration. Interestingly, we found that the inclusion of

medication history, specifically drugs for the cardiovascular system

and metabolism, and other laboratory tests such as hemoglobin

levels improved the model’s performance in predicting the 5-year

risk of CKD progression for diabetic patients.

Our developed CKD model outperformed the current clinical

practice and the mainstream statistical models for predicting CKD

progression. Clinicians use the eGFR to diagnose CKD in current

practice. We developed a Cox regression model using only an eGFR

to mimic the clinicians’ assessment. Additionally, we developed

another Cox regression model using the features in Tangri’s paper

(4), which was widely recognized and had a study design similar to

ours. Table 3 summarizes the performance of our models and other

major models. Our model had the best performance in terms of area

under the receiver operating characteristic (ROC) curve (AUC)

value. The 95% confidence interval of our model’s AUC is 0.87 to

0.89, which is significantly higher than other statistical models.

In addition, we tested the stability of our model’s performance

on a new cohort by shifting 6 months. The new cohort consisted of

the patients using the same exclusion criteria as in Figure 2 but
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2012. The new cohort did not overlap with the study cohort

discussed above. Our model predicted their risk of CKD

progression in the next 5 years until 1 July 2018. As Table 3

shows, our model’s performance was stable, indicating its

potential to be generalized to new patients in different periods.

We have further validated our developed model clinically by

comparison with clinicians tasked with predicting CKD progression

clinically. We generated a new 2013 diabetes cohort of 1,000

patients as described in Methods and provided their features used

by our model to 20 clinicians across all three polyclinics groups in

Singapore (i.e., NHGP, NUP, and SHP). These 1,000 patients were

not included in the original 2012 cohort that was used to develop

the model or in the 6-month shift-test data. We asked the clinicians

to assess the patients’ risk of CKD progression in the next 5 years

and then compared the performance of their assessment and

our model.

Figure 4A displays the receiver operating characteristic (ROC)

of our model, in which the red dots represent the combinations of 1

– specificity and the sensitivity of the clinicians’ prediction. The area

under the ROC curve (AUC) of the clinical validation data was still

0.88, which demonstrated, again, that our model could be

generalized to new patients. Figure 4B shows the precision–recall

curve of our model, in which the red dots represent the

combinations of sensitivity and the precision of the clinicians’

predictions. The predictions by clinicians varied across seniority

levels. Some clinicians did better than others in their assessments.

However, our model outperforms all clinician subgroups because all

the dots are under the curves in both Figures 4A, B. For example,

our model was able to achieve a 0.74 sensitivity and a 0.81 precision

in the clinical validation and it could also flexibly achieve the other

balance along the curve in Figure 4B. Compared with clinicians of

different seniority levels, our model predicted more accurately.
4 Discussion

CKD is a major complication and concern for diabetic patients,

and two-thirds of new kidney failure cases are due to diabetes in

Singapore. Identifying high-risk patients and intervening early will

help prevent kidney failure, improve patient outcomes, and utilize

hospital resources more cost-effectively. Our research contributes to

identifying high-risk patients in the early stages of CKD. It is also

different from previous studies in the following ways.
TABLE 1 Distribution of patients and CKD progression in the different datasets.

Data Number of patients CKD progression
into stage 3 or
above in 5 years

% Number of patients %

Training 14,240 75% 5,300 37.2%

Test 4,810 25% 1,801 37.4%

Total 19,050 100% 7,101 37.3%
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First, our project was the first national-level project on kidney

diseases in diabetic patients. The study used data from the national

cohort that covered the entire diabetic population in Singapore. The

diabetic patients’ data, which were previously scattered among

diabetic registries owned by different hospitals and the MOH,

were collected and consolidated by the NDD. It contains the most

complete datasets of diabetic patients in Singapore and is kept up to

date with new data via the BRAIN platform. The national cohort

represents the diverse population in Singapore, which includes

different ethnicity groups from south and east Asia. As Ta et al.

(11) introduced, the BRAIN platform runs on the existing

infrastructure and draws the most current data in a timely

manner from the source system. It has six core elements: (i)

secure access channels, which enable the BRAIN platform to

connect to multiple data sources; (ii) a national health

identification service, which enables the BRAIN to uniquely
Frontiers in Nephrology 06
identify people and their records received from different health

domains; (iii) an enterprise terminology service, which enables the

BRAIN platform to harmonize data across multiple source systems;

(iv) a de-identification service, which supports the de-identification

of patient data before presenting them to researchers or prediction

tools, and the re-identification of patient data when needed; (v) user

groups, which include data analysts, policymakers, and

stakeholders; and (vi) tools for model and dashboard

developments. Tools such as Python, R, Stata, and Tableau are

available on the BRAIN platform. The BRAIN platform and NDD

database are readily available to stimulate more research on diabetes

in the future.

Second, our research identified new indicative factors that

improve the prediction accuracy. In addition to the eGFR and the

concentration of albumin urine, which have been proven to be

predictive in previously developed models, our model found that
TABLE 2 Descriptive statistics of the study cohort.

Variable
Study cohort, N = 19,059

% Missing % Cohort

Male (yes, 1; no, 0) 0 48.7%

Ethnicity: Chinese (yes, 1; no, 0) 0 69.3%

Ethnicity: Indian (yes, 1; no, 0) 0 12.5%

Ethnicity: Malay (yes, 1; no, 0) 0 14.4%

% missing Mean (SD) Interquantile,
Q1, Q3

Age in 2013 (years) 0 61.6 (11.4) 54.0, 69.0

Diabetes duration (years) 0 7.5 (5.9) 3.0, 10.0

Latest hemoglobin A1C result before 2013 (%) 0.2 7.9 (1.6) 6.8, 8.5

Prior hemoglobin A1C result before 2013 (%) 5.9 7.9 (1.6) 6.8, 8.5

Latest albumin urine result before 2013 (mg/g) 2.1 213.3 (479.7) 36.4, 176.6

Latest glucose result before 2013 (mmol/L) 3.1 8.5 (3.4) 6.4, 9.6

Latest hemoglobin result before 2013 (g/dL) 48.3 13.0 (1.7) 11.9, 14.2

Prior hemoglobin result before 2013 (g/dL) 77.3 12.6 (1.8) 11.4, 13.9

Latest urine albumin-to-creatinine ratio before 2013 (mg/mmol) 0 29.8 (83.6) 4.7, 21.8

Latest albumin serum result before 2013 (g/L) 67.8 38.3 (6.0) 35.0, 42.0

Prior albumin serum result before (g/L) 87.8 37.6 (5.9) 34.0, 42.0

Latest eGFR before 2013 (mL/min/1.73m2) 0 88.2 (16.1) 75.0, 100.0

Prior eGFR before 2013 (mL/min/1.73m2) 50.8 98.7 (41.3) 76.0, 103.0

Latest alanine aminotransferase result before 2013 (U/L) 3.8 27.2 (17.6) 16.0, 33.0

Latest triglyceride result before 2013 (mmol/L) 2.3 1.6 (1.1) 1.1, 1.9

Latest high-density lipoprotein result before 2013 (mmol/L) 1.6 1.3 (0.4) 1.0, 1.5

Latest low-density lipoprotein result before 2013 (mmol/L) 2.1 2.5 (0.8) 2.0, 2.9

Latest total cholesterol result before 2013 (mmol/L) 2.3 4.5 (1.0) 3.9, 5.0

Number of distinct medicines (ATC codes) for the alimentary tract or metabolism dispensed in 2012 0 3.6 (2.3) 2.0, 5.0

Number of distinct medicines (ATC codes) for cardiovascular system dispensed in 2012 0 3.1 (1.6) 2.0, 4.0
eGFR, estimated glomerular filtration rate.
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medication history (e.g., drugs for the cardiovascular system and

metabolism) and other laboratory tests (e.g., hemoglobin) may also

play an important role in predicting CKD progression in diabetic

patients. Some features that we used have correlations with each

other, for example, urine albumin and the urine albumin-to-

creatinine ratio. We kept both features because they can provide

added value to predict CKD progression. Removing one will

decrease the model’s performance on the validation set.

Third, our research developed a machine-learning algorithm

that outperforms the current clinical practice and the mainstream

statistical models in predicting CKD progression, as indicated in the
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results above. The technical validation of a 6-month shifted cohort

also confirmed that our developed model is stable by showing the

same good performance (with an AUC of 0.88) as the original base

cohort. No calibration was needed when applying to different

validation data, as our model was well trained using a

representative national cohort in Singapore.

Fourth, our model performed better than clinicians in

predicting CKD progression. More importantly, our model also

reduced the variation of prediction among clinicians and provided a

higher and more consistent accuracy.

Fifth, our model was the first clinical model endorsed by the

MOH and the HALT-CKD program in Singapore to be deployed

nationwide by incorporating it into the HALT-CKD program,

which was established to prevent and slow down the deterioration

of CKD in Singapore, with many nephrologists from public

hospitals in its committee. Figure 5 shows how our model

supports the HALT-CKD program to achieve more targeted early

intervention. The cohorts of diabetic patients and their data were

consolidated in the NDD. The ETL jobs have been scheduled to

automatically update the NDD data daily, transform the data into

the model inputs, and trigger the CKDmodel to generate risk scores

for CKD1/2 patients once a month. The predicted score generated

by the model can be flexibly banded into low, high, and very high

risk to allow for the allocation of healthcare resources accordingly.

The score is displayed on a diabetic patient’s dashboard together

with other relevant data.

The two dashboards, as demonstrated in Supplementary

Figures 2, 3, were derived and integrated into the electronic

health system. The Diabetes National Dashboard is a national-

level dashboard that provides a snapshot of the diabetic profile. It

provides cohort insights and supports decision-making for health

policies and budget planning. The other dashboard is an individual-

level dashboard, which incorporates the CKD model and

consolidates key information for each patient, for example,
FIGURE 3

Variable importance in the CKD model.
TABLE 3 Performance of the different models.

Model Method Data AUC

Our Model XGBoost Test data1 0.88

6-month-shift
test data2

0.88

Clinician Cox
regression

Test data 0.81

Statistical Model using features in
Tangri et al. [2]

Cox
regression

Test data 0.84

Tangri et al. [2] Cox
regression

Based on
published
paper

0.84

Lin et al. [3] Cox
regression

Based on
published
paper

0.86

Song et al. [4] Gradient
boosting

Based on
published
paper

0.83
1Test data are the cohort data before 1 January 2013, which contained 4,810 patients.
2Six-month shift-test data are the cohort data before 1 July 2013, which contained 4,590
patients. The 2 bold 0.88 are the AUC of our model, which are the highest compared to
other models.
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laboratory tests and appointment information. It not only saves

clinicians, who normally suffer from heavy clinical workloads, from

carrying out the risk assessment of CKD progression but also

provides improved accuracy when identifying the patients at high

risk who may otherwise be missed given the time constraints of

the consultation.

When patients come to visit clinicians, especially those in

primary care who are the first line of care, the CKD stage 1/2

patients with a high risk of CKD progression will be flagged in the

dashboard. The clinicians can view and print the dashboard results

from the electronic health system, use it as a tool for patient
Frontiers in Nephrology 08
coaching, and implement more targeted early intervention for

them. For example, in the HALT-CKD program, there are two

phases of intervention. In phase 1, patients with a high and very

high risk will have more intensive drug therapy intervention, such

as more frequent drug titration. In phase 2, which is more resource

intensive, patients with a very high risk will be selected for lifestyle

modification. Considering the 711,800 diabetic patients aged from
BA

FIGURE 4

Performance of clinicians’ assessment vs. our model’s prediction. (A) A receiver operating characteristic (ROC) curve. (B) A precision–recall curve.
FIGURE 5

A workflow demonstrating how the HALT-CKD program is supported by the CKD predictive model. The cohorts of diabetic patients and their data
were consolidated in the NDD (National Diabetes Database). The ETL jobs have been scheduled to automatically update the NDD data daily,
transform the data into the model inputs, and trigger the CKD model to generate a risk score for the CKD stage 1 and 2 patients monthly. The risk
score was banded into three levels and displayed on a diabetes patient dashboard. The users, such as clinicians, can view and print the dashboard
results from the electronic health system and implement a more targeted early intervention for CKD stage 1 and 2 patients.
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20 to 79 years old in Singapore in 20212, approximately 474,500

diabetic patients, i.e., two-thirds of diabetic patients, will end up

with kidney failure. By integrating the prediction model into the

clinical workflow, these patients could benefit from early CKD

intervention. The enhanced performance of the model enables the

identification of more patients at a high risk of kidney deterioration.

In general, the individual-level dashboard can fit into the current

clinical workflow and enhance the clinicians’ ability to care

for patients.

However, our study has a number of limitations, thus leaving

room for future study. First, patients’ data from private health

institutes are not available although they only constitute a small

portion of the healthcare data of Singapore. This affects data

completeness and might have influenced the model ’s

performance. Second, the impact of lifestyle factors, such as

physical exercise and diet, has not been considered in the model.

The model’s performance may be further enhanced by involving

lifestyle factors. Third, our study is targeted at diabetic patients in

Singapore, who mainly consist of Chinese, Malay, and Indian

people. The model’s performance may decline, and the model

should be ret ra ined i f appl ied to populat ions with

different ethnicities.

In conclusion, our risk model of CKD progression for diabetic

patients demonstrated its strength in prediction performance. It

outperformed other predictive models and clinicians’ judgements in

clinical validation. It has been endorsed by the MOH and the

HALT-CKD to be deployed nationwide in Singapore to support

clinicians in the assessment and medical treatment of patients in the

early stages of CKD. Feedback will be collected from clinicians and

the program committee to improve the predictive model further in

the future. This project provided a successful example to

demonstrate how an artificial intelligence (AI)-based model can

be adopted to support clinical decision-making nationwide.
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