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Acute kidney injury (AKI) is one of the most common and consequential

complications among hospitalized patients. Timely AKI risk prediction may

allow simple interventions that can minimize or avoid the harm associated with

its development. Given the multifactorial and complex etiology of AKI, machine

learning (ML) models may be best placed to process the available health data to

generate accurate and timely predictions. Accordingly, we searched the

literature for externally validated ML models developed from general hospital

populations using the current definition of AKI. Of 889 studies screened, only

three were retrieved that fit these criteria. While most models performedwell and

had a sound methodological approach, the main concerns relate to their

development and validation in populations with limited diversity, comparable

digital ecosystems, use of a vast number of predictor variables and over-reliance

on an easily accessible biomarker of kidney injury. These are potentially critical

limitations to their applicability in diverse socioeconomic and cultural settings,

prompting a need for simpler, more transportable prediction models which can

offer a competitive advantage over the current tools used to predict and

diagnose AKI.
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Introduction

An estimated one in five adults admitted to hospital develop

acute kidney injury (AKI) (1). Acute kidney injury is associated with

an increased risk of in-hospital death and long-term development of

chronic kidney disease (CDK) and other non-kidney complications,

such as HTN, cardiovascular disease and stroke (2).

Multiple prediction models and risk scores have been developed

over the years to predict the occurrence of hospital-acquired AKI

(HA-AKI) in order to improve short- and long-term management

(3). In patients presenting to the emergency department (ED) these

interventions may be as simple as performing a fluid assessment to

optimize hydration status and avoiding nephrotoxic medications.

AKI prediction models or risk scores have been developed for

various populations, from undifferentiated general hospital patients

to critically ill or post-operative patients. Accordingly, predictors

used have ranged from general admission observations to

laboratory data and specific procedural interventions. Acute

kidney injury is most commonly defined using the Kidney

Disease Improving Global Outcomes (KDIGO) criteria which

uses the rise in serum creatinine or decrease in urine output (4),

however, other definitions - such RIFLE, AKIN - have been used in

AKI models.

Over the past decade as larger and more complex patient databases

have become available, development of machine learning (ML) models

for risk prediction has become increasingly popular. Compared to

traditional regression models, ML models have the advantage of not

being constrained by assumptions between variables and outcomes

allowing more subtle relationships in the data to be explored.

Additionally, their computational power means that a greater

number of input variables and data points can be processed to make

more accurate and individualized forecasts.

Past systematic reviews of predictionmodels in AKI have identified

a high risk of bias in most studies resulting from variability in the use of

performance measures (in particular calibration reporting), sparse

interpretability considerations, possibility of overfitting, narrow scope

for reproducibility and a lack of external validation limiting the

generalizability and applicability of the models (3, 5). Moreover,

while AKI risk prediction is useful in sub-specialized patient

populations, the majority of AKI occurs in the general wards, placing

a premium on flexible risk prediction models that can perform well in

these settings (6).

Hence, the research question of this systematic review is: what

are the available machine learning models which can assist a health

professional to quantify the risk of KDIGO-defined AKI during a

hospital stay in patients admitted to a general hospital or clinic?

Accordingly, the aim of this systematic review was to evaluate and

critically appraise studies of models developed from general

hospital populations, using the current KDIGO definition of AKI,

and which have been externally validated.
Methods

This review was designed and conducted according to Preferred

Reporting Items and Systematic Review and Meta-Analyses
Frontiers in Nephrology 02
(PRISMA) Protocol guideline (7) and the Checklist for critical

Appraisal and data extraction for systematic Reviews of

prediction Modelling Studies (CHARMS) (8).
Study identification

We used PubMed (pubmed.ncbi.nlm.nih.gov) and the Institute

of Electrical and Electronic Engineers (IEEE) Xplore Digital library

(https://ieeexplore.ieee.org/Xplore/home.jsp) for our search. In

PubMed we searched titles or abstract with a combination of

string and Mesh terms (Table S1). The search was conducted on

July 13th, 2022 and was limited to studies published in the last five

years (up to July 13th 2017).
Study inclusion and selection

We included studies that validated machine learning models,

with or without initially developing those models, for the prediction

of AKI (stage 1, 2, 3 or dialysis) in a general hospital population. We

excluded studies using the following criteria:
(i) studies in patients under 18 years of age;

(ii) studies which used an outcome definition of AKI other

than KDIGO;

(iii) studies presenting models based on regression, such as

linear, logistic or penalized regression, or those which are

well understood theoretically and by clinicians, such as

Naïve Bayes;

(iv) studies presenting models with no external validation;

(v) any comments or editorials or meta-analysis or

systematic reviews.
We considered external validation to exist if the developed

model was applied to new individuals, either from the same

institution but a different time period (temporal validation), from

a different institution or country (geographic validation) or on very

different individuals (domain validation) (9).

Titles and abstracts were screened by two reviewers (MW and

EE), and full articles were reviewed if they were eligible or if

reviewers disagreed in the screening process. Disagreements were

resolved by a third reviewer (SS).
Data extraction and critical appraisal

A data extraction form was created based on the Checklist for

Critical Appraisal and Data Extraction for Systematic Reviews of

Prediction Modelling Studies (CHARMS) checklist (8) and the

Transparent Reporting of a multivariable prediction model for

Individual Prognosis Or Diagnosis (TRIPOD) (10). Items

extracted included study type, number and location of centers

recruited from, patient characteristics (AKI incidence, staging and

mortality), model characteristics including prediction windows,

predictors used, types of models evaluated, type of external
frontiersin.org
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validation performed, method used to calculate baseline serum

creatinine and metrics used to evaluate the models among others.

Risk of bias was assessed using the Prediction Model Risk of Bias

Assessment Tool (PROBAST), which includes four domains and 20

signaling questions (11). Domains were rated as high risk, low risk

or unclear risk. Models would need be low risk on all domains to be

evaluated overall as low risk. It should be noted that this tool was

created for traditional regression models and is currently being

updated to include newer model methodology. Data extraction and

appraisal were done by EE and MW. Disagreements were resolved

through discussion with SS.
Results

Our search returned 889 studies. A majority of studies were

excluded initially either because they did not present or validate a

prediction model (this included commentaries, editorial letters,

narrative reviews and systematic reviews), the subject was irrelevant

and/or the population studied was not comprised of general hospital

patients (Figure 1). Forty-three were selected for full text review either

because they fit the inclusion criteria or because insufficient

information was given in the title or abstract to decide on eligibility.

A further 40 studies were excluded following full text review of which

16 were excluded for not having external validation. Of the remaining

three studies, two developed and validated a model (1 and 3) and one
Frontiers in Nephrology 03
validated a previously developed model (12) (study 2). A list of the

types of models excluded based on criteria (iii) can be seen in Table S2.
General study characteristics

Data source and population characteristics

All studies were from urban or suburban tertiary, referral

centers in high income countries, two from the United States and

one from South Korea (Table 1). Data was sourced either from the

individual hospital electronic health records (EHR) (studies 1 and

2) or from clinical research networks, such as the Greater Plains

Collaborative (GPC) (study 3). Studies included hospitalized

patients with at least two documented serum creatinine measures

and/or a minimum of 48 hours of admission (studies 1 and 3)

Patients with severe forms of AKI or on kidney replacement therapy

(KRT) were uniformly excluded (Data Sheet 1). Patient data was

variably collected between 2006 and 2018.

The experimental design used to develop and/or validate model

predictions varied between studies. Study 1 split the population of

one hospital into training and internal validation cohorts, and the

population of the second hospital, from the same city, was used for

external validation. Study 2 was based on a previously developed

model which was internally validated in the original hospital

population and externally validated in a four-hospital health care
FIGURE 1

PRISMA flow diagram.
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network and a fifth hospital from the same state. Study 3 used the

encounters from site 1 from 2010 to 2016 for training, calibration and

internal validation. It then used the encounters from 2017 to 2018

and the population of five other GPC sites for external validation.

All validation cohorts had close or over 50,000 patients, except

for site 5 in study 3 which had 19,542. Gender distribution was

even in all studies. The median or average age was close to 60 in

most cohorts with study 3 exhibiting wider variability between the

six sites. Black or African American patients comprised 50% of the

internal validation cohort of study 2 and up to 20% in the

remaining US study. Only study 3 reported the prevalence of

Hispanic, Native American and Asian patients, who accounted for

no more than 10% of all patients. Incidence of AKI was lowest in
Frontiers in Nephrology 04
study 1 (3-6%), followed by study 2 (8.3 – 14.3%), and study

3 (15.1%).

Outcome
Acute kidney injury was defined by the serum creatinine criteria

of the KDIGO definition in all studies. Studies 1 and 3 used AKI of

any grade as the primary outcome while study 2 predicted AKI stage

2 or higher (Table 2). All studies used a 48-hr prediction window

except for study 1 that predicted AKI within seven days of the

present. Prediction was continuous throughout a patient’s

admission in all studies with data binned into time windows

between 6 to 24 hrs. Two of three studies (1 and 3) prioritized a

pre-admission serum creatinine to represent the baseline value,
TABLE 1 Study population characteristics.

Study 1 (13) Study 2 (14) Study 3 (15)

Number & type of
sites

SNUBH: tertiary hospital
SNUH: tertiary hospital

UC: urban, tertiary hospital
LUMC: suburban tertiary hospital
NUS: suburban, 4-hospital health
care network

6 GPC sites from 5 US states (all tertiary, referral centers)

Country of sites Korea USA USA

Type of data &
collection

EHR/Retrospective EHR/Retrospective EHR/Retrospective

Population setting General inpatients ED, wards and ICU Inpatients

Participant
eligibility

Age > 18 yo
Hospitalized for more
than 48 hrs

Age > 18 yo Patients aged 18 - 90 years old
Hospitalized for more than 48 hrs
At least 2 sCr

Population size SNUBH = 76,756
SNUH = 72,352

UC = 48,463
LUMC = 200,613
NUS = 246,895

Site 1: 153,821 encounters
Site 2: 100,819 encounters
Site 3: 86,264 encounters
Site 4: 57,286 encounters
Site 5: 19,542 encounters
Site 6: 88,865 encounters

Time period data
collection

2013-2017 UC = 2008 – 2016
LUMC = 2007 – 2017
NUS = 2006 - 2015

Jan 1st 2010 to 31st December 2018

Experimental design SNUBH = 90% T, 10%
IV
SNUH = EV

UC = IV
LUMC & NUS = EV

Site 1:
Encounters from 2010 to 31st Dec 2016 = 70% T, 15% C, 15% IV.
Encounters Jan 2017 onwards: EV
Sites 2 – 6: EV

Female (%) SNUBH = 46.5%
SNUH = 48.3%

UC = 53.5%
NUS = 56.7%
LUMC = 50.3%

All sites: 44 – 52.5%

Age (median/mean) SNUBH = 59.6
SNUH = 57.1

UC = 56.6
LUMC = 58.6
NUS = 67.4

% of patients ≥ 66 yo: 21 – 60.2%

Minority
representation

Not reported African American
UC = 50%
LUMC 22.7%
NUS = 7.3%

All sites
Black = 0.4 – 21%
Asian = 0.5 – 1.9%
Native American = 0 – 1%
Hispanic = 0.4 – 11.5%

AKI incidence SNUBH = 4536 (5.91%)
SNUH = 2626 (3.63%)

Any AKI = 8.3 – 14.3%
AKI ≥ Stage 2
UC = 1664 (3.4%)
LUMC = 5722 (2.8%)
NUS = 3499 (1.4%)

All sites:
Any AKI: 10.1 – 16%
Stage ≥ 2 AKI: 1.6 – 3.2%
Stage 3 AKI: 0.6 – 1.9%
AKI, Acute kidney injury; EHR, Electronic health records; ED, Emergency department; GPC, Greater Plains Collaborative; ICU, Intensive Care Unit; sCr, serum creatinine; eGFR, estimate
glomerular filtration rate; RRT, renal replacement therapy; SNUBH, Seoul National University Bundang Hospital; SNUH, Seoul National University Hospital; UC, University of Chicago; LUMC,
Loyola University Medical Center; NUS, Northshore University Health System; T, training; C, calibration; IV, internal validation; EV, external validation.
frontiersin.org

https://doi.org/10.3389/fneph.2023.1220214
https://www.frontiersin.org/journals/nephrology
https://www.frontiersin.org


Wainstein et al. 10.3389/fneph.2023.1220214
followed by admission measurements (study 2) or imputation using

the Modification of Diet in Renal Disease (MDRD).
General model characteristics

Predictor data

The lowest number of predictor variables was 59 (study 2) and the

highest was 1933 (study 3) (Table 2). Study 3 used all available variables
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in their health system or network EHR, while study 1 selected those

known to be associated with AKI risk and study 2 did not specify the

variable selection process. Most variable categories included

demographic information, vital signs, laboratory and diagnostic data,

comorbidities, medications, clinical conditions (usually labelled by ICD

9 or 10 codes) procedures or interventions as well as nursing

documentation (study 2) and length of stay. All studies included sCr

and blood urea nitrogen (BUN) as predictors but only study 3

evaluated model performance with and without the inclusion of
TABLE 2 Prediction model characteristics and results.

Study 1 (13) Study 2 (14) Study 3 (15)

Primary
prediction
outcome

AKI within 7 days AKI Stage ≥ 2 within 48 hrs AKI within 48 hrs

Method used to
calculate baseline
sCr

1) Min sCr within 2 weeks pre-admission, or
2) Min sCr within 90-180 days pre-admission, or
3) Admission sCr

Admission sCr 1) Most recent sCr pre-
admission, or
2) First sCr on admission

Static vs
Continuous
prediction

Continuous Continuous Continuous

Number of
predictors in
final model

107 59 1933

Predictor
categories in final
model

Demographic, vital signs, comorbidities,
medications, laboratory values and clinical
conditions (e.g., ICU admission)

Demographic, absolute values and trend information for
vital signs and laboratory values, interventions,
medications, procedures, LOS, nursing documentation
(e.g., Braden score).

Demographic, diagnoses,
procedures, lab tests,
medications, vital signs

Method for
predictor variable
selection

Features considered as risk factors of AKI from the
literature or correlated with AKI development.

Not mentioned All variables in the PCORnet
CDM schema shared across
the 6 GPC sites

Best performing
model type

RNN DS-GBM DS-GBM

Comparison
model

GBM – 1) LASSO model
2) Model (GBM & LASSO)
without sCr and BUN data

External
validation
performance
AUROC
1 = Any AKI
2 = Stage ≥ 2 AKI

SNUH = 1) 0.84, 2) 0.90 LUMC = 2) 0.85
NUS = 2) 0.86

Site 1: 1) 0.76, 2) 0.81
Site 2: 1) 0.75, 2) 0.79
Site 3: 1) 0.63, 2) 0.73
Site 4: 1) 0.6, 2) 0.68
Site 5: 1) 0.71, 2) 0.8
Site 6: 1) 0.62, 2) 0.71

Other
performance
measures

Sensitivity, specificity, PPV, NPV, F1 score, MSE Calibration using visual plots
Sensitivity, specificity, PPV, NPV

AUPRC
Calibration using Hosmer-
Lemeshow score

Type of external
validation

Geographic: SNUH Geographic: LUMC & NUS Temporal: site 1
Geographic: sites 2-6

Interpretability 1) Shapley Additive Explanations, partial
Dependence Plots (PDP) and accumulated local
effects plots
2) Instance-wise interpretation with individual
conditional expectation (ICE) plots

Variable importance plot Shapley Additive
Explanations

Top predictive
variables

1) Baseline eGFR
2) Baseline sCr

1) Change in sCr
2) Length of stay
3) SF ratio

1) sCr and its change
2) Vancomycin exposure
3) Minimal value & hourly
change in BP value

(Continued)
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these variables. All studies used carry-forward imputation for missing

data but none of them reported the actual proportion of missing data.

Type of prediction models and performance

In the external validation cohorts and for the prediction of stage 2

or higher AKI within 48 hrs, Study 2, which used a Gradient Boosting

Model with discrete time survival framework (DS-GBM) had the best

performing model (AUROC 0.85-0.86) followed by study 3 (AUROC

0.68 – 0.81), which also used DS-GBM. Study 1, which used a

Recurrent Neural Network (RNN) to predict AKI within 7 days had

excellent performance (AUROC all AKI 0.84 and stage ≥ 2 AKI 0.90).

Performance was compared to a GBM in study 1 and to a Least

Absolute Shrinkage and Selection Operator (LASSO) model in study 3.

Beyond discrimination, studies evaluated models using calibration

(1 and 2), sensitivity, specificity, positive and negative predictive value

(1-3), area under the precision receiver curve (3) and F1 score (1). All

studies performed some form of interpretability analysis to

contextualize predictions which showed that serum creatinine –

either as a baseline absolute value, in the form of change over time

or integrated within an eGFR equation - was consistently the strongest

predictor of future AKI risk. Further study and model information can

be found in Data Sheet 1 of the Supplemental Material.

Type of external model validation

All three studies performed geographic external validation and

study 3 also performed temporal validation using the later

encounters from the source population.
Critical appraisal

Assessment of bias, applicability and
reproducibility

All except for study 3 were found to have a high risk of bias in

the participant and outcome domains. The former resulting from

the use of retrospective EHRs as primary data source and the latter

to the incorporation bias inherent in the inclusion of serum

creatinine in the outcome definition. We considered the

development of a second model without serum creatinine and

BUN information in Study 3, as an attempt to mitigate this bias.

The predictors and analysis domains were uniformly deemed as

having low risk of bias (Table 3). Applicability was a concern for
Frontiers in Nephrology 06
studies 1 and 3 that used more than 100 predictor variables. With

regards to reproducibility, only study 3 shared code in a publicly

accessible domain. Individual study PROBAST assessment forms

can be found in the Supplemental Material.
Discussion

We screened 889 studies from the last five years in search of

externally validated ML prediction models of AKI based on general

hospital patients. Only three studies were retrieved that fit these

criteria. While most performed well and had a sound

methodological approach, the main concerns relate to their

development and validation in populations with limited diversity,

comparable digital ecosystems and use of large number of predictor

variables. These are potentially critical limitations to their

applicability in diverse socioeconomic and cultural settings,

prompting a need for simpler and more transportable prediction

models. In addition, all models rely heavily on serum creatinine,

which questions their added utility and advantage over the current

tools used to predict and diagnose AKI.

Of the 886 studies not included, a majority were excluded due to

lack of external validation, use of sub-populations (mainly ICU and

surgical cohorts) or predictions based on standard regression,

parametric models. The finding of a growing number of

prediction models generated on clinical sub-populations, often

from publicly available datasets, without any external validation

has been noted by previous systematic reviews (3, 5).

Most models performed well, especially when predicting stage 2

or higher AKI, which is often regarded as the more meaningful

outcome in the acute setting (16). Discrimination remained high

between internal and external validation sites in studies 1 and 2 but

varied widely across the 6 sites of study 3 which had the highest

diversity in demographic profiles and EHR structures. The main

barriers to independent validation of a prediction model include

patient heterogeneity, clinical process variability, EHR

configuration and data warehouse heterogeneity leading to non-

interoperable databases across hospitals (15). Models should be

ideally trained and validated on diverse populations from healthcare

sites with a spectrum of maturity and sophistication in their digital

ecosystems. There is little point in training a model with thousands

of variables that it is unlikely to ever encounter when applied to a
TABLE 2 Continued

Study 1 (13) Study 2 (14) Study 3 (15)

Handling of
missing
information

Carry-forward imputation Median (for continuous data) or mode
(for categorical data) by location being imputed for
missing predictor values that remained after
carry-forward imputation

Carry-forward imputation

Proportion of
missing data

Not reported Not reported Not reported

Code availability Not provided Not provided Available on GitHub
sCr, serum creatinine; MDRD, Modification of Diet in Renal Disease; RNN, Recurrent neural network; DS-GBM, Gradient Boosting Model with discrete time survival framework; ML, machine
learning; AUROC, area under the receiver operating curve; AUPRC, area under the precision receiver curve; PPV, positive predictive value, NPV, negative predictive value, MSW, mean squared
error; SNUH, Seoul National University Hospital; SNUH, Seoul National University Hospital; UC, University of Chicago, LUMC, Loyola University Medical Center; NUS, Northshore University
Health System; LASSO, Least absolute shrinkage and Selection Operator; CDM, common data model; SF ratio, ratio of oxygen saturation in arterial blood to the % of oxygen in inspired air.
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different healthcare system. Hence, the concerns of applicability in

most of the presented studies. To address this, Song et al. (study 3)

explored the source of performance variability between the original

and target sites and proposed a metric for model transportability.

Interestingly, the study brings to light how differences in data

representation and format between individual EHRs can have a

significant impact on what a model learns and how it performs (15).

Overall, this would suggest that a model which uses fewer and more

commonly available clinical variables, like the one from study 2, is

likely to have better uptake and be more easily validated.

From applicability to implementation, there is a growing

concern that much of the attention in the field of machine

learning risk prediction has centered around model development

and not on the transition to implementation and deployment (17).

Providing a framework on the lifecycle management of a model is

critical to its success as a clinical decision support tool. This includes

information on how often a model should be re-validated,

potentially re-trained and fine-tuned as well as how it should be

integrated into clinical workflows (18, 19). While this information

may be available in the coming years, at present none of the studies

specifically addressed this. It should also be said that the reluctance

of most groups to share their development code, hinders efforts to

make the models more reproducible and transportable.

The use of serum creatinine as a predictor and as part of the

outcome definition is problematic. The latter results in

incorporation bias whereby the association between the predictor

and the outcome is overestimated rendering model performance

evaluations optimistic (11). In reality, however, any model that uses

the current serum creatinine based KDIGO definition of AKI and

has access to repeated measures of serum creatinine, will suffer from

this bias. With regards to the use of creatinine as a predictor, the

interpretability analyses of all studies revealed that either the

baseline serum creatinine and eGFR (which includes serum

creatinine in its calculation) or the change in serum creatinine

over time were among the top three heaviest contributors to the

prediction. The question then becomes: what can these models offer

that a single or trend in serum creatinine readings cannot? Study 3

trained a model without any information on serum creatinine or
Frontiers in Nephrology 07
BUN which performed competitively with an AUROC of 0.75 for

any AKI and 0.82 for stage 2 or higher AKI. The main predictors of

AKI in this model were vancomycin exposure, blood pressure

change, age, BMI, height, having a chest x-ray and receiving

Tazosin antibiotic. It should be noted, however, that this model

used almost 2000 predictor variables to arrive at this prediction.

Perhaps the real advantage of these models lies not in their

capacity to process large and complex health data in order make

timely predictions but in their potential for integration within

clinical workflows. A health professional must know to order a

serum creatinine test on a particular at-risk patient, they must then

remember to check it once it has been reported and to act on it

using evidence-based guidelines. A disruption to this process, which

is time-consuming and often falls to the most junior medical staff in

the hospital, may result in a missed opportunity to avoid or

minimize the severity and consequences of AKI. Automating this

process with a prediction algorithm that can seamlessly aggregate

the relevant historical and admission information and present the

clinician with a real-time risk profile for each patient on any given

day, may go a long way towards decreasing the incidence of

hospital-acquired AKI. It remains to be seen, however, whether

the same can be achieved with more comprehensive education of

junior doctors and clearer accountability structures within

healthcare teams.

The main limitation of our study is the narrow search and

selection criteria. In wanting to explore only machine learning as a

novel technology in AKI risk prediction we have not compared or

evaluated the more traditional regression models and risk scores,

such as linear and logistic regression or Naïve Bayes classifier. It

would be prudent to say that, at this stage, the benefits of ML in AKI

are not clear. Relying on more explainable, less complex statistical

models while this technology matures, may be the wiser approach.

In addition, by selecting only models that had been externally

validated we may have missed studies with sound methodology

that were in the early stages of validation.

The use of ML models for AKI prediction requires large and

complex data structures to support them, have potentially limited

applicability beyond the health systems they were trained on and, at
TABLE 3 Traffic light plot of risk of bias assessment.

Study 1 Study 2 Study 3

ROB

Participants high high ?

Predictors low low low

Outcome high high low

Analysis low low low

Applicability

Participants low low low

Predictors high low high

Outcome low low low

Overall
ROB high high low

Applicability high low low
fro
ROB, risk of bias; ?, unclear risk.
Red = high risk, Green = low risk, Yellow = Unclear risk.
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present, rely heavily on a cheap and readily accessible biomarker of

kidney injury with little apparent benefit from the other predictors.

In the future, simpler and more transportable models that offer a

significant predictive advantage to using serum creatinine

measurements may find greater clinical utility and acceptance

within the healthcare community.
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