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New physiologic findings related to sodium homeostasis and pathophysiologic
associations require a new vision for sodium, fluid and blood pressure management in
dialysis-dependent chronic kidney disease patients. The traditional dry weight probing
approach that has prevailed for many years must be reviewed in light of these findings and
enriched by availability of new tools for monitoring and handling sodium and water
imbalances. A comprehensive and integrated approach is needed to improve further
cardiac health in hemodialysis (HD) patients. Adequate management of sodium, water,
volume and hemodynamic control of HD patients relies on a stepwise approach: the first
entails assessment and monitoring of fluid status and relies on clinical judgement
supported by specific tools that are online embedded in the HD machine or devices
used offline; the second consists of acting on correcting fluid imbalance mainly through
dialysis prescription (treatment time, active tools embedded on HD machine) but also on
guidance related to diet and thirst management; the third consist of fine tuning treatment
prescription to patient responses and tolerance with the support of innovative tools such
as artificial intelligence and remote pervasive health trackers. It is time to come back to
sodium and water imbalance as the root cause of the problem and not to act primarily on
their consequences (fluid overload, hypertension) or organ damage (heart;
atherosclerosis, brain). We know the problem and have the tools to assess and
manage in a more precise way sodium and fluid in HD patients. We strongly call for a
sodium first approach to reduce disease burden and improve cardiac health in dialysis-
dependent chronic kidney disease patients.

Keywords: chronic kidney disease stage 5D, hemodialysis, fluid overload, hypertension, cardiac disease, sodium
and water imbalance
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1 INTRODUCTION

Despite recent improvements in dialysis patient outcomes (1–3),
cardiovascular events remain the leading cause of death
accounting for 50 to 55% of mortality according to estimates
of the United States Renal Data System (3). Severe arrhythmias
and sudden cardiac death account for almost 28% of cardiac
death while coronary ischemic disease, congestive heart failure or
vascular events are responsible for the rest (3).

Findings of recent studies may be taken as examples to
highlight the burden of this problem. Fluid overload is quite
common in hemodialysis patients. In a large cohort of incident
hemodialysis patients (>40.000), moderate fluid overload (>2.5 l)
assessed by multifrequency bioimpedance was noted in 46% of
patients, while a more severe one (>6 l) was observed in about
10% (4, 5). Hypertension, even when set as a predialysis systolic
blood pressure >160 mmHg, was noted in 20% of patients in the
same cohort and more frequently associated with fluid overload
(4). In addition, cardiac health issues tended to aggravate over
the next 12 months in about half of the patients, contributing to
worsened outcomes and almost doubling the relative risk of
death (4). Left ventricular hypertrophy (LVH), a surrogate
marker of chronic fluid overload and/or hypertension was
detected up to 75% in patients starting dialysis with a
continuous increase over time (6–8). Hyponatremia, a
biomarker strongly associated with poor outcome in dialysis
patients, is observed in 10 to 19% of hemodialysis patients in
recent cohort reports (9, 10). In a recent study, it has been shown
that hyponatremia was in fact associated with combined fluid
overload (EC and IC fluid excess) with intercompartmental fluid
imbalance, translating into the occurrence of an intercurrent
illness (cardiac failure, inflammation, oxidative stress) being
likely associated with protein energy wasting (10–12). This
observation is in line with findings large cohort studies (13, 14)
and confirm validity of a recent proposed workflow algorithm to
explore hyponatremia in dialysis patients (15). A high prevalence
of cardiac arrhythmias was shown in studies using implanted
loop recorders (16–18). Recent cardiac rhythm monitoring study
involving sixty-six patients using continuous monitoring of such
loop recorders have identified that 1678 clinically significant
arrhythmias (CSA) were observed in 44 (66.7%) dialysis patients
(16, 19). The majority were bradycardia not necessarily with
hyperkalemia (19.7%) followed by asystole (9.1%) and
ventricular tachycardia (1.5%). Confirmed arrhythmia subtypes
were represented by atrial arrhythmia (90.9%) with atrial
fibrillation (30%) followed by ventricular arrhythmia (71.3%)
and bradyarrhythmia (25.8%). Five patients of this cohort with
serious bradyarrhythmia required pacemaker implantation to
prevent cardiac sudden death. Lastly, pulmonary edema and
related congestive heart decompensation episodes are among the
most frequent causes of hospitalization (44%) and readmissions
creating a significant burden both on patient and healthcare
system (20, 21).

Fluid volume depletion and care management of
hemodialysis patients is another critical point that may affect
outcomes (22, 23). As documented in recent reports, too
aggressive dry weight policy based on high ultrafiltration rate
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(24, 25) (> 13 ml/hr/kg, for example), is associated with critical
hypovolemia and serious intradialytic hypotension (IDH) (26),
that may lead to repetitive systemic hemodynamic stress
episodes with end-organ damage (27, 28). Repetitive ischemic
insults result from inadequate hemodynamic response to volume
depletion but not only (24, 29). In fact, ischemic insult is part of a
broader multifactorial stress condition, namely dialysis-induced
systemic stress syndrome, that includes hemobiological
reactions, hypoxemia, thermal imbalance, osmotic and
electrolytic shifts (27). As recently summarized, dialysis-
induced systemic stress may contribute to morbidity and
mortality in dialysis patients as a potent disease modifier
including protein energy wasting process (27, 29). A call for
action is needed to mitigate this additional cardiovascular risk in
maintenance hemodialysis patients (27).

In this context, it is easily recognized that sodium and water
related disorders contribute significantly to cardiac burden in
hemodialysis patients, either from chronic fluid overload
exposure during the interdialytic period or from acute fluid
depletion during dialytic time (30, 31). Now, it must be
highlighted that sodium and fluid accumulation is a long-
standing process aggravating along chronic kidney disease
progression with a culminant point at the end stage of kidney
disease. In addition, specific conditions (i.e., aging) or diseases
(i.e., hypertension, diabetes) are strong enhancers of this risk as
indicated in recent population-based studies (32–34). A more
careful attention should be paid to this cause to address their
consequences and better manage patients in order to mitigate
their risks (35). The aim of this narrative review is to address new
physiological and pathophysiological findings related to sodium
and water disorders in chronic kidney disease (CKD) patients
and to propose clinical action points to improve cardiac health in
dialysis patients.
2 SODIUM AND WATER PHYSIOLOGY:
NEW FINDINGS

2.1 Sodium Homeostasis: From Two to
Three Compartment Model
In healthy humans, sodium and water homeostasis relies on a
precise balance between sources (external dietary, internal
metabolism) and losses (kidney, gut) in which kidney function
and neuroendocrine factors play a major role. Traditionally, total
body sodium (TBS) distributed in the extracellular volume
(ECV) and bone, was thought to remain relatively constant
over time and adjusted to intake changes. This fine regulation
of TBS depends on kidney function and blood pressure as
described in a kidney-centric model elaborated by Guyton et al
(36). According to this view, sodium distributes in two
compartments, circulating (volemia) and Interstitium, and
ensures extracellular volume and hemodynamic homeostasis
(36). In this setting, natremia reflects the effective plasma
tonicity (natremia x 2) acting as the main driving force for
water repartition within extra- and intracellular compartments.
This two-compartment model depicts sodium in solution (i.e.,
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osmotically active sodium), that controls blood pressure and
hemodynamics to ensure adequate tissue perfusion. In the past
decade, this conventional model has been challenged by new
physiological findings that demonstrated the existence of a tissue
sodiumstorage compartment, thus expanding theTBS concept into
a three-compartment model (37–39). Initially, this model has been
suspected from discrepancies in sodium mass balance studies
conducted in healthy astronauts as part of the MARS 500 project
(40). In conditions of strictly isolated and controlled conditions, the
investigators observed that subjects submitted to precise diet salt
intakes exhibited cyclic variations of TBSwhichwere not translated
in body weight or urinary sodium excretion changes but correlated
with aldosterone and cortisol changes (40–43). This observation
suggested that sodiumaccumulates in a third compartmentwithout
commensurate water retention. Later, this hypothesis was
confirmed by means of sodium MRI imaging of (23)Na showing
sodium stored in skin and muscle (42, 44). Tissue sodium
concentration may be then quantified by (23)Na MRI (34, 44).
From reference studies, tissue sodium is estimated between 10 and
40 mmol/l increasing with aging and under pathologic conditions
(e.g., diabetes, hypertension, chronic kidney disease) (32–34).
Further interventional studies confirmed that skin sodium storage
is an active process thatmay bemodulated according to sodiumand
water needs and conditions. Skin sodium is stored under the
keratinocyte layer in a hypertonic environment that may regulate
its ownelectrolyticmicroenvironmentbymeansof sodiumgradient
and adjustment of lymph flux via angiogenic factors (45–48).
Phagocytes sense hypertonic sodium accumulation and trigger
tonicity-responsive enhancer binding proteins (Nuclear Factor of
Activated T Cells 5, NFAT5) that stimulate in turn secretion and
release of vascular endothelial growth factor C (VEGFC) (49). This
mechanism has a dual action: first, it increases tissue sodium
clearance via lymphatic flow; secondly, it acts on systemic blood
pressure bymodulating vascular tone via a stimulation (endothelial
Nitric Oxide Synthase, eNOS expression. In addition, muscle
sodium content tends to parallel skin behavior contributing to the
overall tissue sodium storage with the same consequences. It has
been suggested that tissue sodium content may contribute to blood
pressure control independently from traditional neuroendocrine
mechanisms via a skin immune-mediated mechanism (37). This
interesting pathway of hypertension has been recently challenged
by transgenic mouse models (50, 51). In these animal models,
hypertension was induced by pathological losses of free water.
Interestingly, hypertension was due to cutaneous vasoconstriction
to limit epidermalwater loss, andmetabolic adaptation (muscle and
protein catabolism) to enhance production of urea and organic
osmolytes. This concept of pathogenesis of hypertension is
antipodal to the classic view relying on salt retention (52). All
these finding open new pathways for understanding better and
managing hypertension resistant to traditional approaches (37).

In anuric chronic kidney disease dialysis patients, sodium and
water balance rely mainly on renal replacement treatment
schedule, dietary intake and likely on skin, gut, lungs and
oxidative process. Conventional, short and intermittent
hemodialysis treatment schedules create cyclic fluctuation
alternating between a slow loading phase (interdialytic) and a
Frontiers in Nephrology | www.frontiersin.org 3
fast-unloading phase (intradialytic), making fluid and volume
management quite challenging (27, 29). As discussed earlier, fluid
volume and pressure management expose patients to dialysis-
induced systemic stress and morbidity. On one hand, chronic
fluid overload is associated with mechanical and functional
cardiac stress leading to structural changes contributing to cardiac
remodeling (i.e., left ventricular hypertrophy, concentric or
asymmetric, myocardial fibrosis, arrhythmias) and vascular
consequences (atherosclerosis). On the other hand, acute fluid
depletion secondary to ultrafiltration induces hypovolemia
leading likely to intradialytic hypotension depending on patient’s
hemodynamic response. In that setting, repetitive silent ischemic
cardiac insults (i.e., myocardial stunning) may aggravate and
accelerate damaging processes. Subsequently, further factors (i.e.,
arrhythmia, hypoxemia, ionicfluxes)mayprecipitate cardiac events
andpotentiate the effects of dialysis-induced systemic stress. Today,
it is well recognized that maintenance conventional hemodialysis
may act as a disease modifier likely contributing to end organ
damage and cardiac burden (29).Asidemanagementof volumeand
pressure, reflecting sodium osmotically active, a component that
has been extensively studied, the role of tissue sodiumaccumulation
and its management remain unexplored in maintenance
hemodialysis patients (28, 53, 54). This new identified issue
should be addressed more precisely in future clinical research
(55). Indeed, it is speculated that restoration of tissue sodium
homeostasis will be integrated in a more comprehensive
management of sodium, water and blood pressure to improve
cardiac health.

2.2. Pathophysiological Consequences of
Sodium and Water Disorders in Advanced
CKD and Dialysis Patients
Impairment of the sodium metabolism in patients with ESRD
often results from longstanding pathologic processes that start
early with kidney disease and aggravates steadily over time with
progredient loss of kidney function. Sodium imbalance reflects
the inability of the diseased kidney to handle daily sodium and
water load.

Sodium accumulation in the extracellular space is the most
common and diagnosable consequence of sodium imbalance in
CKD patients. This refers to sodium in the extracellular fluid
volume, the so called osmotically active sodium, which tends to
increase thirst with subsequent expansion of the extracellular volume
in the circulation and the interstitial space. Edema, hypervolemia,
hypertension and congestive heart failure are among the most
common manifestations of sodium accumulation and fluid
overload translating into consequent cardiac and vascular damages.
This pathophysiological dynamic has rendered chronic fluid
overload with or without hypertension to be recognized as one of
the main causes of morbidity in CKD patients. However, as
summarized in recent reviews, next to sequelae on fluid and
hemodynamics, sodium imbalance also associates with multiple
end organ damages including cardiac remodeling (left ventricular
hypertrophy), proarrhythmic condition, white matter brain damage,
atherosclerotic lesion,proteinenergywasting, inflammationand lung
disorder with pulmonary hypertension (37, 55).
July 2022 | Volume 2 | Article 935388
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On the other hand, predialysis hyponatremia, reflecting
hypotonicity and sodium-free water excess, is observed in 10 to
15% HD patients (56). Hyponatremia is a strong marker of poor
outcomes (9, 13, 56, 57). Recent studies have shown that
hyponatremia is in fact a mixed fluid disorder, consisting of
extracellular fluid excess and water compartment repartition
imbalance, reflecting an underlying illness such as congestive heart
failure, liverdiseaseor inflammatoryproteinenergymalnutrition (10,
13, 15, 58). Interestingly, recentobservational studieshave shownthat
clinical outcomes might be improved by intensifying fluid and
sodium depletion [negative dialysate-to-plasma (d-p) Na gradient]
rather than correcting plasma sodium concentrations while loading
patient by applying a positive (d-p) Na gradient (9).

Sodium accumulation in tissue, as discussed in the previous
paragraph, also associates with chronic kidney disease
progression. As documented through functional (23)Na MRI
imaging, skin and muscle sodium content increase steadily over
time as kidney function deteriorates (32). Interestingly, several
metabolic consequences of salt tissue accumulation and organ
damage have been identified as an independent component of its
mechanical action (55). However, this is a new field of research
with fast growing and fascinating findings in which more must
be discovered. Few examples will be used to illustrate this new
pathophysiologic link. Left ventricular hypertrophy has been
shown to be positively correlated with skin sodium content,
almost independently from blood pressure level, in a prospective
study conducted in advanced non-dialysis CKD patients (53). In
HD patients, pulse wave velocity (PWV) changes may likely
reflect vascular sodium content changes and endothelial function
improvement as suggested by acute changes in PWV following
sodium depletion by dialysis (59–61). Insulin resistance, assessed
by means of euglycemic clamps, has been found to be inversely
correlated to skin sodium content in HD patients, suggesting that
tissue sodium interacts with insulin pathways independent of
uremic toxin levels (62). Salt loading and tissue storage activate
an adaptive regulatory network mechanism in the muscle that
enables reprioritization of local energy metabolism and induces
muscle wasting in healthy subjects (63). In a recent clinical case
report, refractory pruritus has been linked to a massive skin
sodium accumulation in a HD patient and improved after large
sodium depletion through expanded hemodialysis (64). This
latter observation led investigators to speculate on a possible
link between skin salt accumulation and local immune
mechanisms activating keratinocytes (64).
3 IMPLICATIONS OF INTERMITTENT
TREATMENT OF MAINTENANCE
HEMODIALYSIS: UNPHYSIOLOGICAL
PROFILE INDUCED BY INTERMITTENT
THERAPY

The unphysiological profile of intermittent HD is recognized as a
leading cause of dialysis intolerance and multiorgan morbidity
(65, 66). This phenomenon is worsened by short or very short
Frontiers in Nephrology | www.frontiersin.org 4
dialysis treatment schedules. Intermittent HD generates periodic
and cyclic changes in volume and blood pressure, osmotic shifts,
and fluctuations of waste products and electrolytes (67). Cyclic
profiles are contrasting with closely regulated and relatively
stable conditions of the internal milieu in healthy or even non
dialysis CKD patients.

The HD cyclic phenomenon may refer to a tide phenomenon
with two phases of loading (interdialytic) and unloading
(intradialytic) as described in more details below (27, 35, 67).

During the interdialytic period, anuric HD patients tend to
accumulate sodium and fluid according to fluid and dietary
intake, leading to chronic fluid overload. In this condition,
fluid overload has two consequences: the first is marked by
weight gain and progressive increase of systemic arterial pressure
and pulmonary arterial pressure with cardiac stretching during
the interdialytic phase; the second reflects fluid accumulation
and translates into cardiac stretching and structural cardiac
remodeling (68).

During the intradialytic period, sodium and fluid are removed
mainly through ultrafiltration (intradialytic weight loss) and
negative dialysate-to-plasma sodium gradient. Volume depletion
leads to hypovolemia that triggers adaptative hemodynamic
response to preserve arterial pressure. To face hypovolemia and
cardiac stroke reduction, hemodynamic stability (blood pressure
and tissue perfusion) tends to be preserved by increasing vascular
tone, mainly through vasoconstriction of alpha-adrenoceptor
territories, and increase vascular refilling including venous return.
Hemodynamic response and full adaptive response may be limited
by critical hypovolemia (ultrafiltration to refilling imbalance) or
cardiac impairment (diastolic and systolic dysfunction, arrhythmia,
heart failure) or vascular refilling capacity (hypoalbuminemia,
capillary albumin leakage, inflammation). Recent functional
dialytic imaging studies have shown that reductions in myocardial
perfusion and contractility (myocardial stunning) are directly linked
to ultrafiltration rate (69–72). In addition, it has been shown also
that this phenomenon starts very early during HD session even
before ultrafiltration has reach a significant level that may reduce
volemia (73, 74). Several observational studies have documented a
strong association between mortality and high ultrafiltration rate or
volume changes, drop in blood pressure, and end-organ ischemic
insult (75, 76). Indeed, hemodynamic response to hemodialysis is
more complex than a simple reaction to hypovolemia, since it
includes other factors such as vascular refilling capacity,
bioincompatibility reactions, thermal balance, electrolyte fluxes,
nutrient losses and individual patient’s characteristics (cardiac
reserve, neurohormonal stress responses) (28, 29). Interesting, this
response may be mitigated by various factors (e.g., age, gender,
comorbidity, autonomous neuropathy, and medication) explaining
also individual or temporal variations in hemodynamic response.

Whatever the exact pathophysiologic consequences of this
phenomenon, volemic changes (hyper- and hypo-volemia)
provoke rapid alternating cycles of cardiac loading and unloading
but still maintaining overtime an abnormal high pulmonary
pressure level (68, 77). Such cycling phenomenon is responsible
for repetitive and chronic myocardial stretching, a mechanism that
has been recognized by cardiologists as the main mechanism of
July 2022 | Volume 2 | Article 935388
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inflammatory mediator release (78, 79). This mechanism
contributes to cardiac remodeling and further fibrosis, a
proarrhythmogenic condition (79).
4 ACTIONS TO MITIGATE CV RISK
ASSOCIATED WITH SODIUM, WATER,
VOLUME AND HEMODYNAMIC
MANAGEMENT

Adequate management of sodium, water, volume and
hemodynamic control of hemodialysis patients relies on a
stepwise approach (28, 67, 80): the first entails assessment and
monitoring of fluid status and relies on clinical judgement
supported by specific tools; the second consists in acting on
correcting fluid imbalance mainly through dialysis prescription
but also on diet and thirst guidance; the third consist in fine-
tuning treatment prescription to patient response and tolerance.

4.1. Monitoring Sodium, Water and
Fluid Status
Sodium and fluid balance assessment and monitoring in HD
patients is not an easy task (81). However, this is the first step
from a clinician’s perspective to ensure a better and more precise
salt and volume management. Patient monitoring relies on a
clinical judgment supported by several tools depending on the
complexity of the case as depicted in Figure 1.

4.1.1 Clinical assessment
Clinical management is currently summarized in the dry weight
probing approach (82–84). The concept of dry weight was
introduced by Scribner and colleagues in the 1960s, as the
main pathway to control fluid overload and blood pressure in
HD patients. Dry weight probing involves a stepwise reduction of
post dialysis weight over time to achieve an adequate control of
systemic blood pressure, disappearance of fluid overload
symptoms and prevention of intra- or peri-dialytic
hypotension. This clinically-oriented approach has been shown
to be associated with indisputable value in clinical nephrology
(85). As just confirmed recently in interventional studies this
clinical approach allows for good control of blood pressure and
to improve long-term patient outcomes (86). However,
sensitivity and specificity of clinical assessment in detecting
fluid imbalance as set by clinically determined ‘dry weight’ is
challenged when compared to instrumental tools such as
bioimpedance (87, 88). On the other hand, excessive or too
fast fluid depletion has led to some concerns as being associated
with higher risks including cardiac stunning or severe
cardiovascular events (88–90). This is now being recognized as
being part of dialysis-induced systemic stress. Volemia
management remains a critical concern in HD patients that
has been recently highlighted by the KDIGO controversy
conference (91). Therefore, if dry weight policy remains still
valid and necessary from a clinician perspective, it is not
sufficient to ensure optimal sodium volume and pressure
Frontiers in Nephrology | www.frontiersin.org 5
management in dialysis patients. Further tools are required to
support clinical decision making on a daily practice.

4.1.2 Instrumental Tools
Non-invasive technology-based tools have been shown helpful to
assess volemia, fluid status, or hemodynamic indicators (67).

Inferior vena cava diameter (IVCD) and collapsibility index
have been proposed to monitor intravascular volume and right
atrial pressure or central venous pressure changes in dialysis
patients with positive outcomes (92). However, the practical
difficulty in implementing these methods, factors affecting
reading and the poor predictive value on blood pressure
response in probing dry weight have precluded its
generalizability in chronic patients setting (93).

Relative blood volume change (RBV) and refilling rate
capacity during dialysis assessed by online blood volume
sensor embedded in HD machines has been also proposed to
guide fluid management (94, 95). In expert hands, this tool may
provide at bed side useful information on individual patient
intravascular volume status to handle hemodynamic guidance
(96). Blood volume monitoring may be used to better
characterize patient’s critical volemia beyond which occurrence
of severe intradialytic hypotension is likely to occur (97).
Absolute blood volume measurement, based on non-invasive
measurement either by dilution or online calculation, has been
proposed recently for a better assessment of this crucial
parameter (98). To date, only one limited study has explored
the clinical benefits of monitoring precisely this parameter. An
observational study in 842 hemodialysis patients has shown the
existence of certain “favorable” RBV ranges at specific timepoints
during dialysis that are associated with improved patient survival
(99). These RBV ranges have been recently integrated as control
targets in an automatic UFR feedback concept (100).
FIGURE 1 | Schematic diagram for optimizing and integrating tools for
personalized guidance of fluid management in HD patients.
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Bioimpedance has been proposed over the last few years as a
more precise way to assess fluid status in dialysis patients (101,
102). Several approaches (segmental versus total body, single
versus multifrequency) using various devices and algorithms
have been developed with interesting results (103). In a
systematic review, multifrequency bioimpedance spectroscopy
(BIS) analysis [National Institute for Health and Care Excellence,
(NICE, UK)] was recognized as the most precise and reliable tool
in a clinical setting for guiding fluid management in dialysis
patients (104). In addition, extensive use of BIS in clinical studies
has generated substantial evidences showing that BIS was able to
detect subtle fluid volume variation and to support clinical
decision making in terms of dry weight reduction (105).
Although some studies showed positive effects of fluid
management based bioimpedance on clinical endpoints, there
are most based on observational data while controlled
interventional studies are still lacking for generating
stronger evidences.

Echocardiography is a reliable tool in expert hands to monitor
cardiac impact of fluid depletion both on functional and
morphological aspects (106–108). It has been shown that
several cardiac key parameters such as ejection fraction, left
ventricular mass, left ventricular end diastolic volume, peak
strain, aortic distensibility or pulmonary arterial pressure or
right atrial volume have associations to chronic fluid overload
and are useful or be regularly assessed in dialysis patients.
However, while their use for dry weight determination has
been proposed, most agree on their limitations for that
particular purpose.

Regional chest bioimpedance cardiographic device (NICaS), a
non-invasive device, has been recently introduced to assess
patient’s hemodynamic response to ultrafiltration (109). The
device relies on skin electrodes and sophisticated proprietary
algorithms integrating ECG and blood pressure parameters and
claims the remarkably ability to determine stroke volume,
cardiac index and power and total peripheral vascular
resistance. Based on this set of parameters, it is possible to
identify different profiles of hemodynamic response in terms of
peripheral vascular resistance and cardiac function (110). In this
pilot study, the authors identified that hemodynamic response to
fluid depletion and/or hypovolemia (ultrafiltration) may differ
substantially according to patient profile. Based on NICas, three
groups of patients were identified: firstly, predominant decrease
of cardiac power index (reduction of blood pressure and cardiac
output reflecting preload reduction); secondly, predominant
decrease of peripheral vascular resistance (autonomous
dysfunction); thirdly, both decrease of cardiac power index and
total peripheral vascular resistance (combined phenomenon).
Such assessments in dialysis patients may facilitate interpretation
of hemodynamic response (cardiac dysfunction, insufficient
vascular refilling capacity, autonomous dysfunction) and then
help nephrologists to optimize fluid removal preventing
intradialytic hypotension.

Lung ultrasound has been proposed more recently to track
silent fluid accumulation in the lung Interstitium (extravascular
edema) reflecting both volume overload and cardiac dysfuntion
Frontiers in Nephrology | www.frontiersin.org 6
(111, 112). Interlobular septa thickening due to water
accumulation reflects US beam and generates visible B line
bundles (comet- like tails). A simple counting of these B lines
provides an estimate of lung water excess and may support
clinical decision-making in terms of dry weight probing (113,
114). The approach has been shown beneficial to reduce fluid
overload and blood pressure levels in a recent controlled trial
investigating the management of dialysis patients with resistant
hypertension (112). A recent interventional trial has explored the
clinical interest of using predialysis lung ultrasound scan (Lung
Ultrasound Study, LUST study) including 183 patients in the
active arm versus 180 in the control arm, to titrate ultrafiltration
during dialysis. Lung congestion was significantly more
frequently relieved in the active (78%) than in the control
(56%) arm. However, risk for all-cause and cardiovascular
hospitalization and the changes of left ventricular mass and
function did not differ among the two groups suggesting that
better volume control is not sufficient per se to reduce cardiac
burden in dialysis patients. In addition, a post-hoc analysis for
recurrent episodes of decompensated heart failure (HR 0.37) and
cardiovascular events (HR 0.63) showed a significant risk
reduction in the active arm. In hemodialysis patients with high
cardiovascular risk, fluid management guided by lung ultrasound
may help to reduce lung congestion more effectively than usual
clinical care (115).

4.1.3 Cardiac Biomarkers
Cardiac biomarkers have been extensively explored in
hemodialysis patients to disentangle fluid status and cardiac
function or remodeling (116). Atrial natriuretic peptides (ANP,
BNP, and NT-proBNP) are the most commonly used ones for
assessing fluid overload (117–119). More recently, copeptin (a
vasopressin precursor) has been recently introduced to assess
fluid depletion (120). Cardiovascular biomarkers reflecting
cardiac or endothelium injury are also of interest to set a more
precise and personalized fluid management approach. Sensitive
troponin from the family of troponin molecules (troponin I and
T) have been used to detect or to prevent critical cardiac injury in
response to fluid depletion (121, 122). Several endothelial
biomarkers (e.g., ADMA, FG23, ROS, NO pathways) or
inflammatory mediators (CRP, IL1, IL6) or oxidative stress
markers have further been proposed, either isolated or
combined, to assess cardiac and vascular risk as part of the
fluid management strategy with promising results (123, 124). As
shown in the few prospective cohort studies, Brain Natriuretic
Peptides (BNP) or their surrogates were used successfully to
better guide fluid management in incident dialysis patients with
past cardiac history or when hospitalized for cardiac
decompensation (118, 119, 125).

4.1.4 Functional Imaging Tools
Quantification of sodium accumulated in the tissue (skin and
muscle) using sodium (23)MRIs in dialysis patients have become
the focus of several investigations to assess tissue sodium (32,
44). As outlined before, accumulation of sodium in the tissue
may contribute to systemic toxicity via local or remote tissue
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organ damage. Consequences such as left ventricular hypertrophy
and vascular stiffness positively associate with the amount of tissue
sodium stored and may ultimately increase the risk of cardiac
failure. In addition, sodium tissue accumulation contributes to
metabolic and inflammatory disorders that enhance
cardiovascular risk. In recent study assessing tissue sodium (skin,
muscle) by (23)Na MRI in dialysis patients, it has been shown that
tissue sodium and water were mobilizable by hemodialysis (54). A
reduction of almost 50% of tissue sodium concentration (skin and
muscle) was observed contributing to the net salt mass recovered
from a direct dialysate quantification. However, tissue Na removal
was apparently not linked to dialysate-plasmaNa gradient. Sodium
(23)MRI remains clinical research tool with restricted access due to
its complexity. However, it is envisioned that dedicated segmental
sodium MRI device will be available in the near future (126).

4.1.5 Remote Monitoring Tools
New remote technology, so called ihealth trackers, offer
convenient and interesting tools for monitoring in a fully
automated and non-obstructive mode, HD patients during the
interdialytic period (127). Long-term remote monitoring of vital
signs, blood pressure, heart rate, respiration rate, physical activity
appears to be a valuable approach for assessing high risk dialysis
patients knowing that sudden cardiac death occurs mostly
during interdialytic phases. In addition, home based connected
devices such as electronic weighting scale with integrated
bioimpedance may facilitate monitoring of fluid volume gain in
the future (128). Best use of these tools may help clinicians to
identify earlier clinical conditions of fluid imbalance or cardiac
conditions in order to act on, before they reach critical stage.

4.2. Acting on Sodium, Water and
Fluid Management
4.2.1 Dry Weight Probing Approach:
Clinical Management
Dry weight clinical management must be conceived as the
overarching workflow aiming to ensure optimal fluid and
hemodynamic management in dialysis patients (83, 129). This
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process relies on four main components that include diet,
hemodialysis prescription, residual kidney function and
adjunctive medication. Success of dry weight achievement is
then evaluated at short term on objective key parameter
indicators (i.e., lack of clinical symptoms, optimal blood
pressure, euvolemia, normal BNP levels) and patient well-
being. This is visually outlined in Figure 2.

4.2.2. Diet Counseling: Reduce Salt Intake
Reduce dietary salt intake is associated with clinical benefits,
better cardiac outcomes in chronic kidney disease and
hemodialysis patients. Adherence to a low-sodium diet is
challenging but well established as crucial element for
treatment success (130). Salt dietary counselling should be
better implemented through renal dietitian educational support
on an individual basis accounting for lifestyle and diet habits. It is
not our intent to review salt dietary recommendations, we refer
interested readers to recent reviews (131, 132). In brief, it is
currently recommended to restrict salt (sodium chloride) diet
intake to about less than 5 g (85 mmol) per day that it equivalent
to 10 g (170 mmol) between two HD session (91). Apart from
cardiac health, salt diet restriction has additional benefits in HD
patients since it reduces thirst and interdialytic weight gain
facilitating HD management.

4.2.3. Treatment Time and Frequency: Reduce
Ultrafiltration Rate While Increasing Net Ultrafiltration
Reducing ultrafiltration rate is obviously the most logical
approach to reduce cardiac morbidity in HD patients (71, 133,
134). Aggressive management of sodium and fluid excess to
restore fluid homeostasis either by applying high ultrafiltration
rate and furthermore associating hypertonic dialysis (high
dialysate-to-plasma sodium concentration gradient) to facilitate
refilling rate has been associated with increased risk of mortality.
The optimal and rational approach to improve excess fluid
volume is to increase, either HD frequency and/or dialysis time
or to have additional isolated ultrafiltration sessions. Daily or
nocturnal dialysis treatment schedule have been proved to be
FIGURE 2 | Integrated approach to reduce intradialytic hypotension and to reduce dialysis induced systemic stress relying on current available integrated tools on
HD machines and potentially supported by specific cardiac intervention.
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associated with significant improvement in fluid and
hemodynamic management in HD patients (135–138).
Nevertheless, these approaches may not always be accepted by
patients or applicable by care providers for organizational or
economic reasons.

4.2.4. Blood Volume Control: Prioritize Blood
Volume Preservation
Modulating a patient’s hemodynamic response through various
tools embedded in HD machines is an appealing approach to
maintain hemodynamic stability (94). Monitoring blood volume
changes during HD session is useful to identify critical volemia
(i.e., intradialytic hypotension risk), to estimate remaining fluid
in the Interstitium, or to quantify vascular refilling capacity, but
it is not sufficient to optimize hemodynamic response (139, 140).
Additional feedback-controlled loop algorithm set on critical
volemia threshold and acting on ultrafiltration is better suited to
provide a precise preservation of effective volemia (ultrafiltration
control) (141). This tool could be coupled to other options such
as sodium management and profile (142, 143). Ultrafiltration
control tool improves patient’s hemodynamic tolerance, reduces
intradialytic hypotension and cardiac stunning risks (144). In
brief, ultrafiltration control tends to reduce cardiac insult but its
long-term clinical benefits remain to be proven.

4.2.5. Thermal Balance: Favor Iso or Hypothermic
Dialysis Condition
Adjusting dialysis thermal balance to preserve peripheral
vascular resistance and cardiac output is also a simple strategy
to improve hemodynamic tolerance and reduce organ damage
that has been proven clinically effective including systematic
literature review (142, 145, 146). In brief, the main objective is to
deliver isothermic (patient’s neutral thermal balance) or
hypothermic dialysis (patient’s negative thermal balance), to
prevent thermal gain during a dialysis session which is
associated with an inappropriate hemodynamic response
(vasodilation, tachycardia, fall of ejection fraction) (147).
Hypo-or isothermic HD could be manually achieved by setting
dialysate temperature 0.5-1°C below predialysis patient’s core
temperature. Automated thermal control of dialysis sessions
requires the use of an online blood temperature monitor that
can control more precisely thermal balance of patients to a preset
target. Both approaches tend to reduce hypotension incidence,
hemodynamic stress and organ insult as shown in recent studies
(145, 146).

4.2.6. Sodium and Water Control: Prioritize
Isonatremic HD and Sodium Mass Removal
Optimizing sodium and water imbalance by means of
hemodialysis is crucial to restore fluid and tonicity homeostasis
(148, 149). This process relies on convective and diffusive sodium
flux times treatment time. The sum of convective and diffusive
fluxes determines total salt mass removed per session (55, 150).
Convective sodium flux is dragged through ultrafiltration
(weight loss), while diffusive sodium flux is driven by a
dialysate-plasma sodium gradient. In that setting, dialysate
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sodium concentration plays a particular role in sodium
management since it acts both on sodium mass removal and
on plasma tonicity changes. Dialysate-plasma sodium gradient
prescription rather than dialysate sodium concentration alone
should be considered for personalizing dialysis prescription
(150). Indeed, there is no medical rationale today to prescribe
dialysate sodium on a fixed concentration basis except to
facilitate facility practice. In all cases, predialysis plasma
sodium concentration (or mean value) should be used as
reference value for choosing dialysate sodium prescription.
Manual dialysate sodium alignment to predialysis plasma
sodium concentration may be then reconsidered on a
periodically basis according to results (151, 152). An
innovative approach for dialysate sodium prescription has been
proposed recently relying on an automated sodium balancing
module that has capacity to align dialysate sodium concentration
to plasma sodium according to physician prescription (153–156).
Based on this new tool, care givers have the opportunity to
customize dialysate sodium prescription according to patient
needs (sodium mass and tonicity adjustment) in an easy and
timely appropriate manner without the cumbersome task of
laboratory testing. Accordingly, one may identify three
prescription options: positive gradient (or hypertonic dialysis),
neutral gradient (or isonatremic dialysis) or negative gradient (or
hypotonic dialysis). For safety reason, positive gradient will be
preferably ranging between +1 to +5 mmol/l; negative gradient
will be ranging between -1 and -5 mmol/l. Isonatremic dialysis
will be then ranging between -1 and +1 mmol/l. Isonatremic
dialysis may represent default basic prescription for the majority
of patients. Hypotonic dialysis may be favored in patients with
resistant or paradoxical hypertension, fluid overload or tissue
sodium excess to enhance sodium depletion. Hypertonic dialysis
may be indicated in hypotensive prone or hypovolemic patients
in order to improve hemodynamic tolerance. In addition, it is
expected that continuous fine tuning of dialysate sodium
alignment on plasma sodium concentration may facilitate
sodium mobilization from tissue storage addressing more
adequately total body sodium homeostasis (157). Further
focused clinical studies are clearly required to better identify
potential benefits or risks associated with these personalized
prescriptions. Alternatively, the use of sodium control module
to deliver isotonic dialysis is likely expected to reduce thirst by
preserving the patient’s tonicity set point (158). Potential benefits
of isotonic or zero-diffusive dialysis are currently explored in
various prospective studies (159).

4.3. Predictive Medicine, Advanced
Analytic and Artificial Intelligence
Big data and artificial intelligence have already been successfully
applied at the point of care to support physicians in the decision-
making process. Availability of accurate, longitudinal, data set is
a key factor for the development of reproducible predictive
algorithms. In that setting, artificial intelligence relying on
machine learning, neuronal network and deep learning, can be
used to predict on an individualized, session-based, patient
hemodynamic response (intradialytic hypotension) to dialysis-
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related prescriptions (ultrafiltration, dialysate sodium, treatment
time, dialysis modality) on multiple relevant hemodynamic and
dialysis adequacy parameters (160). Based on this information,
clinician can choose on time at the point of care the best dialytic
strategy to reduce hemodynamic stress for a given patient. Value
of this approach deserves further clinical trials.

4.4. Adjunctive Actions: Cardiac
Management: Medications,
Synchronization
Additional specific actions may be further required in cardiac
compromised patients or to satisfy specific patient’s needs (161).
It is not our intent to make an in-depth review of cardiac
interventions to improve cardiac health. However, few examples
may be presented to illustrate our purpose. Renin angiotensin
blockers or calcium channel blockers may be indicated in case of
refractory hypertension (162). Betablockers, renin angiotensin
inhibiting agents or mineralocorticoid receptor antagonists may
be also indicated in ischemic cardiac disease or in obstructive or
diastolic cardiac failure (163–165). In that setting, the right
medication (preferably non-dialysable) with the appropriate
dosing is needed to prevent clearing and loss during dialysis.
Coronary angioplasty, or coronary bypass as well as valve
replacement should be envisaged as needed (166). Cardiac
resynchronization relying on pacemaker implantation may be
indicated in case of severe cardiac dysfunction. Implantable
defibrillator may be indicated in case of severe and repetitive
arrhythmia associated with risk of sudden cardiac risk (167).
Cardioversion may be indicated in selected cases of atrial
fibrillation resistant to medication with interesting results (168).

In brief, indications of these medications and/or cardiac
intervention should remain in the hand of cardiologists. At this
stage, our point is to emphasize the fact that sodium,water andfluid
imbalance should be the first line of action in HD patients.
Frontiers in Nephrology | www.frontiersin.org 9
Medications and cardiac interventions are likely to be useful but
should remain as second line of action and nevertheless used in
combination with optimized sodium and water management.
5 PERSPECTIVE FOR FUTURE
IMPROVEMENT

A comprehensive and integrated approach is needed to improve
further cardiac outcome inHDpatients. Fromclinical research, it is
obvious that none of the tool described earlier used alone has the
capacity to address issues raised by sodium, water and fluid
imbalance. Future research should address this challenge by
associating different levels of action as briefly schematized in
Figure 3. firstly, relying on online tools embedded in HD
machines (i.e., ultrafiltration-controlled volume, thermal balance,
sodium control module) and secondly, on offline tools (i.e.,
bioimpedance, lung US, ihealth trackers) for fluid and pressure
status monitoring. In that perspective, biosensors use has to be
orchestrated and integrated into specific algorithms and feedback
loops control as part of smart HD machine providing immediate
support to care givers; secondly, using offline tools (bioimpedance,
biomarkers) feeding network data system, benefiting from
advanced analytics and artificial intelligence, supporting in almost
real-timeclinicaldecisionmaking; thirdly, optimized functioningof
these tools will rely on largeweb based networking system (big data,
cloud computing) that can integrate data from all sources of
information and propose clinical guidance to care giver.
6 CONCLUSION

As delineated in this comprehensive essay, new findings related
to sodium homeostasis and pathophysiologic links require a new
FIGURE 3 | Advanced management of sodium, fluid and blood pressure in hemodialysis patients integrating currently available online and offline tools under the
clinical supervision and supported by artificial intelligence.
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vision for sodium, fluid and pressure management in dialysis
dependent chronic kidney disease patients. The traditional dry
weight probing approach that has prevailed for many years must
be reviewed in the light of these new findings and enriched by
availability of new tools for monitoring and handling sodium
and water imbalance. It is time to come back to sodium and
water imbalance as cause root of the problem and not to act on
their consequences (fluid overload, hypertension) or organ
damage (cardiac, atherosclerosis, brain damages). We know the
problem and have the tools to assess and manage in a more
Frontiers in Nephrology | www.frontiersin.org 10
precise way sodium and fluid disorders in hemodialysis patients.
We strongly call for a sodium first approach to reduce disease
burden and improve cardiac health in chronic kidney
disease patients.
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