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3 INSERM UMR 1018, Equipe Epidémiologie Clinique, CESP, Villejuif, France

Acute kidney injury (AKI) is one of the most frequent causes of organ failure encountered in
patients in the intensive care unit (ICU). Because of its predisposition to occur in the most
critically ill patients, it is not surprising to observe a high frequency of AKI in patients with
acute respiratory distress syndrome (ARDS). However, few studies have been carried out
to assess the epidemiology of AKI in subgroups of ARDS patients using recommended
KDIGO criteria. Moreover, the mechanisms involved in the physio-pathogenesis of AKI are
still poorly understood, in particular the impact of mechanical ventilation on the kidneys.
We carried out a review of the literature, focusing on the epidemiology and
physiopathology of AKI in patients with ARDS admitted to the ICU. We addressed the
importance of clinical management, focusing on mechanical ventilation for improving
outcomes, on AKI. Finally, we also propose candidate treatment strategies and
management perspectives. Our literature search showed that AKI is particularly
common in ICU patients with ARDS. In association with the classic risk factors for AKI,
such as comorbidities and iatrogeny, changes in mechanical ventilation parameters,
which have been exclusively evaluated for their outcomes on respiratory function and
death, must be considered carefully in terms of their impact on the short-term
renal prognosis.

Keywords: acute kidney injury, acute respiratory distress syndrom (ARDS), lung kidney interaction, mechanical
ventilation, COVID
INTRODUCTION

Acute kidney injury (AKI) is the most common type of organ failure observed in patients in the
intensive care unit (ICU) observed in its most severe form in about one-third of ICU patients (1).
Surprisingly, few studies have assessed the relation between acute respiratory distress syndrome and
AKI, and then only in specific contexts such as trauma (2), influenza (3), after lung transplantation
(4), or intoxication (5). In an observational study specifically studied AKI in ARDS patients, 1879
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patients were compared with 6150 patients without ARDS. The
authors reported that 44% of ARDS patients had AKI and half of
these had the most severe form. When compared to non-ARDS
patients, this represented a 1.6-fold increase of incidence of AKI,
with a strong statistical association between ventilation for ARDS
and the occurrence of AKI after adjustment (OR=11[6.8-17.7])
(6).Using themost recent definitionofAKI reported in theKidney
Disease Improving Global Outcome (KDIGO) guidelines,
Panitchote et al. performed a competing risk survival analysis in
a monocentric cohort of 634 ARDS patients. They observed AKI
in more than two-thirds of patients and identified severe AKI in
118 (48%). Since December 2019, ICUs around the world have
faced a significant increase in admissions for a particular form of
ARDS, namely severe COVID-19. Marked by a particularly high
rate of AKI [with a reported incidence of >80% in ICU patients
receiving mechanical ventilation (MV)] (7) during the first wave
in each country, a recent large observational database analysis
from the UK observed a decrease in rate of AKI during successive
waves in patients hospitalized with COVID-19 (8). Thus, the
actual incidence of severe AKI appears to be around 25% and not
to be greater than that in ARDS patients without COVID-19 (9).
While AKI is associated with poor outcomes in all ICU patients
(10, 11), the occurrence of renal failure duringARDSmanagement
appears to be a specific unfavorable risk factor for nosocomial
pneumonia (12), an event leading to extended ventilation
times (13), and for a lower rate of successful weaning from MV
(14), which is responsible for an increase in overall mortality
(10, 11),

The aim of this mini-review is to outline our current
knowledge on the pathophysiological mechanisms involved in
the development of AKI during the management of ARDS in
ICU patients and to propose therapeutic approaches to limit
its consequences.
METHODS

We conducted a literature search of available sources describing
AKI in patients with ARDS. Research articles were selected on
the basis of research topics found in the Web of Science,
PubMed, Springer, and Scopus databases. These articles were
classified according to their relevancy. The information found in
the selected articles was evaluated and is described and discussed
in the following sections.
EXISTING PATHOPHYSIOLOGICAL
MODELS

Patients With ARDS Have a High Baseline
Risk of AKI
Epidemiological studies focusing on AKI have highlighted
several baseline characteristics as risk factors for renal failure
(1, 15). Overall, patients with AKI are frequently male, older,
with a history of comorbidities such as arterial hypertension,
diabetes, and cardiovascular diseases (16). These characteristics
Frontiers in Nephrology | www.frontiersin.org 2
are common to those observed in patients admitted to the ICU
for ARDS in the LUNG-SAFE study. Taken together, these data
give patients admitted to the ICU with ARDS a high-risk of renal
events (Figure 1).

The “Usual Suspects” for ARDS-Associated AKI:
Ischemia, Inflammation, MV, and Respiratory Acidosis
Ischemia
In kidney tissue, tubular proximal cells, which are metabolically
hyperactive cells with a high demand for oxygen to reabsorb
water and electrolytes, must operate in a low oxygen
environment because of the cortex-to-inner oxygen gradient.
During ARDS, renal ischemia results principally from hypoxia,
defined by an arterial blood oxygen level <75 mmHg. A decrease
in oxygen results in a mismatch between local tissue oxygen
supply and demand, and the accumulation of metabolic waste
products. As a consequence, tubular epithelial cells undergo
injury and death by apoptosis and necrosis with functional
impairment of the kidney (17).

In addition to this direct effect due to the decrease in blood
oxygen levels, ARDS, when associated with shock, could decrease
renal blood flow (RBF) leading to renal ischemia by
hypoperfusion. Moreover, hypoxemia seems to have a
synergistic effect on RBF and is associated with a greater
change in renal function (18) (Figure 1).

Systemic Inflammation
It has been suggested that some particular etiologies of ARDS are
associated with a higher incidence of AKI. More frequently
observed in sepsis (19), and/or in acute pancreatitis (20), and/
or burns, and less frequently observed in toxic inhalation and/or
viral pneumonia (21, 22), this reinforces the hypothesis that
inflammation causes renal injury.

Inflammation has been already identified as one of the major
mechanisms leading to the development of AKI, particularly
during sepsis with: (i) the local action of neutrophils (PNN)
through the secretion of pro-inflammatory cytokines including
interleukin (IL)-1b and tumor necrosis factor (TNF)-a (23); (ii)
monocyte activation, both pro- and anti-inflammatory,
responsible for monocyte infiltration guided by chemokine
receptor expression in the kidney (24); and (iii) the impact of a
diffuse inflammatory state with significant renal toxicity of the
immune response, in particular innate immunity (25).

Two pro-inflammatory mediators, IL-6 and IL-10, have been
specifically identified as being involved in the development of
renal lesions in murine models of sepsis (26, 27). The link
between high IL-6 and IL-10 plasma concentrations and the
development of AKI has also been confirmed in humans (25).
Other inflammatory biomarkers also seem to participate in the
development of renal dysfunction, such as TNF-21 (28), IL-8
(29), and vascular endothelial growth factor (VEGF)
hypersecretion, via oxidative stress mechanisms (30).

In ARDS, lung injury is responsible for the release of pro-
inflammatory mediators similar to sepsis (IL-6, PAI-1, soluble
TNF receptors) (11). Systemic release of these inflammatory
mediators has been identified as a pathway involved in AKI
development during infectious lung injury (11, 31) (Figure 1).
April 2022 | Volume 2 | Article 877529
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Mechanical Ventilation
In addition to the impact of MV on pulmonary tissue, positive
pressure ventilation also seems to have an impact on the kidney.
Originally described in 1947 by the demonstration of a decrease
in urinary flow in healthy volunteers (32), several fundamental
studies have suggested the involvement of hemodynamic (33,
34), immuno-inflammatory (35–37), and neuro-hormonal (38–
40) mechanisms that may alter renal function after the
MV initiation.

The hemodynamic impact of MV results from interactions
between the heart, kidneys, and lungs. The introduction of
positive-end expiratory pressure (PEEP) by MV is not without
consequences. The increase in intrathoracic pressure leads to a
decrease in heart venous return and, as a consequence, a decrease in
cardiac output (41–43). More recently, in a large cohort of ICU
patients, a strong link was found between the PEEP level
administered through MV and AKI in association with higher
venous congestion pressure. The authors hypothesized that high
PEEP could disturb renal perfusion via mechanisms linked to an
alteration in mean arterial pressure and by an increase in induced
venous congestion (44). In addition to the hemodynamic impact,
MV was suspected to stimulate the renin angiotensin aldosterone
system (RAAS), with a PEEP level-dependent effect (38). In
addition to RASS, other hormonal responses are also altered
during MV, especially the secretion of antidiuretic hormone and
typeAnatriureticpeptide,without any formal linkbeingestablished
between these responses and the development of AKI (38, 45, 46).

Added to the effects of pulmonary damage related to ARDS,
MV also induces pro-inflammatory mechanisms that have a
direct impact on renal tissue through neutrophil activation in the
Frontiers in Nephrology | www.frontiersin.org 3
intrapulmonary circulation (47) and/or pro-inflammatory
cytokine release in animal models (48). In humans, the
interaction with initial inflammation associated with ARDS
makes it difficult to extrapolate these results, but several pro-
inflammatory mediators seem to be increased by MV (TNF-a,
IL-6, IL-8, PAI-1, TNF receptor(R)-1, and TNFR) (11, 31, 49)
(Figure 1).

Respiratory Acidosis
Over the past 10 years, a consensus has emerged concerning the
need to limit plateau pressure during MV while maintaining a
lung recruitment strategy with limitation of tidal volume (50).
The so-called permissive hypercapnic acidosis observed at the
“price” of this strategy has even been suggested to be one of the
benefits of lung-protective ventilation (51). However, this point
of view was challenged by several studies which suggested that
hypercapnia may impair renal hemodynamics. In particular, it
has been found that hypercapnia may induce vasoconstriction of
the renal vascular bed leading to increased vascular resistance
(52–54). A pCO2 threshold of 50 mmHg has even been identified
as being responsible for the decrease in RBF (53, 55). In terms of
cellular metabolism, respiratory acidosis may induce an increase
in oxygen consumption in the proximal tubule (54, 56, 57).
Furthermore, the hypercapnia/hypoxia combination has been
shown to be synergistic in decreasing RBF and the development
of ischemic apoptosis in renal tubule cells (58–61) (Figure 1).

The Special Case of Severe COVID-19
The relationship between renal and pulmonary involvement in a
specific model of ARDS has been questioned in the context of the
FIGURE 1 | Schematic of physiopathology of acute kidney injury (AKI) during acute respiratory distress syndrome (ARDS). Four mechanisms related to ARDS are
identified: ischemia, inflammatory, respiratory acidosis and the impact of mechanical ventilation. These mechanisms added to AKI baseline risk (mostly composed by
comorbidities and age) and intensive care unit nephrotoxic treatment and procedures (nephrotoxic drugs, iodinated contrast products…). RBF, renal blood flow; IL-
6, interleukin-6; IL-10, interleukin-10.
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current SARS-COV-2 pandemic. Although renal damage is the
second most frequent type of organ damage during COVID-19
(62), a histopathological study showed that acute tubular
necrosis was the main lesion observed in ICU patients, without
viral material identified in kidney lesions (63), suggesting a
predominant ischemic process for AKI. Recently, Sullivan et al.
reported a dramatic decrease in rates of AKI after the first wave
of COVID-19, and a lower rate of renal failure in older patients
(8). Because of recommendations early during the pandemic, in
particular warnings of the potential risk of aerosol formation that
could increase the risk of contamination for healthcare workers,
non-invasive ventilation (NIV) and high-flow nasal cannula
oxygen (HFNO) therapy were used in only a minority of
patients during the first wave (6). It was later shown that the
risk of aerosolization with HFNO and NIV was similar to that
with standard oxygen therapy and HFNO was suggested as first-
line ventilatory support in COVID-19 patients with acute
respiratory failure during subsequent waves of the pandemic
(7). The lower rate of AKI observed after the first wave and in
older patients, in whom the use of invasive ventilatory support
was probably low, suggests the impact of MV on the
development of AKI. These results are in line with those
reporting MV as a major risk factor for AKI in patients with
severe COVID-19 (7, 9, 63).
The Usual Culprit, Septic Shock
Septic shock is frequently complicated by ARDS and is also a risk
factor for AKI. Bellani et al. found an incidence of
extrapulmonary septic shock in ICU patients with ARDS of
17.3% (16). The diffuse inflammation resulting from sepsis is
responsible for a renal toxicity of the immune response (25), via
Frontiers in Nephrology | www.frontiersin.org 4
pro-inflammatory cytokines (IL-6, IL-10, IL-1b, TNF-a) (23)
and a monocytic infiltration of renal parenchym (24).
Furthermore, hemodynamic failure in sepsis is linked to the
occurrence of AKI (64). The SEPSIS-PAM trial confirms the
importance of the link between blood pressure and AKI in sepsis
(65). Vasopressors can improve filtration fraction, and normalize
renal hemodynamic (66) but sympathetic overstimulation with
high doses of catecholamines could be harmful (67).
MANAGING AKI IN PATIENTS WITH ARDS

“AKI Is Coming”
The cornerstone of AKI prevention in ICU patients is the
management of hemodynamics, including the use of
appropriate volumes of fluids, the choice of fluids, and the
choice of vasoactive drugs. Although the pathogenesis of AKI
in ARDS patients depends on different mechanisms,
hemodynamic optimization appears to be essential to prevent
alterations in RBF (Table 1).

Hemodynamic Management
Appropriate volume replacement should be performed as early
as possible, bearing in mind that fluid overload is reported to be
associated with a poor prognosis in ARDS patients (68).
Crystalloids are the solutions of choice for ICU patients (69,
70). Because of the supra-physiological concentration of chloride
(154 mmol/L; representing 1.5-times normal serum chloride
concentrations), 0.9% saline solution had been incriminated in
the development of hyperchloremia acidosis in patients receiving
high volumes of solution. The results from a recent meta-analysis
TABLE 1 | Therapeutic measures proposed before and during and after AKI during ARDS.

Effective Not proven effective Still on debate

Preventive measures to limit AKI occurrence
Risk stratification by AKI risk model in context of specific AKI (nephrotoxic drugs, post surgery) X
Risk stratification by AKI risk model concerned all patients admitted in ICU X
Risk stratification using biomarkers of renal aggression X
Avoid hypovolemia condition X
Avoid use of synthetic colloïds for restore hypovolemic condition X
Avoid fluid overload X
Target a threshold of 85mmHg of MAP in patient with history of arterial hypertension X
Using vasopressin as first choice of vasopressors X
Control of blood glucose concentration X
Use erythropoeitin to limit damage of renal ischemia X
Use steroïds to limit sepsis related AKI X
Monitoring PEEP according right ventricular function X
Avoid severe hypercapnia X
Adopt bundle of care specific to AKI X
Therapeutic measures of AKI
Promoting use of cyrstalloïds for volume replacement X
Using vasodilatators agents in order to increase renal perfusion X
Research and consider to stop all drugs suspected as nephrotoxic X
Restore PGC1a-NAD pathway by B3 vitamin supplementation X
Not starting too early RRT X
Promoting use of convective renal replacement methods to limit renal aggression X
April 2022 | Volume 2
AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; MAP, mean arterial pressure; PEEP, positive expiratory end pressure; PGC1a-NAD, PPAR gamma coactivator 1
alpha nicotinamide adenine dinucleotide.
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of 13 trials comprising more than 35000 patients suggested a
better global and renal outcome with a balanced solution
compared to 0.9% saline solution (OR of major adverse kidney
events occurring in the first 30 days=0.78[0.66-0.91]; I2 =
42%) (71).

Further to the choice of solute, the concept of target optimal
mean arterial pressure (mABP) has long been advocated. In the
EPI-AKI study, the factors associated with AKI included a past
medical history of hypertension or shock at ICU admission, with
a higher simplified acute physiology score 3 (1). This relationship
was demonstrated in physiological studies, which strongly
suggested that glomerular filtration rate and RBF can vary
widely across mABP and the impact of increasing mABP on
renal hemodynamics varies on an individual basis (72) (Table 1).
Improve the Balance Between Oxygen
Supply/Needs
Numerous other procedures aimed at improving intra-renal
perfusion or oxygenation have been evaluated, including renal
vasodilators, control of renal hypercatabolism, anti-
inflammatory and antioxidants drugs. Among them, dopamine
is undoubtedly the most extensively studied. Its administration at
low doses induced a dopaminergic and b-adrenergic effect,
resulting in renal vasodilation. However, despite intensive
research, the data on preventing the development of AKI
remain largely inconclusive (73). Other vasodilators have failed
to show any renal benefit (74–77). Erythropoietin, steroids, tight
glucose control, and numerous metabolic interventions have also
been evaluated for the prevention of kidney damage in various
conditions. Except for the control of blood glucose level, for
which conflicting results have been obtained (78, 79), no renal
benefit has been observed with any of these metabolic
interventions (80–82) (Table 1).
Kidney-Lung Protective Ventilation
In the more specific context of ARDS, optimization of ventilation
parameters to limit the impact of MV on renal hemodynamics as
much as possible, through venous congestion or right-sided
heart failure, seem to be an interesting approach to prevent
this serious complication, within the limits allowed by the
patient’s respiratory severity and oxygenation needs (83). Right
ventricular (RV) function is frequently altered in ARDS patients
with an incidence of acute cor pulmonale of 25%, resulting in
detrimental hemodynamic consequences (84). The choice of
PEEP strategy is still under debate. While some authors have
observed a respiratory improvement with high level PEEP
strategy (85), others have reported that aiming for higher levels
of PEEP worsened RV systolic function impairment and a lower
PEEP application reduced RV dysfunction, suggesting an
association with lower pulmonary vascular resistance (86). In a
prospective physiological study, Mekontso Dessap et al. showed
that increasing PEEP strategies at constant Pplat during severe
ARDS induced marked hypercapnia, lower pH values and was
associated with impaired RV function (83). These results suggest
that lung protective ventilation should be adopted gradually to
Frontiers in Nephrology | www.frontiersin.org 5
limit hypercapnia to improve RV function and renal
hemodynamics in at-risk patients (Table 1).

Bundles
Further to a single intervention, “bundles” have been proposed to
prevent AKI (87, 88). Bundles are a small, straightforward set of
evidence-based practices that have been proven to improve
patient outcomes when performed collectively and reliably.
This seems to allow better recognition (89) and reduce the risk
of AKI progression (90). The implementation of bundles has
been shown to result in a lower incidence of AKI in specific
settings, such as nephrotoxic AKI or post-cardiac surgery (91,
92). However, it is unknown whether implementing these
bundles in general ICU populations or in patients with sepsis
could prevent AKI (Table 1).
DURING AKI: LIMITING THE SEVERITY
AND IMPROVING EARLY RECOVERY
FROM AKI

Earlier Detection of Renal Damage
Screening, mainly by identifying pre-existing co-morbidities, will
help to identify patients who are at risk of renal damage. Early
detection of AKI is also necessary so that it can be managed more
effectively. Since creatinine levels can increase late in the course
of kidney damage, with thresholds being exceeded only after a
50% loss of renal function, the use of more sensitive markers to
detect subclinical AKI is required. Early markers of tubular
damage (tissue inhibitor of metalloproteinase 2, insulin-like
growth factor-binding protein 7, kidney injury molecule-1,
neutrophil gelatinase-associated lipocalin, IL-18) have been
identified but are not yet available routinely (93). Biomarkers
are supplemented by radiological examination with contrast
ultrasound techniques to improve the assessment of lesion
severity and recovery potential (94).

Activation of the PGC1a-NAD Pathway
While no specific treatment for AKI is currently available,
numerous advances in our understanding of the mechanisms
leading to AKI in ischemic conditions have been made over the
past few years. Among them, the PPAR gamma coactivator 1a
nicotinamide adenine dinucleotide (PGC1a-NAD) pathway is
one of the most promising targets to prevent AKI. As renal
proximal tubular cells are one of the most energy or ATP
demanding cells in the body, they are very dependent on
mitochondrial function. An increase in the expression of
PGC1a in renal epithelial cells subjected to ischemic stress was
found to be protective, with an increase in NAD+ (95, 96).
Furthermore, decreased expression of PGC1a was observed in
kidney biopsies from patients with AKI (96). PPAR agonists have
been proposed to prevent AKI induced ischemia-reperfusion
(97). Nicotinamide, the amine form of vitamin B3 (niacin), was
identified as a potential stimulator of NAD+ production (98).
After promising preclinical experiments, nicotinamide
administration was evaluated for the prevention of
April 2022 | Volume 2 | Article 877529
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postoperative AKI after in a single center trial with encouraging
results (99). In this phase 1 pilot study, 37 patients who had
undergone cardiac surgery were randomly assigned to one of
three groups: placebo, nicotinamide 1g/day, and nicotinamide
3g/day. The areas under the curve of all longitudinal serum
creatinine levels measured after randomization were higher in
the placebo group compared to patients who received
nicotinamide supplementation. While these results deserve to
be reassessed in larger populations with a more suitable outcome,
emerging data linking the NAD+ equilibrium to AKI resistance
opens a new exciting chapter in AKI research (98, 100).

Renal Replacement Therapy: At the Right
Time for the Right Patient
Over the past few years, the timing of renal replacement therapy
has received particular attention in critically ill patients (101–
105). ARDS patients were studied specifically in a post-hoc
analysis of an AKI study, but no significant impact of early
renal replacement therapy on 60-day mortality was observed
(101). Concerning renal recovery, although higher renal
replacement therapy-dependence among survivors at day-90
was observed in the STARRT-AKI study (85/814 (10.4%) for
Frontiers in Nephrology | www.frontiersin.org 6
the accelerated group vs. 49/815 (6.0%) for the standard group),
these data were observed in unselected ICU patients and are
difficult to extrapolate to the ARDS population.
CONCLUSION

AKI is a frequent complication in ARDS patients and has a
significant impact on outcome. MV may favor the emergence of
this complication. Although the prevention of renal failure
remains difficult, the early identification of high-risk patients,
the use of bundles, and personalized ventilation should be an
integral part of the management of ARDS patients, in the
absence of any new therapeutic targets.
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