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Introduction: When assessing kidney biopsies, pathologists use light

microscopy, immunofluorescence, and electron microscopy to describe and

diagnose glomerular lesions and diseases. These methods can be laborious,

costly, fraught with inter-observer variability, and can have delays in turn-

around time. Thus, computational approaches can be designed as screening

and/or diagnostic tools, potentially relieving pathologist time, healthcare

resources, while also having the ability to identify novel biomarkers, including

subvisual features.

Methods: Here, we implement our recently published biomarker feature

extraction (BFE) model along with 3 pre-trained deep learning models

(VGG16, VGG19, and InceptionV3) to diagnose 3 glomerular diseases using

PAS-stained digital pathology images alone. The BFE model extracts a panel of

233 explainable features related to underlying pathology, which are

subsequently narrowed down to 10 morphological and microstructural

texture features for classification with a linear discriminant analysis machine

learning classifier. 45 patient renal biopsies (371 glomeruli) from minimal

change disease (MCD), membranous nephropathy (MN), and thin-basement

membrane nephropathy (TBMN) were split into training/validation and held out

sets. For the 3 deep learningmodels, data augmentation and Grad-CAM were

used for better performance and interpretability.

Results: The BFE model showed glomerular validation accuracy of 67.6% and

testing accuracy of 76.8%. All deep learning approaches had higher validation

accuracies (most for VGG16 at 78.5%) but lower testing accuracies. The highest

testing accuracy at the glomerular level was VGG16 at 71.9%, while at the

patient-level was InceptionV3 at 73.3%.
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Discussion: The results highlight the potential of both traditional machine

learning and deep learning-based approaches for kidney biopsy evaluation.
KEYWORDS

digital image analysis, computational pathology, machine learning, deep learning,
glomerulus, minimal change disease, membranous nephropathy, thin-basement
membrane nephropathy
1 Introduction

Kidney biopsies are examined by renal pathologists using

light microscopy (LM), immunofluorescence (IF), and electron

microscopy (EM), to diagnose often descriptively, from the

range of glomerular diseases. Digitization of whole-slide

images (WSIs) has allowed for the application of software

tools, from classic image analysis to more recent deep learning

methods, to facilitate computer-based assistance to biopsy

diagnosis. Besides increasing reproducibility and likely

improving diagnostic accuracy, computer derived tools may

uncover novel subvisual features and identify objective

diagnostic and prognostic biomarkers.

There are limited works for automated renal pathology

analysis with a few approaches in the literature that apply

machine learning to the study of glomerular diseases. These

have mostly included distinguishing the types of lesions that are

known to occur in the glomerulus, and well as separating the

degree of glomerular lesions within a specific disease. For

example, Eiichiro et al. (1) constructed a deep learning model

to classify seven different glomerular pathological findings, and

this was found to improve diagnostic accuracy. Ginley et al. (2)

used traditional image analysis and modern machine learning

techniques to grade the severity of diabetic glomerular changes,

and this correlated with disease severity. Other studies (3, 4)

have used semantic segmentation using convolutional neural

networks (CNNs) to detect and classify glomeruli as normal and

sclerosed from WSIs. Taken together, this demonstrates that

machine learning tools are feasible for some aspects of renal

pathology classification.

Our focus in this paper is to apply machine learning

techniques to automatically classify glomerular diseases from

images of Periodic Acid Schiff (PAS) stained renal biopsies

alone. We choose three common glomerular diseases seen

clinically - minimal change disease (MCD), membranous

nephropathy (MN), and thin-basement membrane

nephropathy (TBMN). Although these diseases are complex in

overall pathophysiology, they are distinguished by somewhat
02
straightforward histologic principles. MCD appears normal by

LM (with diffuse effacement by EM), MN shows varying degrees

of capillary wall thickening by LM (with immune complexes on

IF/EM), while TBMN may show some capillary wall wrinkling

on LM (with definitive thinning only on EM). Thus, software

tools could potentially be applied to PAS stained WSIs to detect

this imaging features and diagnose disease in the absence of IF/

EM. Not only does that reduce dependence on secondary

modalities, equipment and expertise, but such tools could be

used to increase objectivity, efficiency and understanding of

disease mechanisms.

In this work, we implement and evaluate two types of

machine learning frameworks for classification of MCD, MN

and TBMN diseases. One method is based on CNNs which while

having increased discriminatory abilities have not been applied

on these glomerular diseases before. For this we develop and

fine-tune three pre-trained deep learning models with data

augmentation and Grad-CAM for better performance and

interpretability. The other method is based on a recently

published (5) biomarker feature extraction model (BFE) and a

traditional machine learning classifier that uses 233 explainable

features for glomerular and patient-level classification. Our

study is a starting point in glomerular disease diagnosis by

machine learning and encourages the field to undertake more

and larger studies with regards to kidney disease diagnosis.

While machine learning applied to renal pathology is still in

its infancy and more work is required before automated tools

can be used to supplement workflows, this paper provides the

basis and groundwork for such research.
2 Methods

2.1 Data

Renal biopsies were obtained from Toronto General

Hospital (TGH) in Toronto, Ontario, Canada and institutional

research board approval was obtained (19-5268). The dataset
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consists of WSIs of renal biopsies from n = 45 different patients

with n = 15 WSIs per disease (MCD, TBMN, and MN), derived

from pathologist (R.J.) assessment using LM, IF, and EM.

Biopsies were chosen from cases with classic disease features

and without changes associated with other glomerular disease.

One slide from each case stained by the standard PAS method

was used for analysis. Slides were scanned at 40x magnification

with a resolution of 0.2526 x 0.2526 μm. Over all slides, a total of

375 glomeruli were extracted by manually cropping regions of

interest (ROIs) of size 1500 x 1500 containing glomeruli and

glomerular boundary segmentations were completed using

Pathcore’s Sedeen Image Viewer (6). All glomeruli fully

encapsulated by Bowman capsule were included. The dataset

also had a total of 150 glomerular structure annotations which

were previously used to validate the performance of the

glomerular structure segmentation algorithm for the

biomarker feature extraction model. Annotations were

performed by a trained biomedical student (M.N. Basso) and

validated by a pathologist (R.J.) for quality control. Figure 1

illustrates sample WSI needle biopsies stained with standard

Periodic Acid Schiff (PAS) and sample glomeruli from eachWSI.
Frontiers in Nephrology 03
Table S1 details additional clinical information such as age, sex,

and disease specific information.
2.2 Glomerular and patient-level
classification models

The biomarker feature extraction and deep learning-based

computer-aided diagnostic systems were applied to light

microscopy PAS images for MCD, MN, and TBMN

glomerular and patient-level classification. The experimental

design is shown in Figure 2. Both approaches incorporate

techniques for model interpretability.

The biomarker feature extraction system employs image

analysis techniques to extract 233 explainable biomarkers

related to color, morphological, and microstructural texture

features from the glomerular images. This system includes

preprocessing, glomerular structure segmentation, biomarker

extraction, and glomerular and patient-level classification. For

the deep learning methods, three different pre-trained CNNs are

used to increase performance and decrease model overfitting.
FIGURE 1

Sample kidney needle biopsies from TGH dataset and sample respective glomeruli images. (A, D) MCD, (B, E) MN, and (C, F) TBMN biopsy and
glomerular images.
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The deep learning approaches incorporated pre-processing, data

augmentation, transfer learning, Grad-CAM for network

visualization, and glomerular and patient-level classification.

All methods are compared to the gold standard renal

pathologist diagnosis of MCD, MN and TBMN.
2.3 Biomarker feature extraction
(BFE) model

The biomarker feature extraction and machine learning

model proposed in Basso et al. (5) was replicated in this work.

Pre-processing steps are first employed to exclude small

glomeruli, as well as color normalization to remove color

variability using a modified version of Reinhard’s method (5).

Three sub-glomerular structures were automatically segmented

using a modified Naïve Bayes classifier: (1) luminal (space inside
Frontiers in Nephrology 04
the Bowman’s capsule and the capillary lumen), (2) glomerular

tuft (the glomerular basement membrane (GBM) and mesangial

matrix), and (3) nuclei (5). A series of biomarkers are extracted

from the sub-glomerular structures, which includes color,

morphological, and microstructural texture features, forming a

total of 233 biomarkers (5).

The concentration of color(s), related to stained microscopic

anatomy, will be analyzed using the histogram of the

color channels (of different objects), through the mean,

variance, skewness, kurtosis, energy, and entropy. These

features describe the amount of structures (stain) present in

the glomerulus. From the sub-glomerular structures,

morphological features will be extracted to quantify shape and

object-based characteristics. Four groups of morphological

features are included: containment features, shape features,

interstructural distance features, and intrastructural distance

features (5). Containment features measure the fraction of two
FIGURE 2

Overview of experimental design.
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areas. Shape features which include equivalent diameter and

circularity will be used quantify the diameter of the glomerular

structures and the roundness of the glomerulus. Interstructural

distance features will assess distance between glomerular

structures and are used to describe how structures interact

with each other. Lastly, intrastructural distance features will be

used to measure the thickness of a structure (e.g., glomerular tuft

max thickness). The Euclidean distance transform was used to

measure the thickness of each glomerular structure, yielding

feature images that quantify spatial thickness. From these

images, maximum, median, and total thickness features were

extracted. Microstructural texture features were designed to

measure spatial relationships between color or gray level pixels

and describe glomerular microstructure tissue texture. Local and

global texture-based biomarkers were evaluated using gray-level

co-occurrence matrices (GLCM), color vector local binary

patterns (LBP), and wavelet features (5). From Basso et al.,

Gini feature importance to select the features and Linear

Discriminant Analysis (LDA) classifier combination was

optimal (5) and are used for this analysis.

The dataset will be split into training, validation, and testing

sets based on patients. Glomeruli are assigned disease labels

based on the WSI-level label. Five-fold cross-validation will be

used for classifier hyperparameter fine-tuning and all results are

reported on the held-out testing set. The output of the LDA

classifier is a probability for each disease, and the maximum

probability will determine the predicted glomerular disease label.
2.4 Deep learning methods

A deep learning-based computer-aided system was applied

to microscopy PAS images for MCD, MN, and TBMN

glomerular classification. The following deep learning

procedure included image pre-processing, data augmentation,

transfer learning, Grad-CAM for network visualization, and

glomerular classification. Models were trained on a computer

with a NVIDIA GeForce 2080 SUPER GPU with 16 GB of RAM.
Frontiers in Nephrology 05
2.4.1 Pre-processing
The TGH dataset is first preprocessed prior to training and

testing the deep learning models. Automatic glomerular size

outlier detection was performed to remove small glomeruli from

the analysis. Four glomeruli were found to be outliers reducing the

TGH dataset from 375 to 371 glomeruli images. Next glomerular

resizing needs to be completed, since deep learning methods

accept predefined image sizes. To complete this, ROI re-

centering, cropping, and then resizing is performed. To find the

appropriate areas for resizing, a bounding box was computed for

each centered glomerulus image and the largest bounding box

width/height across the dataset was recorded. This max length was

used as the max size to crop the images to keep it consistent over

the entire dataset. Cropping the images to their minimum size

allows for better resizing. Glomerular images were cropped from

1,500 x 1,500 pixels to 1,151 x 1,151 pixels in dimension. The

InceptionV3 model which is one of the top performers on

ImageNet has a maximum image size of 299 x 299 pixels,

whereas VGG16 and VGG19 have 224x244 pixels. The cropped

images are resized to these dimensions using bicubic interpolation

and an example is shown in Figure 3 below. Color normalization

was also investigated using a modified version of Reinhard’s

method which decreases color variability in WSIs (3, 4, 7).

Once the images were preprocessed, data augmentation was

utilized. Deep CNNs require large amounts of training data to

help learn features from the data. Training an architecture using

a small dataset may result in overfitting. Thus, to overcome these

problems, different data augmentation techniques such as

horizontal and vertical flip, rotation, scaling, and translation

were used to increase the dataset size and help improve

classification performance (8). The data augmentation

parameters are shown in Table S2, and sample augmented

images are shown in Figure 4.

2.4.2 Transfer learning
A transfer learning approach was implemented based on

three well-known deep CNNs to automatically initialize network

weights for better generalization to the glomerular image
DA B C

FIGURE 3

Visualization of the pre-processing steps prior to data augmentation. A sample glomerular ROI is shown in (A). Centering, cropping, and resizing
of the original ROI are shown in (B–D).
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diseases (9). Transfer learning is a method in which a network is

pre-trained on a large dataset and used for a new problem (10).

This technique is a popular approach in deep learning because it

requires little data to train a deep CNN and has the potential to

reduce the problem of overfitting (9). Although the pre-trained

dataset is not the same as the source dataset, many low-level

generic features such as edges, textures and contours extracted

using the CNNs can be represented across datasets. This

technique is valuable in medical imaging and digital pathology

applications since expert annotations may not be available or

data may be scarce for certain applications.

Three widely used pre-trained architectures were considered

for glomerular classification: VGG16 (11), VGG19 (11), and

InceptionV3 (12) since they have top performance in several

challenges, are not extremely deep compared to other CNNs, and

pre-trained weights are available. The VGG16 network has a total

of 16 trainable layers, of which 13 layers are convolutions and 3

fully connected layers. Similarly, the VGG19 architecture has a

total of 19 trainable layers, with 16 convolutional layers and 3

fully connected layers. Both VGGNets use an input image size of

224 x 224 x 3 and therefore resizing was performed. InceptionV3

was designed to resemble a fully connected deep neural network

by utilizing sparsely connected modules. The InceptionV3

modules in turn help prevent overfitting and reduces the

number of parameters needed which are key disadvantages

when training a deep model on small amounts of data. Each

InceptionV3 module is composed of small convolutional and

pooling layers in parallel. For this architecture, an input image

size of 299 x 299 x 3 was used. CNNs were pre-trained on a large

collection of images from ImageNet (13).
Frontiers in Nephrology 06
For VGG16 and VGG19, a global average pooling (GAP)

layer was added to replace the last maximum pooling layer.

InceptionV3 already had a global average pooling layer and thus

was not changed. GAP reduces the number of parameters

needed to be trained to minimize overfitting (especially on

smaller datasets), and can increase classification performance

(14). The number of parameters of VGG16 and VGG19 with and

without the added GAP layers can be found in Table S3. GAP

layers reduced the number of parameters of the VGG networks

by approximately 150 million while maintaining the same

network depths. With GAP layers added, VGG16/VGG19 are

more comparable in terms of number of trainable parameters

compared to the InceptionV3 network.

Three new trainable fully connected layers were then added

to all three models and an output vector of length three was

added to match the number of labels (three) for the candidate

glomerular diseases. A 50% dropout was added between the fully

connected layers to prevent overfitting. The weights from all

three pre-trained architectures are initially frozen and the new

final layers are trained on the TGH dataset for each of the

architectures. After training the new final layers on the TGH

dataset, additional fine-tuning was completed, whereby all

model weights were unfrozen and training was completed on

the TGH dataset with a small learning rate. Fine-tuning was

performed to help adapt the pre-trained features to the

glomerular image dataset. The output of the network is a

prediction probability (softmax) for each glomerular disease,

and the maximum probability is used to predict the glomerular

level label. Hyperparameters for the models are show in Table 1.

Modifications to the architectures, implementation, and fine-
FIGURE 4

Sample images visualizing the result of data augmentation (rotation, width shift, height shift, zoom, horizontal flip, and vertical flip).
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tuning approach for VGG16, VGG19, and InceptionV3 is

demonstrated in Figure 5.

2.4.3 Grad-CAM visualization
Deep learning models may lend to a lack of interpretability

(15, 16) and methods such as Gradient-weighted Class

Activation Mapping (Grad-CAM) can add transparency by

visualizing important features in the image used to make the

decision (17). Grad-CAM uses gradients of the predicted disease

class and creates a heat-map indicating regions of importance.

Grad-CAM was implemented for each of the trained networks

and gradients were taken from the output predicted class as

input into the last convolutional layer.
Frontiers in Nephrology 07
2.5 Patient-level classification scheme

For all machine learning methods (LDA and CNNs), the

output is a probability distribution that specifies the probability

the glomerulus image is from a subject with MC, TBMN or MN.

The maximum probability value is used to predict the disease

label for glomerulus-level classification. To automatically predict

the disease on a patient level using the held-out test set, each

glomerulus is first classified from the subject’s renal biopsy. The

top four glomeruli predictions with the highest probability are

averaged to estimate WSI disease predication confidence and

diagnosis. This method approximates human assessment as a

pathologist may make a diagnosis from a few glomeruli that best

exemplify a disease.
2.6 Validation metrics

Each subject has a WSI-level label of MCD, MN, or TBMN

derived from pathologist (R.J.) assessment. These labels were

compared to the classifier predictions. Some of the metrics to

evaluate the model’s classification performance include

accuracy, precision, recall, and F1-score. Accuracy measures

the fraction of correct predictions over the total number of

predictions. Where each true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) are found comparing

true and predicted labels.
FIGURE 5

Overview of experimental design. Three different pre-trained networks (VGG16, VGG19, and InceptionV3) were used in a fine-tuning approach.
TABLE 1 Model hyperparameters.

Parameter Value

Optimizer Stochastic Gradient Descent (SGD)

Loss Categorical Cross-Entropy

Momentum 0

Learning Rate

Top Layer Training 0.01

Fine Tuning 0.001

Dropout 0.5

Mini Batch Size 32

Maximum Epochs 100
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ACC =
TP   +  TN

TP +   FP +  TN   +   FN

F1-score was also analyzed, which is a combination of both

precision and recall and gives an overall accuracy score. A high

F1-score indicates the classifier is predicting with high precision

and recall.

F1   =
2∙   Precision   ∙  Recall
Precision   +  Recall
3 Results

Table 2 describes the experimental dataset used for the

biomarker feature extraction and deep learning models, which

was split by patient into 67% training/validation (n = 30 WSIs,

n = 250 glomeruli) and 33% testing (n = 15 WSIs, n = 121

glomeruli). For the deep learning models, data augmentation

previously described was used to increase the sample sizes in the

training/validation set, with equal numbers between the diseases

to prevent class imbalance.

Five-fold cross validation was performed on the validation

set for all classifiers for both un-normalized and Reinhard color

normalized images seen in Figure 6. Color normalization using

Reinhard’s method which normalized the mean and standard

deviation of each channel of an image to a target image was

performed to facilitate color consistency throughout the dataset.

On normalized data, the BFE model using Gini feature

importance and Linear Discriminant Analysis obtained a

glomerular cross-validation accuracy of 67.6 ± 8.9%. For the

deep learning models, un-normalized images had higher cross-

validation performance compared to Reinhard normalized

images. The VGG16 model for un-normalized images had the

highest cross-validation accuracy of 78.5 ± 4.6% and therefore

generalized to the validation data the best. As shown by Figure 6,

this color transformation reduced the deep learning model’s

ability to differentiate between the diseases, thus only un-

normalized images are used for the deep learning models.

The BFE and deep learning models for un-normalized data

were applied to the glomerular unseen held-out testing set over

all folds. Accuracy, precision, recall, and F1-score glomerular
Frontiers in Nephrology 08
and patient-level classification results for each model are shown

in Table 3.

The BFE model obtained a testing accuracy of 76.86% for

glomerular-level classification. Glomerular classification

accuracy was high for MN (84%), and lower for MCD (73%)

and TBMN (72%). Patient-level classification was determined by

the top four glomeruli on the held-out testing set which resulted

in an accuracy of 86.76%. The confidence rating (average

probability over the top 4 glomeruli) for each held-out subject

is shown in Figure 7. As seen in Figure 7, the BFE method

correctly predicted all patients except for 8 and 43, with an

average subject-level confidence of 73 ± 17% for the predicted

class. The correct disease labels were TBMN for subject 8 and

MCD for subject 43, which were predicted to be MN and TBMN,

respectively. Notice the confidence level for TBMN and MCD is

similar over many patients, while correctly classifying MN with

very high confidence.

Figure 8 illustrates the three biomarker groups from which

233 features were extracted as part of the BFE model. The

biomarkers obtained were designed to be interpretable and

describe the underlying pathology. Sample glomeruli are

shown in Figure 8A. First is the hue color histogram in

Figure 8B, which shows the TBMN glomerulus to have the

highest mean hue indicating increased ‘luminal structure’.

Figure 8C shows the intrastructural distance feature and

zoomed-in regions show the GBM in yellow for MN

indicating thickening, while the GBM is dark blue for TBMN,

compatible with thinning. Lastly, color vector LBP texture maps,

which quantify ultrastructural spatial relationships between

pixels, are illustrated in Figure 8D. MCD and TBMN

glomeruli show finer texture than MN, which is likely from

increased ‘glomerular tuft’ in MN.

All three deep learning models (on unnormalized data) had

lower glomerular-level testing classification accuracy. All three

models were found to slightly overfit the training data as seen by

the loss graphs in Figures S1-3. Although steps such as

pretraining, data augmentation, model fine-tuning, and added

layers were completed to mitigate model overfitting, deeper

networks perform best in a large data scenario. The VGG16

method performed the best with a glomerular testing accuracy

of, 71.90%. Much like the BFE model, MN was found to have the
TABLE 2 Data configuration for glomerular and patient-level classification.

TGH Dataset Training/Validation Testing

Patients Glomeruli Patients Glomeruli (BFE) Glomeruli (DL) Patients Glomeruli

MCD 15 103 10 66 200 5 37

MN 15 148 9 101 200 6 45

TBMN 15 124 11 83 200 4 39

Total 45 375 30 250 600 15 121
fr
The TGH dataset was composed of minimal change disease (MCD), membranous nephropathy (MN), and thin-basement membrane nephropathy (TBMN) WSIs. This dataset was split
into training/validation and testing on a per patient basis. Glomeruli and patient-level classification was trained/validated and tested using the following configuration.
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highest classification accuracy (96%) but substantially lower

performance for MCD (57%) and TBMN (59%) was found as

shown in Table 4. MCD and TBMN are misclassified as one or

another, in greater proportion compared to MN. Grad-CAM

was used to visualize the important features in the glomerular

images to add explainability. The correctly classified and

misclassified glomeruli (with highest probability) in each

disease are shown in Figure 9. Areas of red and orange

indicate regions in the images that were deemed important for

making a prediction, while less important regions are colored

blue. From these images, areas of importance pointed to

glomerular tissues and nuclei structures. The correctly

classified MN image highlighted the thicker glomerular tuft

structure as important, which potentially could have been a

feature during classification. Similarly, the misclassified TBMN

image was predicted as MN possible due to the detection of

thicker membrane which was highlighted. Although areas of
Frontiers in Nephrology 09
interest are highlighted, in some of the misclassified glomeruli,

there was outside regions included, or just a small region that

was deemed important.

For patient-level classification, although VGG16 had the

highest glomerular-level accuracies, VGG16 had the second

lowest patient-level classification accuracy. Recall that

predicting slide-level disease is based on the top four glomeruli

with the highest probabilities. Since the classifier had difficulties

differentiating TBMN and MCD, VGG16 resulted in a lower

patient-level performance as there was disagreement in the labels

for the top four glomeruli.

The InceptionV3 network, while having the lowest

glomerular classification accuracy of 64.46%, was found to

have the highest patient-level accuracy of 73.33%. Upon

further inspection (Table 5 confusion matrix), this model was

found to classify 100% of the MN patients correctly, while 75%

of the TBMN and 40% of the MCD patients were predicted
TABLE 3 Glomerular five-fold cross validation and testing glomerular and patient-level classification for all models on the held-out test set.

Classification
Metrics

BFE VGG16 VGG19 InceptionV3

Validation Accuracy 67.6 ± 8.9% 78.5 ± 4.6% 77.8 ± 6.5% 74.2 ± 6.8%

Testing Glomerular Patient-
Level

Glomerular Patient-
Level

Glomerular Patient-
Level

Glomerular Patient-
Level

Accuracy 76.86% 86.67% 71.90% 66.67% 63.64% 60.00% 64.46% 73.33%

Precision 76.55% 86.90% 71.59% 63.89% 64.92% 68.89% 62.39% 70.79%

Recall 76.40% 85.00% 70.43% 61.67% 61.58% 56.67% 62.90% 71.67%

F1-score 76.47% 85.94% 71.01% 62.76% 63.21% 62.19% 62.64% 71.23%
FIGURE 6

Five-fold cross-validation accuracy performance for BFE and deep learning models performed on validation set. A comparison between un-
normalized and Reinhard color normalized images was additionally performed across all deep learning models.
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correctly. In this case, the classifier is robustly representing MN

patients, as well as patients with TBMN. MCD was still difficult

to differentiate.

The confidence rating (average probability over the top 4

glomeruli) for each held-out subject is shown in Figure 10 for the

InceptionV3 network. As seen in Figure 10, 4 patients (8, 40, 41,

and 45) were misclassified with an average confidence of 67 ±

19%. The labels for subjects 8, 40, 41 and 45 were TBMN, MCD,

MCD and MCD, which were respectively predicted to be MCD,

TBMN, TBMN and MN. Interestingly, similar to the BFE model

TBM and MCD had similar probabilities, and MN was predicted

with high confidence.
4 Discussion

Our study is unique in using PAS-stained renal biopsy WSIs

and machine learning to diagnose glomerular disease. To

diagnose glomerular disease clinically, LM, IF, and EM are

required which is laborious, costly, and can have delays in

turn-around time. The use of computer-aided diagnostics can

present a significant gain, particularly if EM and/or IF is not

available, but also potentially as a screening tool, opening up

pathologist time and healthcare resources. PAS WSIs also allow

for remote diagnosis via cloud-based technology. In this work, we

designed and implemented several machine learning algorithms

that use explainable biomarkers and traditional machine learning,

as well as three deep learning systems to automatically classify

between MCD, MN, and TBMN diseases on a glomerular and

patient-level. This proof-of-concept study was an investigation

into two renal disease tools and describe how these methods can

be designed and validated for renal pathology images. The results

of the various models investigated across three glomerular

diseases using PAS images only has shown promise.

Biomarker feature extraction and deep-learning computer

aided diagnostic systems were applied to the PAS light
Frontiers in Nephrology 10
microscopy experimental dataset. The BFE model resulted in a

glomerular five-fold cross-validation accuracy of 67.6 ± 8.9%

and testing accuracy of 76.86%. Amongst the three CNNs, the

VGG16 network was the top deep-learning model for

glomerular classification with a cross-validation of 78.5 ± 4.6%

and a testing accuracy of 71.90%. Patient-level classification had

slightly higher average performance for the BFE compared to all

the CNN methods, with two misclassified patients, vs. four for

the InceptionV3 model. Color normalization was also tested for

the deep learning models and it was found to reduce

classification performance. In previous works, color

normalization of digital pathology images resulted in similar

nuclei segmentation performance based on un-normalized

datasets (18) but was noted that segmentation can be

negatively impacted by color normalization if a reduction of

contrast was found, which may be the case in this work as the

dataset was from the same center.

The biomarkers (features) from the BFE model (5, 19) were

designed to be related to underlying pathology (tissue micro- and

macro- structure) to give the user confidence in the system and to

further understand disease by identifying subvisual features. The

selected features suggested that MCD had larger nuclei, possibly

related to podocyte hypertrophy, MN had glomerular tuft

thickening, and TBMN had glomerular tuft thinning.

Microstructural texture features described TBMN and MCD to

be heterogeneous, possibly from variable nuclei and luminal

structures, while MN was homogeneous, likely related to

glomerular tuft thickening. Overall, this traditional machine

learning approach performed moderately on a small dataset. At

the patient-level, all MN cases were classified correctly, while one

MCD subject and one TBMN subject were misclassified.

VGG16 was the best of the CNNs for glomerular

classification, which classified MN with near perfect

classification accuracy, whereas TBMN and MCD performed

poorly. This is likely due to similar features in these diseases,

including thicknesses of the glomerular basement membrane.
FIGURE 7

Patient-level confidence results per testing patient are shown for the BFE model. Each patient was predicted with a certain confidence
corresponding to TBMN, MN, and MCD. Above the confidence bars is indicated whether the patient was predicted correctly with a checkmark
and incorrectly predicted with an X.
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To try and tease out the subtle differences between these diseases

as seen on EM, we used pre-trained networks and fine-tuning

since the labeled dataset in this work was small, which is not

uncommon in medical imaging and further exacerbated in the

renal pathology space. In the future, we will consider

incorporating a larger dataset, which would likely improve the

deep learning model performance. Another consideration is the

pre-trained networks were developed using natural images,

which are different than pathology images, and that may have
Frontiers in Nephrology 11
affected performance. Perhaps the fundamental features between

the datasets are too different, causing suboptimal performance.

In the future, we will consider pre-trained models developed on

pathology images, such as (20). We can then test if using a

pathology pretrained network and the small dataset for fine-

tuning, improves performance.

InceptionV3 had lower glomerular classification accuracy

compared to the VGG architectures, but highest patient-level

accuracy where only 4 out of 15 cases were misclassified. This
D

A

B

C

FIGURE 8

Visual representation of biomarker features extracted. (A) Columns represent sample minimal change disease (MCD), membranous nephropathy
(MN), and thin-basement membrane nephropathy (TBMN) diseases. (B) Color features: displays the hue histogram for the following three
sample images, with their corresponding mean values. (C) Morphological features: glomerular tuft intrastructural distance feature maps for each
corresponding sample image. Thicker structures are represented as red or orange in color, while thinner structures are green and blue in color.
(D) Microstructural texture features: texture maps for sample glomeruli using color vector LBP. Scale bars, 100 µm.
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likely indicates more homogeneity in the InceptionV3

classification predictions for the top four glomeruli. Glomeruli

were correctly classified 100% of the time for MN disease,

followed by TBMN (75%) and then MCD (40%). Higher

misclassifications were made between TBMN and MCD,

indicating, as supported by results from all the other methods,

that differentiating between MCD and TBMN on PAS stained

images is more difficult. Thicker membranes, and other features,

likely make MN easier to differentiate. In the future, we may

consider a binary classification problem between MCD and

TBMN to further find differences in images for the PAS-

stained renal biopsies.

With regards to technical aspects, developing traditional

machine learning and deep learning each require a set of

domain expertise. Hand-crafted feature design is needed to

extract features (inputted to the machine learning tool), which

is completed using signals and systems theories; but designing

algorithms that detect the phenomena of interest can be difficult.
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In contrast, deep learning systems use data to learn these features

automatically, and there are many architectures available.

Learning to modify and fine-tune pretrained architectures for

the dataset and task requires specific skill sets as well. However, a

challenge with machine learning is that large datasets are usually

required for the best performance and generalization – and deep

learning methods require the most data to learn highly non-

linear and complex relationships (through many parameters)

which is important for describing disease. Currently, there are

very limited datasets available for renal pathology, and

resultantly very few automated methods for renal pathology as

well. As described by a recent review of our BFE method (19),

that despite the limited work in the machine learning and renal

pathology space to date, especially for deep learning approaches

(19, 20), our work demonstrates that machine learning is a viable

and promising technology for this field. In the future, more

labeled renal pathology images and methods are needed to

continue to advance this space. Perhaps self-supervised
TABLE 4 Confusion matrix containing glomerular-level classification of MCD, MN, and TBMN using the fine-tuned VGG16 network.

Target Class

MCD MN TBMN

Output Class MCD 21 (57%) 2 (4%) 7 (18%)

MN 7 (19%) 43 (96%) 9 (23%)

TBMN 9 (24%) 0 (0%) 23 (59%)
fronti
A

B

FIGURE 9

VGG16 Grad-CAM heatmaps for the top correctly predicted and misclassified glomeruli with respect to disease. (A) Sample glomeruli that were
predicted correctly. (B) Sample glomeruli that were misclassified. The notation below each image represents (predicted disease, actual disease,
probability). Areas of importance are colored red or orange, while less important regions are colored blue.
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learning methods can be utilized to exploit the massive amounts

of unlabeled datasets (21). While developing larger models, with

larger datasets results in higher performance gains, there is a

trade-off with these models, including the amount of CO2

emissions generated by computers used to create the tools.

Training one particular type of deep learning model (big

Transformer model with neural architecture search) was

equivalent to the entire lifetime CO2 emission of five cars (21).

However, as shown in this work, the deepest models may not

be necessary.

Soft factors related to perception (interpretability,

explainability, trust) and impact (society, clinical, economic,

and environmental) may also influence adoption (22). Likely

important are limitations in the interpretability or transparency

of the model (22), although a recent survey shows that providing

the pathologist with information regarding the underlying

model’s opaqueness did not affect pathologist decisions (23).

There has been much discussion in the AI community about the

limitation in interpretability and transparency of deep learning

systems due to the “black box” phenomena (15, 16). At the same

time, an argument has been made in favor of performance over

explanation if the system is rigorously tested and validated (22).

To increase trust, both models integrated a confidence rating for

patient-level classification and cases with low confidence can be

flagged for secondary review through traditional IF/EM. The

added benefit of an associated confidence measure helps with

borderline or questionable predictions for further review. Both
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image analysis and deep learning (if random initialization is the

same for each run) can be highly reproducible, and hence more

objective than human-based analysis. The BFE model is

interpretable since biomarkers are related to underlying

pathology (podocyte injury/loss and glomerular basement

membrane thickening). Additionally, GRAD-CAM was used to

highlight important features in the images that were used to

make the predictions for the deep learning-based methods.

Interpretability methods are quickly evolving in the AI field,

and new methods to understand more about the decision of the

classifier are on the horizon.

In terms of practical implementation and clinical workflow

augmentation, deep learning may suffer from generalization

problems, which arises when testing on data from new labs

(24). This can be an issue for translation since most tools are

developed using a single dataset (or similar) which may not

operate as well or expected on unseen datasets from different

labs. Methods such as augmentation and color normalization

have been used to try to reduce this variability (7), and more

recently, domain adaptation methods (25) are being explored to

overcome this challenge. Feature extraction methods, on the

other hand, depend on normalization to create consistent colors

across scanners and datasets.

In the future, to improve this work, several modifications can

be made. For the BFE method, additional features can be

explored, such as ones dedicated to shape, texture and object

sizes or thickness. These characteristics are related to the features
TABLE 5 Confusion matrix containing patient-level classifications of MCD, MN, and TBMN using the fine-tuned InceptionV3 network.

Target Class

MCD MN TBMN

Output Class MCD 2 (40%) 0 (0%) 1 (25%)

MN 1 (20%) 6 (100%) 0 (0%)

TBMN 2 (40%) 0 (0%) 3 (75%)
fronti
FIGURE 10

Patient-level confidence results per testing patient are shown for the InceptionV3 deep learning model. Each patient was predicted with a
certain confidence corresponding to TBMN, MN, and MCD. Above the confidence bars is indicated whether the patient was predicted correctly
with a checkmark and incorrectly predicted with an X.
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that pathologists consider when using secondary modalities such

as EM. Additionally, more advanced multi-resolution features

(Gaussian scale space, Gabor) can be investigated. To improve

the deep learning methods, in future work, the first

consideration will be increasing the dataset size and

experimenting with more recent models such as Resnets or

Densenets. Additionally, as more pre-trained networks emerge

that are domain specific, it would be interesting to compare the

classification results based on natural images to models created

using pathology images. As new interpretability maps emerge,

these will also be experimented with as well.

The major limitation of this study is the small dataset which

likely led to less-than-optimal CNN performance. Deep learning

models require large amounts of data to learn descriptive

features and to prevent overfitting. The inclusion of only three

glomerular diseases could also be seen as a limitation, given the

wide range of glomerular diseases that pathologists encounter.

However, most previous works only focused on two labels, so

this work is the first automated work for three kidney diseases.

In the future, we will extend these frameworks to additional

glomerular diseases and lesions, and will report on our findings.
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