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Introduction: Sleep disorders are common in the general population, necessitating
the search for new strategies to address this public health challenge. The study aims
to describe the electrocorticographic and behavioral changes in sleep deprived
Wistar rats exposed to varying doses of camphor, to assess its effects on sleep and its
potential as a sleep-inducing drug.

Materials and Methods: For the electrocorticographic evaluation, seventy-two
rats were randomly assigned to distinct groups: a control group, a sleep-deprived
group, three sleep-deprived groups receiving 10, 20, and 30 mg/kg i.p. of
camphor respectively, and three groups that received these doses without
sleep deprivation. For the behavioral analysis, twenty-seven rats were divided
into three groups, each receiving the same doses as the previous test.

Results and Discussion: Our results showed that there was a decrease in the
frequency of brain oscillatory patterns when camphor was administered at
10 mg/kg i.p. whereas there was a dose-dependent increase in the spectral
power and distribution following the administration of 20 and 30 mg/kg
i.p., with the emergence of Delta, Theta, Alpha, and Beta waves. As for the
behavioral analysis, it was demonstrated that testicular relaxation, decreased
motility, and light sleep induction also occurred in a dose-dependent
manner. Thus, we conclude that camphor administration intensifies
occipital electrocorticographic patterns in sleep-deprived rats, and its
electrocorticographic and behavioral analysis could indicate a potential as a
supporting agent in the insomnia treatment.
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1 Introduction

Sleep disorders are highly prevalent in the general population
(Gale et al., 2024; Qian et al., 2023; Rössler et al., 2017). It is well
known the critical role of sleep quality in overall wellbeing, as it is
associated with cortisol levels (Henry et al., 2021) and immunity
(Ballestar-Tarín et al., 2023). Due to its significance, sleep restriction
and circadian cycle disruption can impair systemic functioning of
the organism and are correlated with the onset of numerous diseases
(Touitou et al., 2017), including cancer (Straif et al., 2007; Stevens
et al., 2011; Schernhammer et al., 2006; Papantoniou et al., 2015) and
cardiovascular problems (Karlsson et al., 2001). Most importantly,
these disturbances affect proper brain function, leading to cognitive
decline (Marquié et al., 2015; Vallières et al., 2014; Fonken et al.,
2012) and mood disorders (Lee et al., 2016; Bara and Arber, 2009;
Kalmbach et al., 2015; Fonken et al., 2012).

Recent guidelines establish that cognitive-behavioral therapy (CBT)
should be the first-line treatment for insomnia. When CBT proves
insufficient, pharmacological interventions may be considered. For
short-term insomnia, recommended medications include
benzodiazepines (BZ), benzodiazepine receptor agonists (BZRAs),
low-dose sedating antidepressants, and daridorexant (Riemann et al.,
2023). Although BZ and BZRAs show positive outcomes, they should be
prescribedwith caution due to their associationwith tolerance, nocturnal
confusion, falls, and cognitive impairment (Treves et al., 2018; Barker
et al., 2004; Stranks and Crowe, 2014). Low-dose sedating
antidepressants and daridorexant have proven useful for treating
insomnia, but evidence supporting their effectiveness remains limited
(Everitt et al., 2018). For chronic insomnia in adults, the latest American
Academy of Sleep Medicine guidelines suggest that current
pharmacological treatments — such as BZ, BZRAs, orexin receptor
agonists, and melatonin agonists — have a weak strength of
recommendation according to the GRADE methodology, which
assesses the certainty of evidence in healthcare (Sateia et al., 2017;
Morgenthaler et al., 2016). This does not imply that these drugs are
ineffective, but rather that there is a lack of comprehensive
understanding of their efficacy and potential risks. This underscores
the ongoing need for research into these medications and the
development of innovative approaches to address this public health issue.

Several essential oils have been described in the literature as
influencing sleep induction (Dougnon and Ito, 2021; Lillehei and
Halcon, 2014). Xiao et al. (2022) reported that borneol essential oil, a
by-product of Cinnamomum camphora steam distillation, reduced
locomotor activity, shortened sleep latency, and prolonged sleep
duration in rats. Camphor is an aromatic terpene compound with a
polyvalent structure that exhibits diverse biological properties,
including antimicrobial, anti-inflammatory, analgesic, and
antioxidative effects (Chen et al., 2013; Lee et al., 2022).
However, its neurological actions remain poorly understood, with
few studies examining camphor’s role in the induction and
maintenance of sleep. Further research could potentially establish
camphor as an alternative treatment for sleep disorders.

With this considerations in mind, the upcoming investigation aims
to analyze and describe the electrocorticographic and behavioral changes
observed inWistar rats submitted to different doses of camphor with or
without sleep deprivation, in order to verify the electrocorticographic
changes generated in the medial visual cortex of these animals during
sleep and assess the potential of camphor as a sleep inducer.

2 Materials and methods

2.1 Ethical considerations

The research was conducted in accordance with the rules of the
National Legislation for the Use and Breeding of Experimental
Animals, as well as in accordance with the ethical principles of
the National Council for the Control of Experimental Animals
(CONCEA), the ARRIVE 2.0 guidelines and the NIH Guide for
the Care and Use of Laboratory Animals. The research project was
submitted to and approved by the UFPA Research Ethics
Committee file number 1380040822 [ID 002046].

2.2 Animals

The study used a total of ninety-nine adult male Wistar rats
weighing 180–200 g. The animals were obtained from the Central
Animal Facility of the Federal University of Pará (UFPA) and allocated
individually to the Experimental Animal Facility of the Laboratory of
Pharmacology and Toxicology of Natural Products. The animals
received water and food ad libitum and were kept in a temperature-
regulated environment (25°–28°C) with a 12-h light-dark cycle.

2.3 Chemical substances

The following chemical substances were used to carry out the
research: ketamine hydrochloride anesthetic obtained from the Köing
Laboratory (Santana de Parnaíba, SP, Brazil); xylazine hydrochloride
obtained from the Vallée laboratory (Montes Claros, MG, Brazil);
lidocaine obtained from the Hipolabor laboratory (Sabará, MG,
Brazil) for electrode implantation; and camphor obtained from the
Êxodo Científica laboratory (Sumaré, São Paulo, Brazil).

2.4 Experimental design

Seventy-two rats were randomly divided into the following groups:
a) Control group (Control group without sleep deprivation); b) Control
SLD (Control groupwith 24-h sleep deprivation); c) CPH10 (Camphor-
treated group 10 mg/kg i.p. without sleep deprivation); d) SLD- CPH 10
(Camphor-treated group 10 mg/kg i.p. with sleep deprivation); e) CPH
20 (Camphor-treated group 20 mg/kg i.p. without sleep deprivation); f)
SLD- CPH 20 (Camphor-treated group 20 mg/kg i.p. with sleep
deprivation); g) CPH 30 (Camphor-treated group 30 mg/kg
i.p. without sleep deprivation); h) SLD- CPH 30 (Camphor-treated
group 30 mg/kg i.p. with sleep deprivation). All ECoG recordings lasted
3 min. As for the behavioral analysis, twenty-seven rats were randomly
separated into three groups: 10 mg/kg i.p. camphor-treated group;
20 mg/kg i.p. camphor-treated group; 30 mg/kg i.p. camphor-treated
group. All groups were consisted of nine animals.

2.5 Electrocorticography (ECoG)

The entire experiment was conducted in a Faraday cage. The
electrodes for ECoG acquisition were implanted in the bregma
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coordinate (−5.04 and 2 mm to the side of each hemisphere)
represented by the medial visual cortex (Paxinos and Watson, 2013).
On the fifth postoperative day, the electrodes were connected to a data
acquisition system consisting of a high-impedance amplifier (Grass
Technologies, P511), monitored by an oscilloscope (Protek, 6510). The
data was continuously digitized at a rate of 1 KHz by a computer
equipped with a data acquisition board (National Instruments, Austin,
TX). The data was stored on a hard disk and processed using specialized
software (LabVIEW express). The recording electrode was implanted in
the right cerebral hemisphere, while the reference electrode was
implanted in the left hemisphere. The electrophysiological recordings
were analyzed up to 40 Hz. Brain oscillations were analyzed according
to (Jalilifar and Yadollahpour, 2017; Hamoy et al., 2018), which
correspond to: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz),
Beta (12–28) and Gamma (28–40 Hz).

2.6 Behavioral analysis

All the tests were conducted between 8 and 10 a.m. The animals
were observed for 30 min after the administration of camphor to
non-sleep-deprived animals. The behavioral parameters observed
were according to the following sequence: a) testicular relaxation
(maintenance of the testicle in the scrotum due to the relaxation of
the Cremaster muscle); b) decrease in the animals’ motility; c)
induction of superficial sleep (where the animal could still be
awakened by stimulation).

2.7 Electrophysiological data analysis

For the analysis of acquired signals, a program was built using
Python 2.7. The Numpy and Scipy libraries were employed for
mathematical processing, while the Matlab library was utilized for
graphical representation. The graphical interface was developed
using the PyQt4 library. Amplitude graphs were employed to
demonstrate the potential difference between the reference and
recording electrodes. A sampling rate of 1,000 samples per
second was observed for signal analysis. Spectrograms were
computed using a Hamming window with 256 points (256/
1,000 s). Each frame was generated with an overlap of 128 points
per window. For each frame, the Spectral Power Density (SPD) was
calculated using the Welch’s average periodogram method. The
frequency histogram was generated by first computing the SPD of
the signal using the 256-point Hamming window without overlap,
resulting in a histogram constructed with 1 Hz bins.

To analyze the differences between experiments, a graph was
constructed with the mean and standard deviation (SD) of the SPD
from multiple experiments. Each wave in the graph was generated
from a test set, where the SPD was generated, and the mean and SD
calculated for each group of 256 points without overlap were used
for the Hamming window PSD calculation.

2.8 Statistical analysis

The results are presented as the mean value ± SD. The normality of
the variances was verified by the Kolmogorov-Smirnov test and the

homogeneity by the Levene test. The groups were compared using a
one-way Analysis of Variance (ANOVA), followed by Tukey’s post hoc
test, whenever appropriate. All the analyses were run in GraphPad®

Prism 6 and considered a p < 0.05 significance level.

3 Results

The ECoG recordings of the Control group showed amplitude
below 0.05 mV (Figure 1A, left), as shown in the 1-s amplification
with the background frequency in Alpha (Figure 1A, center) with
spectrogram showing greater energy intensity below 10 Hz
(Figure 1A, right). For the Control SLD group, the ECoG showed
an increase in amplitude to 0.06 mV (Figure 1B, left), demonstrated
in the 1-s amplification, with a preponderance of the background
frequency in Alpha (Figure 1B, center). The frequency spectrogram
showed a greater distribution of energy between the frequencies up
to 40 Hz (Figure 1B, right).

The electrocorticographic recording of the CPH 10 group
showed amplitude with a variation of up to 0.05 mV (Figure 1C,
left) as shown in the amplification of the recording (Figure 1C,
center). The spectrogram shows energy intensity below 5 Hz with a
lower distribution of energy in the frequencies up to 40 Hz
(Figure 1C, right). The SLD-CPH 10 group showed an increase
in the amplitude of the ECoG tracing by 0.07 mV with a
preponderance of low frequency rhythms (Figure 1D, left), the
amplification of the recording shows background Alpha
oscillations (8–12 Hz) (Figure 1D, center), and the spectrogram
shows a power distribution below 15 Hz (Figure 1D, right).

The CPH 20 group displayed an amplitude of 0.05 mV
(Figure 1E, left). This group showed a preponderance of low-
frequency oscillations (Figure 1E, center), as the spectrogram
showed power distribution up to 10 Hz (Figure 1E, right). The
SLD-CPH 20 group displayed trace slowdown with a preponderance
of frequencies between Delta, Theta, and Alpha. There was also a
considerable gain in the power at the frequencies from 1 to 12 Hz
(Figure 1F, left), which is a characteristic of electroencephalogram
(EEG) and ECoG slowing (Figure 1F, center). The spectrogram
demonstrated an energy intensity above 15 Hz (Figure 1F, right), but
greater intensity up to 40 Hz.

The electrocorticographic recordings for the CPH 30 group
displayed an amplitude up to 0.05 mV (Figure 1G, right) with a
decrease in frequency that can be observed in the amplification of
the recording (Figure 1G, center). The spectrogram showed energy
intensity below 15 Hz (Figure 1G, right). For the SLD-CPH
30 group, the animals’ electrocorticographic tracings showed a
preponderance of low frequencies such as Delta, Theta, Alpha,
and Beta (below 30 Hz). The amplification of the recordings
demonstrates a trace slowdown (Figure 1H, center). The
spectrogram shows a greater distribution of power up to 40 Hz
than the other groups (Figure 1H, right).

The mean power in the Control group (0.4588 ± 0.034 mV2/
Hz × 10−³) was lower than the Control SLD group (0.587 ±
0.0668 mV2/Hz × 10−³) but was similar to the groups: CPH 10
(0.536 ± 0.0668 mV2/Hz × 10−³) (p= 0.1720), SLD-CPH 10 (0.546 ±
0.0699 mV2/Hz × 10−³) (p= 0.0804), CPH 20 (0.482 ± 0.0861 mV2/
Hz × 10−³) (p= 0.993), and CPH 30 (0.505 ± 0.0670 mV2/Hz × 10−³)
(p= 0.769). The Control group had lower potency than the SLD-
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FIGURE 1
Demonstrations of 3-min ECoG recordings. ECoG tracing of the Control group (left), 1-s amplification of the tracing (center) and power distribution
spectrogram (right) (A); ECoG tracing of the Control SLD group (left), 1-s amplification of the recording (center) and respective spectrogram with power
distribution in frequencies up to 40 Hz (right) (B); ECoG tracing of the CPH 10 group (left), amplification of the recording in 1 s (center) and spectrogram
(right) (C); ECoG tracing of the SLD- CPH 10 group (left), amplification of the recording in 1 s (center) and spectrogram (right) (D); ECoG tracing of the
CPH 20 group (left), 1-s amplification (center) and spectrogram of energy distribution in frequencies up to 40Hz (right) (E); ECoG tracing of the SLD -CPH
20 group (left), 1-s amplification (center) and spectrogram of energy distribution in frequencies up to 40 Hz (right) (F); ECoG recording of the CPH
30 group (left), amplification (center) and spectrogram (right) (G); ECoG recording of the SLD - CPH 30 group (left), amplification (center) and
spectrogram (right) (H).
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FIGURE 2
Graph of linear power distribution in the frequencies up to 40Hz in the ECoG recordings between the groups with different camphor treatments (A);
Average linear power between the groups with frequency in delta oscillations (1–4 Hz) (B); average power distribution in theta frequency (4–8 Hz) for the
groups (C); Graph of linear power distribution in the recordings between the groups in the oscillations in Alpha (8–12 Hz) (D); Average power distribution
of the groups in the frequency in beta (12–28 Hz) (E); Graph of linear power distribution between the groups in the frequency in gamma (28–40 Hz)
(F). (After ANOVA followed by Tukey, *P< 0.05 **P< 0.01 ***P< 0.001, n = 9).
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CPH 20 (0.689 ± 0.0639 mV2/Hz × 10−³) and SLD-CPH 30 (0.710 ±
0.0516 mV2/Hz × 10−³) groups. The Control SLD group had a mean
power similar to the CPH 10 (p= 0.685), SLD-CPH 10 (p= 0.8686)
and the CPH 30 groups (p= 0.1275). The mean linear potency was
higher than that of the CPH 20 group, but it was lower than the
mean potency of the SLD-CPH 20 and SLD-CPH 30 groups. The
mean potency of the CPH 10 group was similar to the SLD-CPH
10 group (p = 0.999). The mean potency of the CPH 20 and CPH
30 groups was lower when compared to the SLD-CPH 20 and SLD-
CPH 30 groups (Figure 2A).

For Delta oscillations (1–4 Hz), the Control group (0.1258 ±
0.0122 mV2/Hz × 10−³) had lower mean Delta power than the
groups: Control SLD (0.180 ± 0.0173 mV2/Hz × 10−³), CPH 10
(0.150 ± 0.0173 mV2/Hz × 10−³), SLD- CPH 10 (0.182 ± 0.009 mV2/
Hz × 10−³), CPH 20 (0.150 ± 0.022 mV2/Hz × 10−³), SLD-CPH 20
(0.207 ± 0.0153 mV2/Hz × 10−³) and SLD-CPH 30 (0.234 ±
0.0116 mV2/Hz × 10−³), but was similar to the CPH 30 group
(0.144 ± 0.0105 mV2/Hz × 10−³) (p = 0.160). The Control SLD group
had a higher value than the groups treated with camphor alone,
however, it was lower than the SLD-CPH 20 and SLD-CPH
30 groups. All the camphor-treated groups showed lower Delta
power when compared to the SLD-CPH 10, SLD-CPH 20, and SLD-
CPH 30 groups (Figure 2B).

The mean Theta power in the Control group (0.0654 ±
0.0099 mV2/Hz × 10−³) was lower than the Control SLD
(0.0955 ± 0.0120 mV2/Hz × 10−³), SLD-CPH 10 (0.0928 ±
0.0119 mV2/Hz × 10−³), SLD-CPH 20 (0.125 ± 0.0202 mV2/Hz ×
10−³) and SLD-CPH 30 groups (0.124 ± 0.0130 mV2/Hz × 10−³), but
it was similar to the CPH 10 (0.0821 ± 0.0066 mV2/Hz × 10−³) (p =
0.0829), CPH 20 (0.080 ± 0.0078 mV2/Hz × 10−³) (p = 0187) and
CPH 30 groups (0.073 ± 0.010 mV2/Hz × 10−³) (p= 0.8023). The
Control SLD group had lowermean Theta power than the SLD-CPH
20 and SLD-CPH 30 groups and was higher than the CPH
30 group. The Control SLD group was similar to the following
groups: CPH 10 (p = 0.2818), SLD-CPH 10 (p = 0.999) and CPH 20
(p= 0.1355). The CPH 10 group was similar to the SLD-CPH
10 group (p = 0.5563). The power of the CPH 20 and CPH
30 groups was weaker than the SLD-CPH 10, SLD-CPH 20 and
SLD-CPH 30 groups (Figure 2C).

The mean power of Alpha oscillations for the Control group
(0.0304 ± 0.0043 mV2/Hz × 10−³) was lower than the following
groups: Control SLD (0.0458 ± 0.0035 mV2/Hz × 10−³), CPH 10
(0.0371 ± 0.0036 mV2/Hz × 10−³), SLD-CPH 10 (0.042 ±
0.0065 mV2/Hz × 10−³), CPH 20 (0.041 ± 0.0037 mV2/Hz ×
10−³), SLD-CPH 20 (0.062 ± 0.0046 mV2/Hz × 10−³), CPH 30
(0.042 ± 0.0029 mV2/Hz × 10−³) and SLD-CPH 30 (0.062 ±
0.0046 mV2/Hz × 10−³). The Control SLD group had greater
power than the CPH 10 group and lower than the SLD- CPH
20 and SLD- CPH 30 groups but was similar to the following groups:
SLD-CPH 10 (p = 0.859), CPH 20 (p = 0.403) and CPH 30 (p=
0.818). The SLD-CPH 20 and SLD-CPH 30 groups had higher
power means than the groups without sleep deprivation (Figure 2D).

The mean power in Beta oscillations for the Control group
(0.059 ± 0.0086 mV2/Hz × 10−³) was similar to the Control SLD
(0.063 ± 0.012 mV2/Hz × 10−³) (p= 0.977), CPH 10 (0.054 ±
0.0054 mV2/Hz × 10−³) (p = 0.790), SLD- CPH 10 (0.0657 ±
0.0060 mV2/Hz × 10−³) (p= 0.773), CPH 20 (0.0566 ±
0.0060 mV2/Hz × 10−³) (p= 0.999), and CPH 30 groups (0.049 ±

0.0067 mV2/Hz × 10−³) (p= 0.141). The Control group Beta power
was weaker than the SLD-CPH 20 (0.0813 ± 0.0072 mV2/Hz × 10−³)
and SLD-CPH 30 groups (0.084 ± 0.0068 mV2/Hz × 10−³). The
groups of animals deprived of sleep showed similar power in Beta
oscillations to the CPH 10 (p= 0.216), SLD-CPH 10 (p= 0.998) and
SLD-CPH 20 groups (p= 0.626). However, the Control SLD group
had a power mean power than the SLD- CPH 20 and SLD-CPH
30 groups (Figure 2E).

The average power in Gamma oscillations for the Control group
(0.0155 ± 0.0020 mV2/Hz × 10−³) was similar to the following
groups: Control SLD (0.0150 ± 0.0013 mV2/Hz × 10−³) (p = 0.999),
CPH 10 (0.0145 ± 0.0017 mV2/Hz × 10−³) (p= 0.969), SLD-CPH 10
(0.0157 ± 0.0027 mV2/Hz × 10−³) (p= 0.999), CPH 20 (0.0137 ±
0.0016 mV2/Hz × 10−³) (p= 0.643), SLD-CPH 20 (0.0149 ±
0.0023 mV2/Hz × 10−³), CPH 30 (0.0140 ± 0.0135 mV2/Hz ×
10−³) (p= 0.786), and SLD-CPH 30 (0.016 ± 0.0030 mV2/Hz ×
10−³) (p= 0.961) (Figure 2F).

By individualizing the frequencies in the Alpha spectrum, we
can assess camphor’s contribution to the increase of Alpha waves.
This way, the mean power evaluated between 8 and 9 Hz for the
Control group (0.00786 ± 0.00083 mV2/Hz × 10−³) was lower than
the following groups: Control SLD, (0.010 ± 0.00043 mV2/Hz ×
10−³), CPH 10 (0.011 ± 0.00075 mV2/Hz × 10−³), SLD- CPH 10
(0.012 ± 0.00077 mV2/Hz × 10−³), CPH 20 (0.0112 ± 0.00083 mV2/
Hz × 10−³), SLD-CPH 20 (0.0153 ± 0.00190 mV2/Hz × 10−³), CPH
30 (0.0120 ± 0.0016 mV2/Hz × 10−³), and SLD-CPH 30 (0.0166 ±
0.0010 mV2/Hz × 10−³). The Control SLD group power was lower
than the SLD-CPH 10, SLD-CPH 20, SLD-CPH 30 groups. And it
was similar to the CPH 10 (p= 0.964), CPH 20 (p= 0.7716), CPH 30
(p = 0.077) groups. The CPH 10 group was similar to the SLD-CPH
10 group (p= 0.1907). The SLD-CPH 20, SLD-CPH 30 groups had
higher powers than the groups treated with camphor alone
(Figure 3A).

The mean power evaluated between 9 and 10 Hz for the Control
group (0.00737 ± 0.00061 mV2/Hz × 10−³) was lower than all the
sleep deprived groups: Control SLD (0.0120 ± 0.00116 mV2/Hz ×
10−³), SLD-CPH 10 (0.0129 ± 0.00059mV2/Hz × 10-³), SLD-CPH 20
(0.0138 ± 0.0011 mV2/Hz × 10−³), SLD-CPH 30 (0.0152 ±
0.00102 mV2/Hz × 10−³). The camphor-treated groups were
similar to the Control group: CPH 10 (0.0083 ± 0.00039 mV2/
Hz × 10−³) (p= 0.3080), and the CPH 30 (0.0082 ± 0.00103 mV2/
Hz × 10−³) (p= 0.470). The CPH 20 group (0.00911 ± 0.00058 mV2/
Hz × 10−³) was lower than the Control group. The sleep-deprived
group showed higher mean power than the camphor-treated groups.
However, it was lower than the SLD-CPH 20 and SLD-CPH
30 groups (Figure 3B).

The mean power evaluated between 10 and 11 Hz for the
Control group (0.00689 ± 0.00049 mV2/Hz × 10−³) was lower
than the groups: Control SLD (0.0097 ± 0.00067 mV2/Hz ×
10−³), CPH 10 (0.00852 ± 0.001304 mV2/Hz × 10−³), SLD-CPH
10 (0.0098 ± 0.00098 mV2/Hz × 10−³), CPH 20 (0.0081 ±
0.00044 mV2/Hz × 10−³), SLD-CPH 20 (0.0128 ± 0.00086 mV2/
Hz × 10−³), and SLD- CPH 30 (0.0119 ± 0.00084 mV2/Hz × 10−³).
However, it was similar to the CPH 30 group (0.0072 ±
0.000998 mV2/Hz × 10−³) (p= 0.9821). The Control SLD group
had a lower mean power than the SLD-CPH 20 and SLD-CPH
30 groups. The CPH 20 and CPH 30 groups had lower mean power.
The CPH 10 group (p= 0.060) and the SLD-CPH 10 group (p=
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0.999) were similar. The SLD-CPH 10, SLD-CPH 20, SLD-CPH
30 groups had higher means than the groups treated with camphor
alone (Figure 3C).

The mean power evaluated between 11 and 12 Hz for the
Control group (0.0056 ± 0.00049 mV2/Hz × 10−³) was lower than

the following groups: Control SLD (0.0084 ± 0.0011 mV2/Hz ×
10−³), CPH 10 (0.0076 ± 0.00052 mV2/Hz × 10−³), SLD-CPH 10
(0.010 ± 0.00090 mV2/Hz × 10−³), CPH 20 (0.0081 ± 0.0013 mV2/
Hz × 10−³), SLD CPH 20 (0.011 ± 0.00061 mV2/Hz × 10−³), CPH 30
(0.0083 ± 0.0015 mV2/Hz × 10−³) and SLD-CPH 30 (0.011 ±

FIGURE 3
Linear power distribution graph for each frequency that makes up the alpha oscillations (8–12 Hz): Average power at frequencies between (8–9 Hz)
(A); Average power at frequencies between 9–10 Hz (B); Average power between 10–11 Hz (C); Average power between 11–12 Hz (D). (After ANOVA
followed by Tukey, *P< 0.05 **P< 0.01 ***P< 0.001, n = 9).
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0.00084 mV2/Hz × 10−³). The Control SLD group had a lower mean
than the SLD-CPH 10, SLD-CPH 20 and SLD-CPH 30 groups. And
it was similar to the CPH 10 (p= 0.6614), CPH 20 (p= 0.996) and
CPH 30 (p = 0.999). The CPH 10, CPH 20, and CPH 30 groups had
lower values than the SLD-CPH 10, SLD-CPH 20, and SLD-CPH
30 groups (Figure 3D).

As for the behavioral analyses, the first observed behavior in the
animals was the total relaxation of the testicles while they remained
in the scrotum, and the latency time for this behavior was shorter
with higher doses of camphor. Shortly afterward, the animals
showed decreased motility, remaining still for longer periods,
although stimuli could provoke movement. This pattern
exhibited similar characteristics in terms of latency of occurrence
and administered dose to the previous test. Regarding the induction
of light sleep, the only dose that induced sleep in the animals was
30 mg/kg i.p., with a latency of 553.8 ± 46.33 s. The induced sleep
was superficial, and the animals could be awakened by sound and
tactile stimuli (Table 1).

4 Discussion

Camphor, a crystalline white substance with a strong odor, is
one of the byproducts extracted from this plant and has various
known pharmacological applications (Hamidpour et al., 2013). Not
much is known about the mechanism of action of camphor on the
central nervous system. Vatanparast and Andalib-Lari., 2017
proposed, through experiments on snail neurons, that camphor
can inhibit K+ channels, resulting in increased Ca2+ influx into
neurons. This inhibition reduces the neuron’s hyperpolarization
time and facilitates the generation of action potentials. At higher
doses of the substance, this may lead to epileptiform patterns on the
electroencephalogram, marked by waves with multiple peaks
(polyspike waves) indicative of ictal activity (Ferreira et al., 2020).
The hyperpolarization phase typically serves as a negative feedback
mechanism to regulate neuronal excitability (Janahmadi et al., 2008;
Vatanparast and Andalib-Lari., 2017 proposed mechanism of action
justifies well how camphor is capable of inducing seizures, but it is
still unclear how low doses of camphor induce light sleep as observed
in our results.

Studies have shown that zolpidem, a widely used hypnotic drug
that acts through interaction with γ-aminobutyric acid receptor
subunit alpha-1, tends to intensify Delta waves and attenuate the
power of waves in the 4–12 Hz range, particularly Theta waves, while
also intensifying Beta waves in the 25–30 Hz range. Consequently,
this drug is effective in prolonging total sleep time and slow-wave

sleep (SWS). In comparison, camphor also increases the power of
Delta and Beta waves; however, it additionally tends to potentiate
Theta and Alpha waves (Crestani et al., 2000; Landolt et al., 2000;
Kopp et al., 2004; Bettica et al., 2012; Fox et al., 2013).

Baclofen, in the other hand, is a γ-aminobutyric acid type B
(GABAb) receptor agonist that has similar effects to camphor in the
CNS. It induces a hypersynchronous slow wave EEG pattern
characterized by high amplitude Delta frequencies, enhancing the
power density in non-rapid eye movement (NREM) sleep
significantly in the 2.25–5.5 and 10.75–14.75 Hz, which are
correspondent to Delta, Theta, and Alpha frequencies. It also
generates behavioral alterations consistent with relaxation that
depended on other variables such as light exposure, and was able
to increase sleep intensity (Pressman, 2004; Hodor et al., 2015).

Gamma-hydroxybutyrate, another GABAb receptor agonist,
induces a hypersynchronous EEG pattern similar to that of
Baclofen. It increases EEG power density in NREM sleep within
the frequency range associated with slow-wave activity. However, a
significant effect was observed only under low light exposure (Hodor
et al., 2015). Based on these electroencephalographic similarities, we
hypothesize that low doses of camphor may have agonistic effects on
GABAb receptors, which could explain its effects on the CNS.

Despite the current limited understanding of the neural
mechanisms underlying cognitive impairments and electrocortical
alterations caused by sleep restriction, Vyazovskiy et al. (2013)
suggest that prolonged periods of wakefulness affect the cortex’s
responsiveness to stimuli by altering cortical bistability, in other
words, the ability of neurons to stabilize themselves in a state of both
depolarization and hyperpolarization (Wilson, 2008). According to
the author, heightened excitability, functional connectivity, and
bistability increase the likelihood of bursts of activity, as cortical
responsiveness is enhanced, with stimuli often coming from sources
far from the neuronal network. This finding could explain why rats
exposed to both sleep deprivation and camphor show a significant
increase in Delta, Theta, Alpha, and Beta wave power compared to
those not subjected to sleep deprivation. The altered responsiveness
of the neurons may synergize with camphor’s action, thereby
enhancing brain wave power, especially at lower frequencies.

Furthermore, it is known that sleep deprivation can promote the
detachment of pericytes from the endothelium of cerebral vessels by
decreasing the expression of proteins important for maintaining the
integrity of the blood-brain barrier (Medina-Flores et al., 2020), thus
increasing the permeability of the blood-brain barrier by multiple
factors and possibly allowing greater passage of camphor into brain
tissue. Therefore, it is possible that sleep deprivation allows camphor
to reach neurons more easily, increasing its concentration in the

TABLE 1 Demonstrates the average latency(s) for the appearance of the analyzed behaviors (n = 9).

Dose of camphor Testicular relaxation Decreased motility Light sleep induction

10 mg/kg i.p. 477.8 ± 46.91 s 508.4 ± 44.27 s —

20 mg/kg i.p. 394.4 ± 42.28 s 449.7 ± 45.90 s —

30 mg/kg i.p. 318.3 ± 46.90 s 327.0 ± 47.43 s 553.8 ± 46.33 s

F (2, 24) = 27.75
P< 0.001

F (2, 24) = 36.63
P< 0.001
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tissue and potentiating its effects, especially considering camphor’s
highly lipophilic structure, which would have a high affinity for
brain tissue, rich in lipids (Vatanparast and Andalib-Lari, 2017).

Our results also showed that there was a decrease in the
predominant frequency of brain oscillatory patterns in the group
exposed to 10 mg/kg i.p. of camphor, shifting the oscillatory patterns
toward the Alpha frequency range. When administered 20 and
30 mg/kg i.p., there was a preponderance of low-frequency Delta,
Theta-Theta, and Alpha bands, indicating an oscillatory pattern
with deceleration characteristics, with a considerable gain in power
in the 1–12 Hz range. When observed at a dose of 30 mg/kg
i.p., despite the pattern of trace slowdown, there was also an
intensification in the high frequency bands, especially Beta, which
must be correlated with the excitatory effect of camphor on neurons.
It was observed that the power of the Delta, Theta, Alpha, and Beta
waves changed in a dose-dependent manner and the Alpha waves
showed an increase in distribution between the 8–10 Hz and
11–12 Hz frequency bands, also in a dose-dependent manner. All
the changes described were potentiated by sleep deprivation.

These findings indicate camphor exhibits properties suggestive of
a sleep-inducing agent when administered within therapeutic
concentrations. Specifically, camphor induces electrocorticographic
patterns of trace slowdown, which is characterized by a
preponderance of low-frequency oscillations akin to those observed
during physiological sleep. Moreover, our behavioral evaluation
demonstrated light sleep induction within non-sleep-deprived rats
that received 30 mg/kg i.p. of camphor, preceded by decreased
mobility and testicular relaxation, further supporting this hypothesis.

According to the most common classification, sleep is divided
into 5 phases: Wake, characterized by low-amplitude Beta waves in
alert states, and by a predominance of Alpha waves in states of
relaxation, similar to those obtained in our study among groups that
received doses of 10 mg/kg i.p. of camphor; N1 - Light Sleep,
characterized by low voltage Theta waves; N2 - Heavy Sleep,
characterized by sleep spindles and K complexes; N3 - SWS,
characterized by higher amplitude Delta waves; and rapid eye
movement (REM) sleep, characterized by the presence of Beta
waves similar to the alert state. Our findings show similarities in
the tracings of the sleep deprived groups who received doses of
20 and 30 mg/kg i.p. with brainwave oscillatory sleep patterns. The
sleep deprived group that received 20 mg/kg showed patterns that
were similar to SWS due to the trace slowdown and potentiation of
Delta waves, while the 30 mg/kg group resembled REM sleep
patterns, due to the trace slowdown plus the appearance of Beta
waves. These findings could indicate that camphor can facilitate
sleep induction through changes in neuronal activity, which is
potentiated by sleep deprivation. However, due to the neuro-
excitatory nature of camphor, higher doses could induce the
appearance of increasingly higher frequencies, up to the
appearance of potentially harmful epileptiform patterns.

It is important to note that camphor can induce toxicity when
administered in high doses. Gastrointestinal symptoms frequently
arise due to direct irritation of the mucous membranes, oxidative
stress, and cardiotoxicity (Eldridge et al., 2007; Love et al., 2004; Du
et al., 2021). Additionally, camphor toxicity can precipitate
neurological effects, including agitation, anxiety, spasms,
convulsions, hallucinations, hyperreflexia, and, in severe cases,
coma and respiratory arrest, with these severe outcomes more

commonly observed in pediatric patients (Rahimi et al., 2017;
Eldridge et al., 2007; Love et al., 2004; Phelan, 1976; Bahr et al.,
2019). The International Programme on Chemical Safety (1989)
estimates that the probable lethal oral dose of pure camphor is
approximately 4 g for adults, while in children, the lethal dose is
estimated to be between 0.5 and 1 g (70 mg/kg). In rats, the
intraperitoneal lethal dose is reported to be 900 mg/kg.

In conclusion, applying camphor to sleep-deprived Wistar rats
alters occipital electrocorticographic patterns by increasing the total
mean power of spikes, especially in the frequency bands of Delta,
Theta, Alpha, and Beta, and inducing sleep-like behavior in Wistar
rats. This activity is likely due to multiple factors, including the
synergistic effect of sleep deprivation and camphor and the
increased blood-brain barrier permeability caused by sleep
deprivation. While camphor may be potentially harmful at high
doses due to its toxicity, it could be a useful adjunctive medication in
the treatment of insomnia. However, further studies are needed to
confirm its efficacy.
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Nomenclature

CBT Cognitive-behavioral therapy

BZ Benzodiazepines

BZRA Benzodiazepine receptor agonist

CNS Central nervous system

SD Standard deviation

SLD Sleep deprivation

CPH Camphor

SPD Spectral power density

ECoG Electrocorticography

EEG Electroencephalogram

REM Rapid eye movement

NREM Non-rapid eye movement

SWS Slow-wave sleep
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