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The field of metabolomics has witnessed remarkable growth in the context of
natural products studies, with Mass Spectrometry (MS) being the predominant
analytical tool for data acquisition. However, MS has inherent limitations when it
comes to the structural elucidation of key metabolites, which can hinder
comprehensive compound identification. This review paper discusses the
integration of Nuclear Magnetic Resonance (NMR) spectroscopy as a
complementary technique to address these limitations. We explore the
concept of Quality Control (QC) samples, emphasizing their potential use for
in-depth compound annotation and identification. Additionally, we discuss
NMR’s advantages, limitations, and strategies to enhance sensitivity. We
present examples where MS alone falls short in delivering accurate compound
identification and introduce various tools for NMR compound identification in
complex mixtures and the integration of MS and NMR data. Finally, we delve into
the concept of DBsimilarity to broaden the chemical space understanding, aiding
in compound annotation and the creation of compound lists for specific
sample analyses.
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1 Introduction

Metabolomics has witnessed a remarkable expansion within the realm of natural
product studies, propelled by the growing interest in deciphering the intricate metabolic
profiles of diverse biological systems (Sumner, Lei et al., 2015). In this analytical landscape,
Mass Spectrometry (MS) stands out as the predominant choice for data acquisition, owing
to its high-throughput capabilities and sensitivity (Demarque, Dusi et al., 2020). However,
as metabolomics endeavors extend towards the elucidation of molecular structures crucial
for understanding biological pathways, the inherent limitations of MS in providing detailed
structural information become apparent (Marshall, 2017; Letertre, Dervilly et al., 2021).

In the realm of natural products research, metabolomics approaches have left an
indelible mark. The analysis of complex mixtures serves as a crucial initial step in
delineating the chemical profile of a particular organism. It is through this analytical
lens that researchers embark on the discernment of intricate metabolic landscapes, laying
the foundation for informed decisions on sample prioritization (Simmler, Napolitano et al.,
2014). The inherent complexity of natural product mixtures requires sophisticated
analytical tools to unravel the intricate web of chemical entities present. Here, the
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integration of MS has emerged as a cornerstone, facilitating high-
throughput screening of diverse metabolites within complex
matrices (Kuhn, Colreavy-Donnelly et al., 2019). However, the
challenge persists in the elucidation of detailed molecular
structures annotated with MS data only, a critical facet for
understanding the biological significance of these natural products.

The challenge lies in the necessity for comprehensive structure
elucidation of key metabolites, a task for which MS alone may fall
short (Gathungu, Kautz et al., 2020). To address this limitation and
enhance the robustness of studies, the integration of Nuclear
Magnetic Resonance (NMR) spectroscopy emerges as a pivotal
complement to MS. Unlike MS, NMR excels in offering direct
insights into molecular structures, providing crucial information
for the unambiguous identification of metabolites. Additionally,
NMR provides inherent quantitative capabilities as a primary
method of measurement (Bharti and Roy, 2012).

While NMR proves to be indispensable for structural
elucidation, it is essential to acknowledge its own set of
limitations. Sensitivity and database comprehensiveness stand out
as notable challenges in NMR-based metabolomics and natural
products. NMR does not match the sensitivity of MS, particularly
in the detection of low-abundance metabolites. And, to supplement
this comparison, it is noteworthy that, in these contexts, the majority
of MS analyses entail a chromatographic separation, typically in
liquid or gas phase chromatography (LC-MS and GC-MS),
introducing a level of selectivity rarely employed in NMR
analysis. Moreover, the breadth of NMR databases for metabolite
identification does not match the comprehensive resources available
in the MS domain. It is important to acknowledge that neither MS
nor NMR-derived databases can claim completeness, and it seems
unlikely that they will ever achieve the level of comprehensiveness
desired. This inherent limitation has spurred efforts from various

FIGURE 1
Example of isomers detected from a dataset (data not published) showing the MS fragmentogram of the precursor ion at m/z 449.1090 with the
same diagnostic fragments atm/z 151.0027 and 287.0573. These are doubtless four different compounds that show the sameMS fragmentogram and this
is why it is impossible to assert the identity of each compound beyond reasonable doubt. Library matching provided the same annotation for all these
four features.
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research groups to address the shortfall by developing innovative
tools aimed at virtually augmenting and compensating for the
deficiencies in these databases (Go, 2010; Bingol, Bruschweiler-Li
et al., 2015; Vinaixa, Schymanski et al., 2016; Wang, Carver et al.,
2016; Wishart, Guo et al., 2021).

2 Challenges in mass spectrometry for
metabolite structure elucidation

MS is instrumental in detecting metabolites under various
conditions, offering invaluable insights into the dynamic changes
within organisms with unbeatable sensitivity and selectivity which
makes it most attractive for complex mixtures analysis. However, its
utility encounters significant constraints when it comes to
unraveling the intricate structures of these metabolites.

The unattended reliance on library matching tools in the
annotation of complex mixtures introduces a potential pitfall, as
users may inadvertently misidentify compounds (Figure 1). This
review refrains from assigning liability to any other paper but
acknowledges instances where identifications based solely on MS
data have been reported. To navigate these challenges, the
Metabolomics Standardization Initiative suggests the use of four
different levels of identification to provide readers a framework to
assess the reliability of metabolite identifications (Fiehn, Kristal
et al., 2006; Sansone, Fan et al., 2007; Sumner, Amberg et al.,
2007; Fernie, Aharoni et al., 2011; Alseekh, Aharoni et al., 2021).

The complexity amplifies when dealing with isomeric
compounds and structural diversity, confounding MS-based
analyses and impeding the differentiation of compounds with
similar molecular weights. Furthermore, even in non-isomeric
compounds, the presence of isobaric fragments can lead to
erroneous annotations through library matching where the script
might generate high similarity scores.

False identifications of a compound constitute one challenge,
while another issue involves the failure to identify a compound
present in the database, akin to a false negative result. This
circumstance may arise from issues with the fragmentogram
derived from MS, potentially attributable to experimental
detection parameters within the MS methodology: mass range,
cone and skimmer voltage (Murata, Takao et al., 1994), choice
for the ionization mode, etc.

A significant limitation arises from the pure inability of MS to
furnish definitive information for the analyst to identify the linkage
of substituents to a core structure (Figure 1). This inherent shortfall
highlights the need for complementary techniques, such as Nuclear
Magnetic Resonance (NMR), to provide the requisite structural
details for a comprehensive understanding of metabolite profiles.
NMR stands as an indispensable and highly informative tool in the
realm of organic chemistry. Its unparalleled capability to unravel
molecular structures with atomic-level precision makes it a
cornerstone in the analytical arsenal of organic chemists as it
provides a wealth of detailed information about the chemical
environment, connectivity, and configuration of atoms within a
molecule. One of the key strengths of NMR lies in its non-
destructive nature, allowing for the analysis of compounds in
their native state without altering their integrity. Even though its
sensitivity is lower than MS’ sensitivity in several orders of

magnitude, advancements in technology, such as high-field
magnets, cryoprobes, and sophisticated pulse sequences, NMR
continues to evolve, pushing the boundaries of what can be
achieved in metabolite identification.

3 Quality control (QC) samples

In the pursuit of elevating the reliability and precision of
metabolomics studies, the incorporation of quality control (QC)
samples emerges as a strategic imperative (Dudzik, Barbas-
Bernardos et al., 2018). QC samples play a crucial role in
metabolomics studies, ensuring the reliability and consistency of
data across complex experiments. Typically, QC samples are
prepared as pooled samples (QC pooled) and reference
standards. The pooled sample contains a representative mix of all
the metabolites present in the study and is analysed periodically
throughout the experiment. A reference standards sample contains
commercially available reference standards of known metabolites.
Among these, the QC pooled sample assumes a pivotal role in
untargeted metabolomics due to its comprehensive representation
of the study’s sample set.

A distinctive advantage in leveraging QC pooled samples for
compound identification lies in their amenability to concentration,
enabling a nuanced and thorough annotation strategy (Torres,
Scalco et al., 2023). This sample can undergo fractionation,
potentially simplifying the complexity of the mixture under
examination. Furthermore, the prospect of purifying compounds
and discerning biomarkers discovered in the metabolomics study
adds an additional layer of refinement to the analytical approach.

In natural products studies, a prevalent practice involves
dedicated efforts to fractionate compounds, aiming for enhanced
purity conducive to comprehensive structure elucidation.
Intriguingly, this rigorous approach is not as conspicuous in the
metabolomics literature. Several factors contribute to this disparity,
with a prominent one being the often limited quantity of samples
available per study. This limitation may dissuade researchers from
extensive fractionation efforts, emphasizing the need for efficient
strategies that balance the quest for structural elucidation with the
practical considerations of sample availability.

4 The complementary role of NMR

NMR spectroscopy stands as an invaluable complement in the
analytical toolkit, unrivaled in its ability to furnish structural
information with atomic-level precision (Figure 2). Despite its
unmatched strengths, NMR grapples with limitations, primarily
in sensitivity and database comprehensiveness. The challenge of
low sensitivity is exacerbated when analyzing complex samples
without prior fractionation, potentially leading to the oversight of
diluted compounds.

In response to these challenges, innovative developments have
emerged to enhance NMR sensitivity. Cryoprobes, which involve
cooling both the probe and its electronics to near liquid helium
temperatures (~20K), present a remarkable up to 4x gain in
sensitivity by reducing electronic thermal noise. Additionally,
microprobes, exemplified by 1.7 mm probes, offer around a 2.4x
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sensitivity gain compared to their equivalent 3 mm counterparts.
Pushing the boundaries further, the use of higher field magnets
exceeding 18.8T (800 MHz for 1H) contributes to heightened
sensitivity in NMR analyses. Non-Uniformly Sampling (NUS)
schemes for NMR detection is an approach that allows the
collection of NMR data in a fraction of time, presenting a
paradigm shift in the efficiency of NMR detection (Aoto,
Fenwick et al., 2014; Delaglio, Walker et al., 2017). NUS schemes
depart from the conventional uniform sampling of data points in the
time domain, instead selectively acquiring a subset of the data
according to specific sampling schedules. This strategic selection
optimizes the use of experimental time, offering accelerated data
acquisition without compromising the fidelity of the spectral
information. Another noteworthy advancement in optimizing
NMR efficiency is the introduction of new pulse sequences, such
as the NOAH supersequences (Hansen, Kupce et al., 2021). These
sequences represent a pioneering class of NMR experiments
designed to expedite data acquisition by collecting a batch of
bidimensional NMR data also in a fraction of the time.
Particularly, NOAH supersequences streamline the process by
acquiring a sequence of experiments under a single relaxation
delay, a critical component of a pulse sequence. NOAH
supersequences can also be acquired using NUS detection
scheme, further optimizing machine time efficiency. Several
combinations of experimental modules can be generated and
downloaded from the online tool NMR-GENESIS via https://
nmr-genesis.co.uk (Yong, Kupce, et al., 2022).

Resuming to the potential of the QC pooled samples for deep
compound annotation, a highly recommended strategy involves
submitting these samples to NOAH supersequences NMR
analysis using a combination of Heteronuclear Multiple Bond
Correlation (HMBC), Heteronuclear Single Quantum Coherence
(HSQC), and hybrid HSQC-Total Correlation Spectroscopy
(HSQC-TOCSY). This concerted approach, implemented with
high resolution in the f1 (13C axis) axis, comprising at least 1k
points, along with an ample number of scans for robust signal
averaging, facilitates the generation of well-defined peak shapes even
for diluted compound (Nagana Gowda and Raftery, 2023). The
emphasis on high resolution in the f1 axis is pivotal, especially for
complex mixtures studies, as it ensures the meticulous delineation of
intricate molecular structures, even for small and potentially
diluted peaks.

Therefore, two primary tools freely available for the compound
annotation of complex mixtures using bidimensional NMR data are
COLMAR and NMRfilter. The first, Complex Mixture Analysis
(COLMAR) by NMR (Wang, Timári et al., 2020), spearheaded
by prof. Rafael Brüschweiler at The Ohio State University
(United States of America), stands as a prominent method for
compound identification in mixtures using NMR data. Accessible
through a user-friendly web server, COLMAR is extensively utilized
within the NMR metabolomics community. Notably, it combines
metabolite data frommajor databases, including BMRB and HMDB,
offering one of the most comprehensive tools for matching
experimental NMR data of complex mixtures. While primarily
impactful for primary metabolites, COLMAR does face
limitations in studies with secondary metabolites. It relies on
high-quality spectra acquired under standard conditions, often
using D2O-phosphate buffer at pH 7.4 as the solvent. Recent
enhancements include a library of less hydrophilic compounds
analyzed in CDCl3. Despite its reliance on accurate chemical
shifts, the chemical shift of 1H-NMR is highly dependent on
solvation, solvent pH, and temperature. This poses challenges
when analyzing compounds not soluble in D2O or CDCl3, such
as those using CD3OD or DMSO.d6. A notable feature is the
COLMARm method, where users can submit experimental
HSQC, TOCSY, and HSQC-TOCSY data. This enables high-
confidence searches and identifications, employing computational
matching and subsequent validation using TOCSY data. COLMAR’s
significance is underscored by over 70 citations and more than
2000 registered views, making it the tool of choice for water-soluble
samples in primary metabolite studies.

NMRfilter, a collaborative effort led by prof. Ricardo M. Borges
at the Federal University of Rio de Janeiro (Brazil) and prof. Stefan
Kuhn at the University of Tartu (Estonia), originally aimed for
combining MS and NMR data interpretation (Kuhn, Colreavy-
Donnelly et al., 2019; Kuhn, Colreavy-Donnelly et al., 2020).
From a list of candidate compounds (generated from the MS
dereplication routine or using data from literature (Borges,
Ferreira et al., 2023b), NMRfilter simulates and compares
chemical shift data with users’ experimental NMR data. The
algorithm then searches for scalar coupling networks in the
HMBC and HSQC-TOCSY data to confirm shared chemical
structures. The effectiveness of NMRfilter relies on accurate
NMR data simulations, which is achieved through nmrshiftdb2

FIGURE 2
A schematic representation illustrates the limitations of MS in offering the complete structure, emphasizing the complementary role of NMR. Here,
nJXX denotes coupling constants through n bonds, encompassing both heteronuclear (CH) and homonuclear (HH) interactions.
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(Kuhn, Schlörer et al., 2012; Kuhn and Schlörer, 2015; Kuhn and
Johnson, 2019). Users are encouraged to submit NMR data to
nmrshiftdb2 for a more comprehensive and accurate database.
The method provides visual validation, allowing users to evaluate
matching rates and peak profiles for confident identifications.
Similar to COLMARm, NMRfilter utilizes spin systems (HMBC
and HSQC-TOCSY) for detecting spin fragments, enhancing the
accuracy of compound identification.

5 Integrating MS and NMR data

The integration of MS and NMR data represents a robust
strategy to surmount the inherent limitations of each technique.
By capitalizing on the unique advantages offered by both methods,
researchers can achieve a high level of confidence in compound
identification.

One approach involves the meticulous analysis of QC pooled
samples through both MS and NMR through a detailed
dereplication scheme. This entails annotating detected compounds
comprehensively, mainly using the available library for matching,
combining the results to cross-validate compounds annotated
through the MS with those exhibiting diagnostic peaks in NMR
spectra. Alternatively, a more comprehensive strategy involves
acquiring MS and NMR data for every sample in the study,
assuming an adequate number of replicates was prepared. Biological
variance, manifested by variable peak intensities in both MS and NMR
across replicates, can be explored, leveraging the high correlation
expected for peaks from the same compound. The introduction of
DAFdiscovery emerges as a valuable tool in this context, facilitating the
amalgamation of peak tables from MS and NMR for direct covariance
and correlation calculations (Borges, das Neves Costa et al., 2023a).
DAFdiscovery enables the identification of peak pairs strongly
correlated through a Statistical Total Correlation Spectroscopy
(STOCSY) (De Souza Wuillda et al., 2024) calculation, suggesting
shared chemical structures due to their dependence on
concentration. In instances where fractionation is applied to the QC
pooled sample (or the raw extract sample), creating variance in
compound concentrations based on chromatographic behavior,
DAFdiscovery can further enhance confidence by connecting NMR
peaks to MS features in the fractions.

As a final option, though no less significant, users can invest in the
retention time parameter from the LC-MS (or GC-MS) of the
designated biomarker to scale up the analytical technique and purify
the compounds of interest. Subsequently, the focus shifts to a de novo
structure elucidation, requiring the acquisition of a comprehensive set
of bidimensional NMR data for unequivocal determination. Within the
NOAH supersequences class, there are opportunities to synergistically
combine HMBC, HSQC, COSY, NOESY/ROESY techniques. This
integrated approach enables the acquisition of comprehensive NMR
spectral data in significantly less time compared to employing
individual pulse sequences (Kupče and Claridge, 2017).

6 Natural products chemical space

Secondary metabolites are diverse chemical compounds
produced by living organisms. They are not directly involved in

primary growth and reproduction, but they represent a vast and
fascinating area within the realm of natural products (Rose, Gottfries
et al., 2009). This chemical space, which includes a remarkable
variety of structures and properties, mirrors the complex interplay
between evolutionary pressures and the limitless ingenuity of
biological systems. These compounds are typically structurally
complex, and their diversity is indicative of the broad range of
biological roles they fulfill. Scientists are greatly interested in this
chemical space, as these compounds often exhibit strong biological
activities and can serve as a starting point for the development of
new drugs. The term “chemical space” refers to the conceptual space
encompassing a group of chemical compounds, defined by their
molecular structures and the potential range of properties these
structures exhibit. The exploration of such chemical spaces allows
scientists to identify compounds with desirable properties or to
understand the biochemical mechanisms underlying various
physiological states and diseases. However, the exploration of this
space is challenging due to the complexity and diversity of these
compounds, as well as the difficulty in isolating and characterizing
them. Despite these challenges, the study of the chemical space of
secondary metabolites in natural products continues to provide
valuable insights into biology and medicine.

The term “chemical space” describes a multi-dimensional domain
where chemical compounds are positioned based on their structural
characteristics, properties, or other molecular descriptors. The
visualization of this space involves creating a graphical
representation of these compounds, which allows researchers to
identify relationships and patterns among them (Bade, Chan et al.,
2010). This visualization is particularly useful when dealing with
natural products, which are typically structurally complex and diverse.
It enables researchers to locate known compounds and focus on
discovering new compounds with potential properties. For example, it
assists in identifying clusters or regions that are associated with
specific bioactivities and in recognizing trends and similarities
among natural products with similar biological properties.
Although a rich dataset of chemical information for a list of
compounds can be represented as a multidimensional space,
humans have limitations in visualizing such complexity. Therefore,
techniques for visualizing chemical space are necessary. Principal
Component Analysis (PCA) is a statistical technique that reduces the
dimensionality of chemical data while preserving its variability. It is
commonly used to generate 2D or 3D plots that represent chemical
space (Ringner, 2008; El-Elimat, Raja et al., 2020). Another technique,
t-Distributed Stochastic Neighbor Embedding (t-SNE), is particularly
effective for visualizing high-dimensional data in a lower-dimensional
space, revealing both local and global relationships among
compounds (Vivek, Mithun, et al., 2023). Self-Organizing Maps
(SOM), a type of artificial neural network, can be used for
clustering and visualizing chemical space, aiding in the
identification of groups of structurally similar compounds
(Bonachera, Marcou, et al., 2012). Furthermore, the concept of
networking has been incorporated into the chemical space
application DBsimilarity (Borges, de Assis Ferreira et al., 2023b).
This tool calculates molecular similarities among all compounds in a
given list of structures, creating a network of nodes and edges. In this
network, nodes represent individual compounds, and the edges that
connect them represent the similarity values between the respective
pairs. The script also generates files with attributes for each

Frontiers in Natural Products frontiersin.org05

Borges and Teixeira 10.3389/fntpr.2024.1359151

https://www.frontiersin.org/journals/natural-products
https://www.frontiersin.org
https://doi.org/10.3389/fntpr.2024.1359151


compound, enriching the similarity network of valuable information.
Attributes such as chemical classification, determined by an external
tool, and various molecular descriptors can be integrated into the
network visualization. DBsimilarity also allows users to include an
additional list of compounds known to have specific properties during
calculations, aiding in the identification of compounds closely related
to the active ones and suggesting potential new active compounds.

Given the recognized taxonomic significance of secondary
metabolites, visualizing the chemical spaces of a specific
organism can aid in compound identification, as it allows for the
formulation of hypotheses regarding potential compounds. While
this concept has not been systematically explored yet, it forms the
basis for some modern concepts in the field. This approach could
potentially revolutionize the way we identify and study compounds,
opening up new avenues for research and discovery. It is an exciting
prospect for the future of natural product chemistry and drug
discovery (Kim, Kim et al., 2020).

7 Conclusion

This paper highlights the significance of NMR in MS-based
metabolomics and natural products studies. By addressing the
limitations of MS and harnessing the strengths of NMR, researchers
can achieve more comprehensive and accurate compound
identification, ultimately advancing our understanding of the
chemical diversity within natural sources. The QC pooled sample is
highlighted as dual purpose. It not only ensures the reproducibility and
reliability of the analytical measurements but also presents a unique
opportunity for in-depth compound annotation and identification. The
integration of NOAH supersequences and NUS detection into the
analysis of QC pooled samples holds the promise of substantially
enhancing the depth and accuracy of compound annotation. By
leveraging the synergistic power of these advanced NMR techniques,
researchers can unlock a wealth of information embedded in complex
metabolomic profiles, providing a more comprehensive understanding
of the chemical intricacies within biological samples. COLMAR and
NMRfilter exemplify powerful tools for NMR-based compound
identification in complex mixtures, each offering unique approaches
to address specific challenges in the metabolomics field.
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