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Applications of nanotechnology have rapidly expanded across various fields,
including materials, energy, medicine, and the environment. The toxicity of
nanomaterials (NMs) and nanotechnology to living organisms, as well as
potential negative environmental impacts, poses significant challenges.
Laboratory approaches for assessing the negative impacts of NMs are costly,
time-consuming, and frequently fall behind the development of novel materials.
Therefore, intelligent systems of informatics to forecast their toxicity potentials
are a possible alternative option. Research on nanotoxicology has generated
extensive and diverse datasets. However, data alone does not equate to
information. Since little is known about how to extract meaningful information
from large streams of data, a broad discussion of potential concerns still exists. In
this regard, we present a perspective on how the “big data” can change the
paradigm toward data-centric computational materials research to decipher the
toxicity mechanisms of NMs for their efficient risk assessment management to
provide safe-by-design standards for the sustainable advancement of
nanotechnology. We will also discuss the challenges of the current data-
driven research into the nano realm.
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1 Introduction

Across the globe, nanotechnology is driving a remarkable transformation that impacts a
wide range of scientific disciplines. Yet, we must remember the principle that “with great
power comes great responsibility.” The nanoworld encompasses a fascinating array of
structures and interactions at the nanoscale (around 1–100 nm). To visualize this scale,
consider that a nanometer is about one-hundred-thousandth the diameter of a human hair
(Foster, 2017). The growing popularity of nanomaterials, their distinct physicochemical
properties, and increased investment in research and development could all be contributing
factors to their expanding market profile. However, concerns about the impact of
nanotechnologies on human health, safety, and the environment may hinder their
business adoption and slow market growth. Individuals will inevitably encounter NMs
during production, transportation, daily use, and disposal, as these products are designed to
enhance the quality of human life. Nanomaterials can enter the body through inhalation,
oral absorption, skin absorption, or medical applications. Once inside, they have the
potential to accumulate in various tissues and organs. It is important to understand how
these materials can navigate biological barriers, such as the skin, blood-brain barrier,
reproductive system, and the interface between air and blood in the lungs (Tsuda et al.,
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2019; Souza et al., 2021). Thus, it is evident that more infrastructure
and resources are required for the safety assessment of next-
generation nano-enabled devices. This should help to improve
techniques, increase understanding, and hasten commercial
adoption (Shatkin, 2020).

Harnessing the unique physicochemical properties of NMs such
as size, shape, and surface chemistry offers exciting opportunities to
effectively address the needs of a wide range of applications.
However, it is important to consider how these alterations may
influence their behavior in biological contexts, such as cellular
uptake, biodistribution, and toxicity. The numerous guidelines
that have already been released, specifically by the ISO, American
Society for Testing and Materials (ASTM), and Organization for
Economic Cooperation and Development (OECD), reflect the
significant effects of physicochemical properties on the safety and
effectiveness of NMs. The most important factors are undoubtedly
the size distribution of the particles, surface functionalization or
treatment, shape or morphology, and surface area (Cosnier et al.,
2021). It has also been demonstrated that surface reactivity,
agglomeration/aggregation condition, and dissolution rate are
highly relevant (Gutierrez et al., 2023). There are many other
NM properties that have not been tested, though, and some of
them are already polydisperse after production. They may also alter
over the course of their life cycle, depending on the biological
medium or environment in which they are suspended or
incorporated. Most of the data in nanotoxicity research comes
from traditional one-at-a-time experiments conducted in various
laboratory settings (Krug, 2014). The quality of this data is often
compromised by insufficient or poor characterization of NMs and
inadequate toxicity testing. Additionally, the processes of data
collection, annotation, curation, and integration are often time-
consuming, leading to further challenges in obtaining reliable data
(Jeliazkova et al., 2021).

The necessary techniques may conflict, and processing and
analyzing the generated data may prove difficult. The data
generated by in silico approaches such as machine learning (ML)
techniques that can create intricate networking systems that link the
physicochemical qualities of nanomaterials and their destiny within
the human body. Predictive modeling and in silico tools are essential
informatic approaches for the risk assessment of nanomaterials in
nanosafety. These methods decisively aim to predict the properties
of nanomaterials, analyze how nanomaterials interact at cellular and
molecular level, evaluate the transformations of nanomaterials
caused by environmental factors or biological processes, and
determine whether the byproducts of nanomaterials exhibit
toxicity compared to their original forms (Lynch et al., 2021). In
this context, the emerging field of nanoinformatics, which blends
informatics and data from nanomaterials, is rapidly developing
(Barnard et al., 2019). Risks to the environment and human
health can be avoided by creating predictive modeling
frameworks to forecast possible negative impacts of nanoparticles
(Labouta et al., 2019).

Nanoinformatics is a developing field that sits at the intersection
of multiple disciplines, including nanotechnology, medicine,
biology, chemistry, physics, and informatics (which encompasses
information technologies and computer science). It involves the
practical application of information technologies to collect, store,
retrieve, and process data, information, and knowledge related to the

physicochemical properties of nanoparticles, nanomaterials, and
nanodevices (Maojo et al., 2010). Nanoinformatics encompasses
various applications, including the design and characterization of
nanoparticles, as well as modeling and simulation. It also involves
data integration and exchange, linking nanoparticle information to
clinical data, and semantic annotation and retrieval. Additionally, it
can contribute to the development of domain ontologies,
terminologies, and standards, along with data and text mining
for nanomedical research (Maojo et al., 2010).

Due to the limited availability of model-friendly databases and
suitable nanodescriptors, the application of AI in nanotoxicology
remains relatively uncommon (Winkler, 2020). Unfortunately, most
current nanodescriptors are not specific to NMs; they were originally
developed for small molecules (Karakus and Winkler, 2021). As a
result, there is inadequate representation of complex NM structures
and their interactions with biological systems and the environment.
Additionally, challenges such as feature selection, model
optimization, and interpretation arise when machine learning
(ML), a subset of AI techniques, is applied in nanotoxicology
(Artrith et al., 2021) (Figure 1). The risk of becoming overloaded
with data and overlooking important details in nanotoxicology
arises from the gathering of vast amounts of nanotoxicity data
(Feng et al., 2021). Here, we will discuss how to incorporate big
data into nanotoxicity databases to unravel NMs property-toxicity
relationships. To understand the advanced data analysis and
modeling techniques that nanoinformatics uses to design
engineered nanomaterials, we will also discuss the challenges,
opportunities, and solutions associated with them. We can close
the gap between vast amounts of nanotoxicity data and important
knowledge by using model-friendly databases, AI, and molecular
simulations.

2 Informatics and nanotechnology: a
powerful alliance

Nanoinformatics offers benefits in precisely assessing and
forecasting biological reactions to the characteristics of known
and unknown NMs, which aids in the discovery of novel
functional NMs and the avoidance of adverse effects. The
development of advanced predictive modeling techniques
grounded in the principles of findable, accessible, interoperable,
and reusable (FAIR) data has accelerated due to this concept. While
the scientific community has embraced the FAIR principles, their
widespread application has been limited by varying interpretations.
Consequently, sophisticated methods are being developed to
specifically apply the FAIR principles in the life sciences,
facilitating the reuse and sharing of contemporary research data
(Ammar et al., 2020).

ML techniques can accomplish big-data, high-throughput
screening and reduce the amount of time and labor required
for material testing, which will improve the creation and use of
nanomaterials (Jia et al., 2021). To assess the impact of various
physicochemical descriptors such as shape, size, zeta potential,
concentration, and intracellular uptake and their influence on
interactions with the cell membrane at sublethal concentrations,
Singh et al. developed a ML-based approach. Their study
identified nuclear area factors and cell shape index as key
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descriptors that reflect the specific changes induced by
nanomaterials in the epithelial Madin-Darby canine kidney
(MDCK) cell line, as determined by the ML system (Singh
et al., 2021).

The use of quantitative structure-activity/toxicity
relationship (QSAR/QSTR)-based methods for safety and risk
assessment has grown in popularity (Nyström and Fadeel, 2012;
Raies and Bajic, 2016). To address regulatory concerns, several
development standards have been put forth. A useful tool for
predicting the molecular properties and biological interactions of
pharmaceuticals is the contemporary three-dimensional
quantitative structure-activity relationship (3D-QSAR)
molecular docking (Lavanya and Sasipriya, 2022).
Nevertheless, 3D QSAR and traditional molecular descriptors
are unable to convey the nanoparticles’ specificity. Furthermore,
there are not many established nano-QSAR modeling techniques
(Jia et al., 2021). Quantitative structure nanotoxicity relationship
(QNAR) models, also known as nano-QSAR models, have been
developed in this context to address certain descriptive aspects of
nanomaterials (Nyström and Fadeel, 2012; Raies and Bajic, 2016;
Fourches et al., 2010).

A tissue-specific classification model for predicting the
neurotoxicity of nanoparticles in vitro systems was designed
using the random forest (RF) approach (Furxhi and Murphy,
2020). The toxicity effects of metal oxide nanoparticles on
Escherichia coli were predicted using seven machine learning
methods, including linear discriminant analysis (LDA), NB, RFs,
and AdaBoost. This provided a scientific foundation for the creation
and manufacturing of safe NMs (Kar et al., 2021).

A tree-based approach to feature network interaction analysis
and RF feature importance (TBRFA) has recently been developed

(Yu et al., 2021). In addition to accurately predicting the lung burden
and pulmonary immune responses of nanoparticles, our approach
creates feature interaction networks that aid in the interpretation or
justification of NM effects. In order to predict genetic responses to
NMs under different experimental assay conditions, a perturbation
theory ML (PTML)-QSTR model was also employed. This model
demonstrated an accuracy of over 96%,85 indicating that it is a
dependable tool for quickly and economically evaluating genetic
responses to NMs.

Nanotox has recently developed a unique feature space based on the
internal and external physicochemical characteristics of nanomaterials,
along with data from the periodic table. This feature space is associated
with an assay technique and cell source. To improve the performance of
the machine learning models, the training data was adjusted to address
class imbalance, the feature space was optimized for hyperparameters,
and multicollinearity was minimized (Yan et al., 2019). As a result of
establishing the ideal hypothesis space, the models achieved over 96%
balanced accuracy. Research has shown that the toxicity of
nanoparticles is influenced by several factors, including dose,
exposure duration, hydrodynamic size, periodic table position, and
electronegativity (Eneg). Additionally, predictors identified as nontoxic
include surface area (SurfArea), conduction band energy (Ec), core size
(CoreSize), and the count of oxygen atoms (NOxygen) (Yan
et al., 2019).

To investigate the nanotoxicity of zigzag single-walled carbon
nanotubes (SWCNTs) on mitochondrial channels, González-
Durruthy et al. (2020) used molecular docking and dynamic
simulations. Their work strategically targets the selective
blockage of the ATP entry point in the human mitochondrial
voltage-dependent anion-selective channel (hVDAC1). By
employing these advanced computational models, the authors

FIGURE 1
Role of AI/ML in the safe designing of nanomaterials.
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present a compelling in silico approach for evaluating not only
the toxicological risks but also the therapeutic potential of carbon
nanotube-based nanomaterials, all while considering the crucial
role of mitochondrial function.

Applications for molybdenum disulfide (MoS2) nanomaterial in
biomedicine are intriguing. It exhibits characteristics that are
comparable to those of carbon-based nanoparticles, showing
promise for both imaging applications suitable for cancer
theranostics and medication delivery against microbes. Molecular
dynamics (MD) simulations and electrophysiology experiments,
however, showed that the MoS2 nanoflake might attach to a
fissure at the extracellular side of the potassium channel’s voltage
sensor domain (VSD). This could be part of the underlying
nanotoxicological mechanism and restrict the use of MoS2 (Gu
et al., 2018).

A computational pharmacokinetic model called ISD3 was
developed to ensure accurate dosimetry based on experimental
conditions and the physicochemical properties of the particles
(Poli et al., 2020). Additionally, an intriguing database was
established to create a cloud of in vitro and in vivo toxicokinetic
data, which correlates concentration with time (CvT) (Sayre et al.,
2020). Multiscale models have recently been integrated into an in
silico risk assessment framework developed by the NanoSolveIT.eu
project. This framework is based on the “Integrated Approach to
Testing and Assessment” (IATA) and enables the implementation of
a safe-by-design strategy for nanomaterials, addressing both
industry and regulatory challenges (Karatzas et al., 2020;
Papadiamantis et al., 2020).

Metal-organic frameworks (MOFs) with structural flaws can
exhibit desirable characteristics, unlike defect-free crystals.
However, identifying these flaws in MOFs can be challenging.
To address this, Wu et al. (2020) created a library of 425 MOFs
that feature significant missing-linker defects, which was used to
train logistic regression (LR) and RF algorithms. In a couple of
seconds, a deep learning system was able to extract and classify
hundreds of lattice faults from scanning transmission electron
microscopy pictures (Maksov et al., 2019). For the construction
of innovative and promising MOFs, a computational approach
that combined recurrent neural networks and a Monte Carlo tree
search demonstrated notable efficiency (Zhang et al., 2020).
Functionalizing MOFs with groups such as hydroxyl, thiol,
cyano, amino, or nitro significantly improves their ability to
capture CO2, according to ML prediction results (Anderson
et al., 2018). These predictions are notably more accurate
when the types of atoms in the structure are used as
descriptors, rather than the previously used building blocks
(Fanourgakis et al., 2020). Data mining from a computational
screening library of over 300,000 MOFs has identified strong
CO2-binding sites, achieving R2 values greater than 0.98 (Boyd
et al., 2019). The MOFs produced through this approach
exhibited high adsorption capacity for CO2 from
anthropogenic sources and showed resilience against
interference from nitrogen and water.

The delivery, release, and therapeutic efficacy of therapeutic
drugs are significantly influenced by protein coronas (Akhter
et al., 2021). It is challenging for conventional linear regression

models to forecast the creation and makeup of protein coronas.
Because the RF method can handle heterogeneous big data, it can
resolve this issue (Findlay et al., 2018). Cellular recognition
mediated by functional protein coronas was correctly
predicted by the technique (Ban et al., 2020). To forecast the
buildup of NMs, a supervised deep neural network was employed
(Lazarovits et al., 2019). With an accuracy of up to 94%, the
network was able to predict the accumulation of nanoparticles in
the liver and spleen, opening the door to the development of
surface chemistries tailored to the body as well as the prediction
of nanoparticle behavior. The brain microenvironment and NMs
characteristics including size and protein adsorption were
predicted using an ANN (Curtis et al., 2019). By using this
data to create predictive models of NMs transport,
nanotherapeutic platforms can be designed to get past
biological obstacles and accomplish localized delivery. Oh
et al. (2016) conducted a meta-analysis that gathered
1,741 data samples from published literature regarding the
cellular toxicity of cadmium-containing semiconductor
quantum dots. There are many benefits to building datasets
using meta-analysis and then using machine learning methods
to examine how model animals and NMs interact. For instance,
high-throughput screening phenotyping of Caenorhabditis
elegans embryos has been accomplished using machine
learning (Atakan et al., 2020).

Natural language processing (NLP) is the application of
computers to useful written language activities, like
information extraction and analysis from unstructured text
(Jurafsky and Martin, 2014). NLP applications’ utilization of
human language expertise sets them apart from other data
processing methods. A large number of NLP applications
make use of literature that has been extracted from databases.
To make sure that the documents being examined by the NLP
systems contain pertinent information on manufactured
nanomaterials, information retrieval, document classification,
and pattern matching techniques are frequently used (Chau
et al., 2006). A web-based application named the
Nanomaterial Environmental Impact data Miner (NEIMiner)
was developed using Drupal and a content management
system (CMS) (Tang et al., 2013). NEIMiner consists of four
main components including Data integration, Data management
and access, Model creation, and a Nanomaterial Environmental
Impact (NEI) modeling framework. This framework is similar to
the Framework for Risk Analysis of Multi-Media Environmental
Systems (FRAMES). Using pattern matching approaches, the
Nanotoxicity Searcher is a tool for automatically annotating
literature in nanomedicine and nanotoxicology (García-
Remesal et al., 2013). To determine the names of
nanomaterials (NANO), possible exposure routes (EXPO),
target organs and/or creatures (TARGET), and forms of
toxicity/damage (TOXIC), the team employed ABNER, a
biomedical named entity recognizer (García-Remesal et al.,
2013). The linear-chain conditional random fields (CRFs)
supervised machine learning technique from Mallet, an open
source, freely accessible Java-based statistical NLP toolkit, is
included in ABNER.
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3 Addressing challenges

Beyond conventional research, nanoinformatics adds fields like
pharmacodynamics, sophisticated quantum physics and chemistry,
including nanotoxicity, and new imaging models. NMs present
unique challenges in nanotoxicology due to their significant size
compared to organic molecules, their existence as distributions
rather than discrete entities, and the intricate nature of their
interactions with the surrounding corona, which forms the
biologically relevant entity. This complexity hinders the
effectiveness of molecular simulations applications in this field.
Large computer resources are needed to specify complicated
NMs systems in particular contexts and run simulations over
time and length scales that are biologically relevant (Casalini
et al., 2019; Foreman-Ortiz et al., 2020). Some atomistic details
are unavoidably lost and the simulation precision is decreased, even
though coarse-graining can enable simulation over larger time and
length scales (Kmiecik et al., 2016). The other challenge is that
molecular simulations are unable to adequately represent the
biological medium’s true complexity (Marrink et al., 2019). Most
simulations view NMs as single molecules or interfaces in biological
systems, however, NMs likely interact with multiple proteins
simultaneously or sequentially, which is important for cell
signaling. Thus, we need more studies on how NMs interact with
various proteins, as well as individual proteins.

Alternatively, deep learning, however, is heavily reliant on data;
the more data obtained, the better the results. Furthermore, deep
learning is difficult to interpret and involves a lot of computations. It
is unclear whether deep learning is superior to classical ML given the
limited amount of NMs data, so a comparison between the two
approaches is preferable in some situations. Models with few
parameters (low complexity) and/or a prior strength should be
employed when there are only limited data sets available. In this
context, a “prior” can be interpreted as any presumption about the
behavior of the data. For example, in linear regression, the models
assume only linear interactions and the number of parameters can
be readily changed.

It is important to note that Bayesian networks have been applied
to datasets of all sizes, despite not being widely recommended.
Effective modeling of tiny datasets is necessary due to the current
scarcity of nanotoxicity data (Oksel et al., 2015). However, less
complex algorithms trained with more data can outperform even the
greatest algorithm taught with small datasets (Baldassi et al., 2016).
Data scarcity can be addressed by integrating datasets and/or
databases, which leads to the creation of new information and
hypotheses (Karcher et al., 2018). The significance of data
integration in nanotechnology was emphasized by Karcher et al.
(2018), who also offered suggestions for furthering integration. The
application of text mining algorithms is also currently hindered by
the diverse and disparate data sources that offer data in various
formats. Additionally, the machine’s readability is limited by the lack
of standards in data reporting (Plata and Jankovic, 2021). Up until
recently, large-scale text mining was also constrained by paywall and
copyright concerns.

Through the creation and integration of cutting-edge in vitro
models, in silico techniques such as machine learning and
artificial intelligence (AI)-driven predictive models, and first-
principles computational modeling of NMs’ properties,
interactions, and effects on living systems, CompSafeNano
tackles important issues in nanosafety. The creation of
atomistic and quantum-mechanical descriptors for different
NMs, the assessment of their interactions with biological
systems, and the creation of prediction models for NM risk
assessment have all advanced significantly. In order to ensure
compliance with the FAIR (Findable, Accessible, Interoperable,
Reusable) data principles, the CompSafeNano project has also
concentrated on improving data management procedures and
putting data reporting templates into place and further
standardizing them.

4 Conclusion

Over the past several years, data-driven materials research
has advanced rapidly, spawning an interdisciplinary field that
combines data science, software, chemistry, and physics. The
size and shape of crystals, along with active surface sites and the
chemical environment, are key factors influencing the electrical
properties and reactivity of nanomaterials. The characteristics
related to size, surface, and environment such as surface
energies, adsorption sites, diverse phase diagrams, and
intricate reaction networks are essential for designing NMs
data. We anticipate that advancements in the accessibility,
quantity, correctness, and complexity of data on NMs will
significantly enhance this subject as large-scale
computational techniques and high-throughput automated
laboratories with data curation investments become more
commonplace. In addition to the current computational
resources, we highlight the potential for collecting and
sharing experimental results with annotated information.
These approaches in nanotoxicology are still in their infancy,
nevertheless, and they face many computational and
experimental challenges. In summary, this perspective offers
several valuable insights. 1. ML plays a vital role in identifying
the key characteristics that contribute to specific hazards,
enhancing our understanding of risk factors. 2. By facilitating
the analysis of large omics datasets, ML supports the discovery
of modes of action patterns, which are invaluable for
formulating hypotheses in grouping methods. 3. Omics
approaches encourage a shift from focusing solely on
individual endpoints to gaining a more comprehensive
mechanistic understanding across multiple endpoints derived
from a single experiment. 4. Additionally, leveraging techniques
from other areas of AI, such as image analysis and NLP, can
significantly enhance the automation of information extraction
and interlinking regarding nanomaterial toxicity. These insights
collectively pave the way for more effective approaches to
studying and managing nanotoxicity.
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