
RNA-lipid nanoparticle
therapeutics for women’s health

Alireza Nomani1*, Aishwarya Saraswat1, Yu Zhang2,
Ashwin C. Parenky1†, Chun-Tien Jimmy Kuo2, Heather Brown2,
Suzanne Hartford2†, Bindhu Rayaprolu1,
Amardeep Singh Bhupender Bhalla1 and Mohammed Shameem1

1Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY, United States,
2Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY, United States

Ribonucleic acid-lipid nanoparticle (RNA-LNP) therapeutics, a powerful
nanomedicine platform, have already demonstrated their efficacy in diverse
applications. Their improved stability and efficacy are exemplified by
successful and rapid launch of mRNA vaccines, as well as marketed siRNA
drug product. Beyond infectious diseases, RNA-LNPs show promise in
addressing unmet needs in women’s health, for instance, gynecologic cancers
(e.g., ovarian, cervical) and novel treatments for conditions such as osteoporosis,
endometriosis, and congenital disorders. However, important challenges persist,
including off-target effects, immunogenicity, and potential risks and ethical
issues in their application for pregnant or lactating women. This review
summarizes current key preclinical and clinical progress, discusses targeting
strategies of LNPs (e.g., active and passive delivery), and presents current
knowledge on RNA-LNP safety in pregnant and non-pregnant women and
neonates as vulnerable populations. As RNA-LNP technologies evolve – with
relevant preclinical animal models, next-generation RNA platforms and improved
lipid chemistries – they can hold significant potential for transforming care in
women’s health through safer, effective, personalized, and innovative curative
interventions.
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1 Introduction

RNA-LNP therapeutics is an advancing field with substantial potential for disease
prevention or treatment (Hou et al., 2021; Kulkarni et al., 2019). Lipid nanoparticles (LNPs)
are efficient delivery systems that can facilitate the delivery of therapeutic RNA or DNA
molecules to specific cells or tissues, improving the stability, biodistribution, and
intracellular uptake of these delicate macromolecules. The success of mRNA-LNPs in
vaccine development, exemplified by coronavirus disease 2019 (COVID-19) and respiratory
syncytial virus (RSV) vaccines, as well as the success of commercially available patisiran, a
siRNA-based lipid nanoparticle, has opened ample research and development opportunities
in the RNA-LNP therapeutics. Notably, RNA therapeutics show promising applications in
women’s health, helping to address unmet needs in gynecological and obstetric conditions,
such as endometriosis, gynecologic cancers, and viral infections (Zhang et al., 2021; Gildiz
and Minko, 2023). Moreover, by conjugating cell-specific ligands or antigens to the LNP
surfaces, RNA-LNPs can achieve explicit tissue targeting while minimizing systemic
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exposure. Despite the clear benefits, important challenges persist,
including off-target effects, unwanted immune system activation
due to the types of lipids or RNAs used in the formulations, and
potential impacts on the female reproductive systems, motherhood,
or neonatal developmental course in pregnant women.

1.1 The emerging era of RNA therapy:
promises and challenges

RNA therapeutics offers unique opportunities for gene expression
(e.g., therapeutic proteins, antigen-based vaccines) and gene
manipulation/editing (e.g., knockdown, knockout) (Damase et al.,
2021; Zhu et al., 2022). Advances in LNP-based delivery system have
paved the way for more effective and scalable RNA medicines
(Paunovska et al., 2022). The gradually increasing number of RNA-
based medications on the market, coupled with the growing body of
preclinical and clinical studies, underscores the rising significance of these
gene therapymodalities. Among these,mRNAhas seen a surge in clinical
trials and development due to its improved safety and in vivo efficiency
over the past few decades (Sahin et al., 2014; Xiong et al., 2018). mRNA

has been used in a wide range of applications, such as vaccine and
immunotherapy (Pardi et al., 2018; Buschmann et al., 2021; Pozharov
and Minko, 2023), protein or enzyme replacement therapy (Qin et al.,
2022), and transient cellular reprogramming (Warren and Lin, 2019).

Beyond mRNA, RNA interferences (RNAi) platforms (siRNAs,
miRNA, and lncRNA-coding RNAs) enable sequence specific
silencing of aberrant genes (Friedrich and Aigner, 2022; Cieśla and
Pandey, 2020; Hu et al., 2020). siRNAs, for instance, can transiently
reduce gene expression by destroying their target mRNA to treat a range
of diseases (Sajid et al., 2021; Ngamcherdtrakul and Yantasee, 2019).
Although miRNAs and lncRNAs function slightly differently from
siRNA they likewise show therapeutic potential in modulating cellular
processes, including inflammation and tumorigenesis (Cieśla and
Pandey, 2020). Meanwhile, CRISPR/Cas systems can permanently
edit the genome guided by small sequence of accompanying gRNAs
in their formulations, thusmaking this gene editing approach a possibility
for heritable conditions (Cai et al., 2016). Yet, across these approaches,
one of the greatest challenges remains safely and efficiently delivering
RNA to the correct intracellular compartment at sufficient dose
(Paunovska et al., 2022; Buschmann et al., 2021). Presently, lipids and
lipid-like materials, such as LNPs, stand out as the most effective,

FIGURE 1
LNPs can be manufactured through robust microfluidics mixing method, carrying different RNA modalities. These modalities have potential
applications in women’s health through preventative or therapeutic approaches.
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synthetic, non-viral agents for delivering RNAs. LNPs have achieved
clinical success in mRNA delivery, especially demonstrated by their
application in mRNA-LNP vaccines against COVID-19 and RSV
(Eygeris et al., 2022; Skerritt et al., 2024; Wilson et al., 2023).

LNPs exhibit a uniform spherical morphology within their self-
assembled structures in aqueous environments (Figure 1). They have
gained popularity as a delivery system for nucleic acids due to their
ability to effectively shield and protect the payload in vivo and
enhance intracellular delivery. This payload protection is especially
critical for mRNAs as they are inherently unstable macromolecular
structures and susceptible to rapid degradation by environmental
stresses and nucleases during storage post-manufacturing and when
administered to patients.

1.2 Scope of this review

The versatile potential of RNA-LNP therapy also extends to the
critical areas of women’s health. Specifically, RNA-LNP therapy
presents two key applications in this field: (i) as a standalone or in
combination with orthodox protocols of therapy in gynecological
and obstetric conditions; and (ii) as prophylactic vaccines, such as
mRNA-based immunizations (Figure 1). While administration
routes play a significant role in the clinical efficacy, this review
focuses on how RNA-LNP systems are being applied in women’s
disease. For a deeper discussion of administration strategies,
readers may refer to prior reviews (e.g., (Swingle et al., 2023a)
which is an informative article on nanoparticle delivery in
this regard).

Additionally, this review provides a comprehensive overview of
research, preclinical and clinical studies on RNA therapy in women’s
diseases, particularly focusing on therapeutic and vaccine applications.
We also delve into targeting strategies that can enhance RNA-LNP
applications in women’s health. Moreover, we offer a brief overview of
relevant low-cost small animal models and highlight safety
considerations, including immunogenicity and possible reproductive
system impacts in women.

2 RNA-LNPs: mechanism of action and
comparison to other modalities

Therapeutic modalities such as small molecule drugs,
monoclonal antibodies (mAbs), and RNA-based therapies
employ distinct mechanisms to silence or activate certain
pathways through the target proteins with each modality
having their own advantages and challenges (Figure 2). Small
molecule drugs bind to the active site of proteins to inhibit or
activate their function. Their low molecular weight and simpler
structure enhance diffusion across membranes, enabling oral
bioavailability and sometimes crossing the membrane barriers
such as blood-brain barrier. They often show predictable
pharmacokinetics (PK) and lower costs, though challenges like
drug resistance, poor solubility, dose limitation, short half-life,
and off-target toxicity remain (Liu G. H. et al., 2020). In
comparison, mAbs can act by multiple ways including blocking
of cellular signaling pathways, modulation of the immune system,
immune-mediated cell toxicity, and/or vascular disruption. By

that, mAbs represent higher sensitivity, better specificity, and less
cross-reactivity and toxicity compared to small molecules. Yet,
their large molecular size, high manufacturing cost,
immunogenicity, complex PK, short to moderate half-life and
poor stability pose major hurdles for their successful clinical
translation (Rodriguez-Nava et al., 2023).

RNA therapeutics can overcome some of the challenges
associated with traditional small molecules and mAbs,
encompassing a variety of RNA types (mRNA, siRNA, circular
RNA, saRNA, microRNA, and CRISPR/Cas9) (Figure 2, bottom
panel). For example, mRNA, once delivered to the cells by the
appropriate delivery systems (e.g., LNPs), it will translate into the
target protein to elicit an adequate and very specific response.
RNA interference (RNAi) strategy using siRNA generally involves
a gene silencing mechanism that is induced by targeting
complementary mRNA for degradation (Dana et al., 2017).
Circular RNAs act as RNA-bonding proteins to modulate gene
expression and translation of target proteins. While self-
amplifying RNA is engineered to replicate itself into host cells
for enhanced protein expression and immune response (Zhou
et al., 2020). Genome editing via CRISPR/Cas9 involves
recognition of the target sequence, its cleavage, and finally
repair. For this, the single guide RNA recognizes the target
sequence in the gene of interest through a complementary base
pair on the target DNA sequence while Cas9 nuclease makes
double-stranded DNA breaks which is then repaired by either
non-homologous end joining or homology-directed repair
cellular mechanisms (Asmamaw and Zawdie, 2021). By these
mechanisms, RNA therapeutics provide a vast opportunity to
design novel treatments for diseases currently without effective
medicines. RNAs are less toxic than small molecules and
technically have a good solubility.

Crucially, each RNA modality offers a unique duration of
therapeutic effect – ranging from short-lived (days to weeks) for
mRNA-based protein expression, to medium-term (weeks to
months) for siRNA or saRNA interventions, and even long-
lasting (potentially years) for CRISPR/Cas9-mediated gene
editing. This versatility allows clinicians to tailor treatment
regimens to the disease’s severity and duration. At the same time,
some RNA molecules are inherently unstable and readily degraded
by nucleases, necessitating effective delivery systems to preserve
their structure and functionality. Given this, various delivery
systems have been developed including LNPs to successfully
transport these RNA molecules to their target site of action while
preserving their therapeutic benefits.

LNPs are non-viral gene delivery systems that are formed by
self-assembly of its lipid components to deliver the encapsulated
RNA molecules to their target site. They possess several advantages
including biocompatibility, non-immunogenic nature, higher in
vivo stability and targeting capabilities. Typically, LNPs contain
four main lipid components: ionizable lipid that binds to the
negatively charged RNA and assists in endosomal escape;
phospholipids to provide structural integrity; cholesterol for
structural stability and mediating cellular uptake; as well as
PEGylated lipids for higher LNP stability in the systemic
circulation. LNPs are most commonly manufactured using the
microfluidic mixing technology in which the four lipid
components (in organic phase) are rapidly mixed with the RNA
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solution (in aqueous phase) in the microfluidic mixer to form the
resultant LNPs via self-assembly (Figure 1).

Following administration, LNPs undergo cellular uptake
commonly through endocytosis following which they are
entrapped into endosomal compartments. In endosomes, the
ionizable lipid becomes protonated to fuse with the endosomal

membrane and release the encapsulated RNA into the cytoplasm
for successful translation (in case of mRNA delivery) (Wang J. et al.,
2024; Haque et al., 2024). These RNA-LNPs have multiple
therapeutic applications and the ensuing sections detail how
these approaches specifically target women’s health conditions,
highlighting recent progress and remaining obstacles.

FIGURE 2
Upper panel represents comparison of different therapeutic modalities including small molecules, monoclonal antibodies, and RNA-LNPs. It
compares their mechanism of actions, advantages, and challenges. Bottom panel shows different RNA types and their molecular mode of actions. The
figure has been made using icons from BioRender.com
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3 RNA application for prevention and
therapy in women’s diseases

3.1 Gynecologic cancers

Table 1 shows some of the clinical trials investigating RNA-LNP
therapies in gynecologic cancers. Of these, four of the active studies
focus on breast cancer - three specifically on triple-negative breast
cancer (TNBC), a subtype that currently lacks effective therapeutic
options (Bianchini et al., 2022). Ovarian cancer follows breast cancers
in trial frequencies, with three studies evaluating RNA-LNPs.
Improper and late-stage diagnosis in ovarian cancer is common
due to subtle early symptoms, and peritoneal metastasis further
complicates eradication (Nomani et al., 2021; Malekshah et al.,
2019; Sarkar et al., 2018). Consequently, more effective treatments
are urgently needed. Here, RNA-LNP vaccines have shown promise,
offering precise targeting and robust immune activation. The
following subsections highlight research, preclinical developments,
and ongoing clinical trials that demonstrate the potential of RNA-
LNPs strategies in gynecological oncology.

3.1.1 mRNA-LNP vaccines in research, preclinical,
and clinical trials for gynecologic cancers

Nucleic acid vaccines present a compelling alternative to
conventional vaccines. Unlike traditional vaccines, nucleic acid
vaccines enable the delivery of multiple antigens simultaneously,
and thus encoding various antigens to stimulate a broader T-cell
response in antigen-presenting cells (APCs). This approach not only
enhances immune recognition but also reduces the risk of protein or
virus-related contaminations during production, thereby
minimizing patient complications and side effects (Ho et al.,
2021; Kulkarni et al., 2021; Pardi et al., 2020). mRNA vaccines,
in particular, demonstrate unique advantages over DNA vaccines,
including higher protein expression, reduced toxicity, and
streamlined, scalable manufacturing (Pardi et al., 2018;
Jahanafrooz et al., 2020; Park et al., 2021; Chaudhary et al.,
2021). Although mRNA is inherently unstable, chemical
modifications (Kim S. C. et al., 2022) and advanced delivery
vehicles such as LNPs help regulated its in vivo half-life and
mitigate degradation.

Furthermore, unlike DNA or viral vaccines, mRNA does not
integrate into the genome, a key safety feature that significantly
lowers the risk of insertional mutagenesis (Campillo-Davo et al.,
2018; Mancianti et al., 2021). Additionally, mRNA is a minimal
genetic vector, which can help evade anti-vector immunity and
therefore, enable repeated administration (McKinlay et al., 2018).
These attributes coupled with LNPs’ proven efficiency in cellular
internalization and endosomal escape (Hou et al., 2021; Kon et al.,
2022; Tenchov et al., 2021) makes mRNA-LNP platforms
particularly appealing for gynecologic malignancies such as
ovarian and breat cancers.

Tumor-specific immune responses can be stimulated by
exploiting surface antigen differences between tumor cells and
normal cells. Unlike infectious diseases, cancer vaccines are used
therapeutically to present specific antigens to the host cells
(Yaddanapudi et al., 2013; Nahas et al., 2018). While traditional
protein/peptide antigens for cancer vaccines have not been
successful, mRNA vaccines have shown promise in anti-cancer

treatments. mRNA vaccines can express tumor-associated
antigens in antigen-presenting cells (APCs) during vaccination,
therefore activating APCs and triggering innate/adaptive immune
responses to inhibit tumor development and progression. As
mentioned, Table 1 depicts some of the current clinical trials
targeting gynecological malignancies using RNA-LNP therapies.
It is worth noting that although these therapy strategies are not
limited to the vaccine approach, we can observe that the prevention
and immune potentiation through RNA vaccines are among the
commonly used and promising methods. Below, we review a few of
the preclinical and clinical studies for the most prevalent
gynecological cancers using RNA therapies.

3.1.1.1 Ovarian and uterine cancers
Ovarian and uterine cancers are among the most prevalent

gynecologic malignancies in the United States (Giaquinto et al.,
2022). Earlier clinical trials of ovarian cancer vaccines showed
limited efficacy often linked to inadequate immune responses
(Nishida et al., 2022; Chow et al., 2020). However, recent
preclinical and early-phase clinical studies have shown promising
results for mRNA vaccines in ovarian cancer. For instance, a first-in-
human phase I trial (NCT04163094) is testing an LNP-based mRNA
vaccine in combination with neoadjuvant chemotherapy in ovarian
cancer patients. The designed mRNA encodes three tumor-
associated antigens specific to ovarian cancer. The outcome of
this clinical trial study is being evaluated by comparing the
patients’ intratumoral T cell expansion specific to the triple
antigens before and after chemotherapy and five rounds of
100 µg mRNA vaccines. Although detailed data remain sparse,
the design reflects the growing emphasis on ovarian markers
such as CA125 (Mucin 16), overexpressed in more than 80% of
ovarian tumors (Singh et al., 2008; Karlan et al., 1988). In another
study, Korzun et al. used LNPs-delivered follistatin (FST) mRNA to
ovarian cancer cells to reduce elevated activin A levels and associated
cachexia (Korzun et al., 2022). In this study, combination therapy
with cisplatin further demonstrated improved survival in mice and
counteracted muscle atrophy and cancer-associated cachexia in vivo.

3.1.1.2 Breast cancers with emphasis on triple-negative
breast cancer (TNBC)

Another gynecological cancer with the highest occurrence rate
in women is breast cancer, which is responsible for one in every six
cancer deaths among women worldwide (Kim et al., 2009; Arnold
et al., 2022). Within this group, TNBC – characterized by the
absence of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2)
expression – comprises approximately 10%–20% of all breast
cancers cases. TNBC exhibits aggressive progression and features
high metastatic rate and poor prognosis (Bianchini et al., 2022;
Ismail-Khan and Bui, 2010; Huang M. et al., 2022). Unlike other
breast cancer subtypes, TNBC lacks therapeutic targets and is
unresponsive to typical hormonal and HER2-based therapies.
However, the emergence of mRNA vaccines offers a promising
solution for TNBC treatment by leveraging the tumor-specific
immune response. In particular, MUC1, a tumor-associated
antigen often overexpressed in various carcinomas, including
breast, ovary, and pancreas (Zhou et al., 2019; Yamamoto et al.,
2019), is a focal point for these vaccines.
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Researchers at Huang and Liu labs have developed mannose-
modified LNPs to deliver MUC1 mRNA directly to dendritic cells
(DCs) in the lymph nodes (Lin et al., 2022; Liu et al., 2018).
Vaccination with these mRNA-loaded LNPs has demonstrated
potent stimulation of immune responses against TNBC tumor
models. Combining MUC1 mRNA vaccine with an anti-cytotoxic
T lymphocyte antigen-4 (CTLA-4) monoclonal antibody further

augmented APC activation, enhanced innate/adaptive immunity,
and inhibited T regulatory pathways (Lin et al., 2022; Liu et al.,
2018). To further improve the efficacy of cancer vaccines,
researchers are exploring combinations with adjuvants, co-
stimulatory therapeutics, immunotherapies, and conventional
therapies. In an ongoing three-arm phase 1 clinical trial named
Mutanome Engineered RNA Immuno-Therapy (TNBC-MERIT),

TABLE 1 Selected ongoing clinical trials of RNA-LNP therapies for women’s diseases including gynecological cancers and viral infections.

Name of the sponsor Target disease LNP technology used Clinical trial stage
(clinical trial number)

References

Gynecological cancers

University Medical Center
Groningen

Ovarian Cancer W_ova1 vaccine (mRNA-LNP) plus neoadjuvant
chemotherapy

Phase 1, (NCT04163094) NCT04163094

BioNTech SE TNBC IVAC_W_bre1_uID and IVAC_M_uID
(mRNA-LNP vaccine)

Phase 1 – MERIT study,
(NCT02316457)

NCT02316457

BioNTech SE CLDN6-positive tumors
(ovarian, endometrial
cancers)

BNT211 (CLDN6 CAR-T plus self-amplifying
RNA-LPX vaccine)

Phase 1, (NCT04503278) NCT04503278

Moderna Tx. Inc. and
AstraZeneca

Solid tumors (TNBC) mRNA-2752 (OX40L, IL-23, and IL-36γmRNA-
LNP) plus Immune Checkpoint Blockade
therapy

Phase 1, (NCT03739931) NCT03739931

Moderna Tx. Inc Advanced solid tumors
(Ovarian cancer)

mRNA-2416 (OX40L mRNA-LNP) plus
durvalumab

Phase 1-2, (NCT03323398) NCT03323398

Moderna Tx. Inc Advanced solid tumors mRNA-4157 (mRNA-LNP vaccine) plus
pembrolizumab

Phase 1 - KEYNOTE-603 study,
(NCT03313778)

NCT03313778

MedImmune LLC Solid tumors MEDI1191 (IL-12 mRNA-LNP) plus
durvalumab

Phase 1 (NCT03946800) NCT03946800

Genentech, BioNTech SE Advanced solid tumors BNT122 (personalized RNA-LPX cancer vaccine
encoding individual tumor mutations) plus
atezolizumab

Phase 1, (NCT03289962) NCT03289962

Sanofi, BioNTech SE Advanced solid tumors BNT131 (SAR441000 mRNA vaccine) plus
cemiplimab

Phase 1 (NCT03871348) NCT03871348

BioNTech SE Solid tumors BNT151 (RNA-LPX cancer vaccine) Phase 1, 2 (NCT04455620) NCT04455620

BioNTech SE Solid tumors BNT152 plus BNT153 (RNA-LPX cancer
vaccine)

Phase 1 (NCT04710043) NCT04710043

Alnylam Pharmaceuticals Solid tumors (TNBC) ALN-VSP02 (siRNA-KSP) LNP Phase 1, (NCT01158079) NCT01158079

M.D. Anderson Cancer Center,
National Cancer Institute (NCI)

Advanced Malignant Solid
Neoplasm

EphA2-targeting DOPC-encapsulated siRNA
nanoparticles

Phase 1, (NCT01591356) NCT01591356

Dicerna Pharmaceuticals, Inc Solid tumors DCR-MYC (MYC-siRNA-LNP) Phase 1 (NCT02110563) NCT02110563

Silence Therapeutics Solid tumors Atu027 (AtuPLEX), siRNA-based cationic
lipoplex plus small anticancer molecules

Phase Ib/IIa (NCT00938574) NCT00938574

Alnylam Pharmaceuticals Solid tumors (breast cancer) ALN-VSP02 (VEGF, KSP siRNA LNP) Phase 1, (NCT00882180) NCT00882180

Viral Infections

BioNTech SE HPV16-positive solid tumors BNT113 (HPV16 E6 and E7 oncoproteins RNA-
LPX vaccine) plus pembrolizumab

Phase 2 - AHEAD-MERIT
study, (NCT04534205)

NCT04534205

Moderna Tx. Inc Zika virus mRNA-1325, mRNA-1893 (mRNA-LNP
vaccine)

Phase 2, (NCT03014089),
(NCT04064905 &
NCT04917861)

Ref: (Essink et al.,
2023)

National Institute of Allergy and
Infectious Diseases (NIAID)

HIV BG505 MD39.3, BG505 MD39.3 gp151, and
BG505 MD39.3 gp151 CD4KO HIV Trimer
mRNA Vaccines

Phase 1 - HVTN 302 study,
(NCT05217641)

NCT05217641

Moderna Tx. Inc Cytomegalovirus (CMV) mRNA-1647 Phase 3 NCT05085366
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LNPs serve as the basis for an individualized RNA vaccine (IVAC™)
encoding tumor-associated antigens against TNBC (NCT02316457).
This trial evaluates the safety, tolerability, and induced T-cell
responses and attempts to treat each patient with the relevant and
immunogenic RNA vaccines based on the individual patient’s tumor
characteristics. The flexibility and ease of design andmanufacturing of
customized RNA-LNP vaccines can potentially provide transforming
care for highly aggressive breast cancers subtypes and increase the
success rate in women’s malignancies more broadly.

3.1.2 siRNA-LNPs for gynecologic cancers
In addition to mRNA-based vaccines, LNPs have also been

explored for delivering siRNA in several gynecologic cancers. Several
lipid nanocarrier systems are undergoing or have completed clinical
trials to assess their safety, efficacy, and translation potential. For
instance, ALN-VSP02 (Alnylam Pharmaceuticals) formulation
combines kinesin spindle protein (KSP) and vascular epithelial
growth factor (VEGF)-siRNA encapsulated in LNP system. A
phase I trial enrolled 30 patients with advanced solid tumors,
administering intravenous doses of ALN-VSP02 in dose-
escalation (0.1–1.5 mg/kg). No major safety concerns were
observed, and notably, one patient with endometrial cancer and
hepatic metastasis achieved a complete response after 50 doses of
ALN-VSP02 (Tabernero et al., 2013a). A dose of 1.25 mg/kg every
2 weeks was recommended for subsequent Phase II evaluations
[NCT00882180 (Cervantes et al., 2011; Tabernero et al., 2013b)].

Atu027 (Silence Therapeutics) is yet another siRNA-based LNP
formulation designed to knockdown protein kinase N3 (PKN3). In a
Phase Ib/IIa (AtuPLEX) involving patients with advanced solid
tumors (Strumberg et al., 2012), Atu027 was administered as a
single agent and in combination with other anticancer therapies. It
was proven to be well-tolerated up to 0.180 mg/kg, with dose-
dependent increases in siRNA antisense strand concentrations in
plasma. Dose escalation is ongoing for this study.

DCR-MYC or DCR-M1711 (Dicerna Pharmaceuticals), is a
Dicer substrate siRNA (DsiRNA) encapsulated in EnCore™ LNP
to downregulate c-Myc across multiple solid tumors. Phase Ib/II
trial demonstrated a favorable safety profile at various doses, with
some showing promising tumor shrinkage after one cycle of
0.1 mg/kg dose (Tolcher et al., 2015). Despite encouraging initial
results, the trial was terminated due to dose-limiting toxicities and
sponsor decisions (Harrington et al., 2021).

EPHARNA, also referred to as EphA2-siRNA-DOPC (NCI)
formulated by encapsulation of EphA2-siRNA within
dioleoylphosphatidylcholine (DOPC) liposoms to reduce
EphA2 expression in tumors such as breast and ovarian cancers.
When tested in mice, single-dose EPHARNA administration
showed minimal toxicity or any pathologic or dose-related
microscopic findings in acute or recovery phases. Similarly,
minimal infiltration of mononuclear cells was found in major
organs when tested in Rhesus macaques. This formulation
entered a phase I trial to be tested intravenously twice weekly in
recruited patients with advanced metastatic solid cancers
[NCT01591356, (Landen et al., 2005)].

3.1.3 MicroRNA-LNPs for gynecologic cancers
MicroRNAs (miRNAs) are key regulators of pathophysiological

processes in gynecologic malignancies, acting as either oncogenes

(oncomiRs) or tumor suppressors. LNPs, in turn, can effectively
deliver miRNA therapeutics – alone or in combination – to treat
solid tumors, including TNBC. For instance, Hayward et al.
developed LNPs with hyaluronic acid (HA)-modified LNPs to
deliver tumor suppressor MicroRNA125a-5p in HER2 positive
metastatic breast cancer (Hayward et al., 2016). These HA-LNPs
could cause the knockdown of the HER2 proto-oncogene in patient-
derived metastatic breast cancer cells (21MT-1), thereby impairing
essential signaling pathways involving phosphoinositide 3-kinases
(PI3K)/protein kinase B (AKT) and mitogen-activated protein
kinase (MAPK) and inhibiting tumor growth.

Similarly, Dinami et al. signified that LNPs incorporating miR-
182-3p could reduce telomeric repeat-binding factor 2 (TRF2)
expression in patient-derived TNBC xenograft models,
significantly impairing tumor progression (Dinami et al., 2023).
Additionally, this LNP formulation could cross the blood-brain
barrier to address metastatic brain lesions. In another study,
Nevskaya and colleagues demonstrated that delivering a
combination of three miRNAs; miR-195-5p, miR-520a, and miR-
630, using LNPs, could result in downregulation of SOX2, MYC,
TERT, and FZD9 genes in human breast cells and inhibit stemness,
thus reducing lung metastasis in vivo C57BL/6 mouse model
(Nevskaya et al., 2024). Given this, the development of
nanotechnology, especially LNPs, that deliver miRNA
therapeutics have shown growing promise of miRNA-LNP
technology for future clinical applications in gynecologic oncology.

3.1.4 CRISPR/Cas9-LNPs for gynecologic cancers
There is broad ongoing research to identify the potential of

CRISPR-Cas9 technology in gynecological cancers, thereby laying
grounds for its further clinical application. For instance, Tang et al.
used phenylboronic acid (PBA)-derived LNPs to achieve cell-
selective genome editing in sialic acid (SA)-overexpressing
cervical cancer cells (Tang et al., 2019). Delivery of p53 mRNA
and CRISPR components successfully knocked out the
HPV18E6 gene, significantly inhibiting tumor growth in vitro
and in vivo.

Antibody-conjugated LNPs provide an additional route to
targeted genome editing using CRISPR/Cas approach. Rosenblum
et al. functionalized CRISPR LNPs with an epidermal growth factor
receptor (EGFR) antibody, enabling selective uptake into
disseminated ovarian tumors. This strategy yielded ~80% gene
editing and extended survival by 80% in an ovarian cancer
mouse (OV8-bearing) model (Rosenblum et al., 2020). Zhang
et al. advanced the platform by fabricating a multiplexed
dendrimer LNP (siFAK + CRISPR PD-L1-LNPs) co-delivering
focal adhesion kinase (FAK) siRNA, Cas9 mRNA, and sgRNA to
human ovarian cancer cells (IGROV1) (Zhang et al., 2022). In an
ovarian cancer xenograft model (ID8-Luc), PD-L1 knockdown and
FAK inhibition together significantly reduced metastasis. This may
highlight the potential synergy between CRISPR-based gene editing
and RNA interference in gynecologic oncology.

3.2 Viral infections

Table 1 also summarizes clinical trials investigating RNA-LNP
therapies for viral infections. The breadth of preclinical and clinical

Frontiers in Nanotechnology frontiersin.org07

Nomani et al. 10.3389/fnano.2025.1475969

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1475969


research spans multiple pathogens that disproportionately affect
women, including human papillomavirus (HPV)–related cancers
(e.g., NCT04534205 by BioNTech), human immunodeficiency virus
(HIV; NCT05217641 by NIH), Zika virus (NCT04917861 by
Moderna), cytomegalovirus (CMV; NCT05085366 by Moderna),
and genital herpes simplex virus (HSV; NCT06033261 by Moderna
and NCT05432583 by BioNTech). Information regarding the details
of clinical trials and the status of ongoing studies on these topics can
be found using the search engine at (www.clinicaltrials.gov). In the
following two subsections, we will review a few of these studies but
with more emphasis on the additional preclinical and research
studies found in the literature related to RNA-LNP for HPV and
HIV infection and highlighting their relevance to women’s health.

3.2.1 Human papillomavirus (HPV)
Human papillomavirus (HPV) is a non-enveloped DNA virus

with over 200 identified serotypes, about 40 of which can infect the
anogenital and mucosal lining through sexual contact. The Centers
for Disease Control and Prevention (CDC) reports that more than
42 million Americans are infected with high-risk pathogenic
subtypes of HPV, with an annual detection of 13 million new
infections (About Human Papillomavirus, 2025). Fifteen high-
risk HPV subtypes have been identified to cause cervical
intraepithelial neoplasia and squamous cell carcinomas (Quinlan,
2021; Balasubramaniam et al., 2019). These high-risk subtypes
contribute to various cancers, including cervical, oropharyngeal,
anal, penile, vaginal, and vulvar, the majority of these through the
action of the E6 and E7 oncoproteins, which alter host cellular
functions leading to the development of cancerous cells
(Balasubramaniam et al., 2019; Longworth and Laimins, 2004).
For instance, cervical cancer, which affects nearly 500,000 women
annually and leads to 300,000 deaths worldwide (Cohen et al., 2019),
is predominantly caused by HPV and can be prevented through
routine screening, enabling healthcare providers to identify and
remove pre-cancerous lesions. Additionally, most vaginal and vulvar
cancers are caused by HPV. Furthermore, over 90% of anal cancers
are HPV-induced and more common in women than men (Cohen
et al., 2019).

Extensive research has shown that HPV-positive tumors exhibit
high levels of lymphocyte infiltration. This, in turn, provides a strong
rationale for immunotherapy to modulate HPV-related
carcinogenesis. Various strategies have been developed to activate
the adaptive immune system against HPV-infected tumors. These
strategies include immune checkpoint blockade, viral antigen
recognition through therapeutic vaccines, adaptive cell therapies,
and their combinations with radiotherapy or chemotherapeutics.
Unfortunately, there are currently no specific therapies available for
HPV-induced cancers, such as cervical cancers. Nevertheless,
nanoparticle formulations such as gold, polymeric, or lipid
nanoparticles have been investigated to eliminate HPV infection
or provide curative measures for these cancers (Medina-Alarcon
et al., 2017; Rupar et al., 2019).

Targeting the HPV E6/E7 oncoproteins is a promising
therapeutic approach for HPV-related cancers. This includes
inducing immune cell populations against E6/E7, silencing
oncoprotein expression through RNA interference (RNAi), or
utilizing genome editing tools like the CRISPR/Cas system to
knock down or knock out the E6 and E7 oncogenes. These gene

editing approaches can be combined with LNPs to enhance
therapeutic efficiency (Xiong et al., 2021; Aghamiri et al., 2020).
Kampel et al. demonstrated that anti-EGFR-targeted LNPs carrying
anti-E6/E7 siRNAs led to approximately 50% greater cancer
regression than the untargeted siRNA-LNPs, thus providing a
promising pathway for cancer treatment through oncoprotein
elimination (Kampel et al., 2021). Moreover, E6/E7 oncoprotein-
encoded mRNA LNPs showed enhanced antitumor efficacy when
co-administered with the stimulator of interferon genes (STING)
adjuvant systemically (Tse et al., 2021). Additionally, mRNA-LNPs
have been developed to deliver mRNA encoding HPV antigens to
cervical cancer cells (Sahin et al., 2020; Kranz et al., 2016; Kreiter
et al., 2008). This approach induces significant proliferation of
cytotoxic lymphocytes and stimulates immune responses against
HPV-positive tumors. Also, Da Silva et al. demonstrated that a single
low-dose immunization with any of the three developed LNP-based
herpes simplex virus type 1 glycoprotein D (gDE7) mRNA vaccines
(self-amplifying mRNA, unmodified mRNA, and nucleoside-
modified non-replicating mRNA vaccines) resulted in the
activation of E7-specific CD8+ T cells, generated memory T cell
responses to prevent tumor relapses, and destroyed cervical tumors
(Ramos da Silva et al., 2023a). Furthermore, combining mRNA
vaccines encapsulated in lipid nanocarriers with immune
checkpoint inhibition shows potential for improving the clinical
efficacy in cervical cancer (Grunwitz et al., 2019).

3.2.2 Human immunodeficiency virus (HIV)
HIV affects women worldwide, with approximately 53% of the

39.0 million people living with HIV in 2022 being women over
15 years of age (Grunwitz et al., 2019). In addition to medical
challenges, women face significant psychosocial burdens,
particularly related to preventing mother-to-child vertical
transmission (Fauk et al., 2022). HIV is a retrovirus that enters
the host by targeting the cluster of differentiation 4 (CD4) receptor
on immune cells and binds to co-receptors like C-C chemokine
receptor type 5 (CCR5) and C-X-C chemokine receptor type 4
(CXCR4). The virus reverse transcribes its RNA, integrates into the
host DNA, and consequently produces viral particles infecting new
host cells. Dendritic cells infected with the virus can transmit it to
T cells, leading to further virus dissemination. Studies suggest that
the R5 strain of HIV exhibits preferential amplification and
dissemination (Deeks et al., 2015; Morrow et al., 2007).
Transmission of HIV can occur through mucosal surfaces such
as rectal, genital, and, less commonly, oral. While vaginal mucus
provides some protection against viral entry, the thin mucus lining
of the rectum allows direct access to leukocytes (Morrow
et al., 2007).

Current HIV therapeutics include five classes of antivirals: entry
inhibitors, reverse transcription inhibitors (RTIs; including both
nucleoside RTIs and non-nucleoside RTIs), integrase/transfer
inhibitors (INSTIs), and protease inhibitors. Standard first-line
regimens often combine an INSTI with RTIs, sometimes
augmented with CYP3A inhibitors for longevity and efficacy
(Gunthard et al., 2016; HIV/AIDS. In, 2023). In cases of HIV
with multiple drug resistance, two new antibody-based
therapeutics, ibalizumab (a CD4 post-attachment inhibitor) and
leronlimab (a CCR5 inhibitor), can be considered. These antibodies
are administered intravenously every 7–14 days to complement
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existing antiviral therapies. FDA-approved antiretroviral drugs
disrupt virion replication by targeting different stages of the virus
life cycle, including viral genome replication, protein cleavage,
packaging, and virus release from cells. Although these regimens
suppress viral loads below detectable limits, they cannot eliminate
integrated viral genomes in immune cells. To address the issue of the
integrated viral genomes, LNPs with gene editing capabilities are
being developed (Herskovitz et al., 2021). These LNPs, co-
encapsulating Cas9 mRNA and TatDE guide RNAs (gRNAs), can
cleave the HIV genome within infected cells through tumor necrosis
factor alpha (TNF-α) stimulation, effectively preventing viral
outgrowth (Herskovitz et al., 2021). In parallel, mRNA-LNPs
conjugated to anti-CD4 antibodies are being explored to
selectively target HIV-infected CD4+ T cells (Tombacz et al.,
2021), while others focus on delivering HIV-1 gp160–encoding
mRNA or anti-CCR5 siRNA to prevent viral entry (Saunders
et al., 2021), (Mu et al., 2022; Traore et al., 2022). For instance,
Pardi et al. showed that following 6 weeks of a single immunization
with mRNA-LNP encoding Env gp120, rabbits and rhesus macaques
produced anti-gp120 IgG titers, which were further boosted by
subsequent immunization (Pardi et al., 2019). Beyond preventive
strategies, Pardons et al. illustrated the application of LNPs where
the reactivation capacity of Tat mRNA-LNP was demonstrated in
CD4+ T cells from HIV patients. Combined with panobinostat, it
also caused potent latency reversal, enabling multi-omic analysis of
the HIV-1 reservoir for future applications (Pardons et al., 2023).

In another example, a novel approach of inducing “broadly
neutralizing antibodies” (bnAbs) against the conserved sites of the
HIV-1 spike created a significant hope for a long-lasting prevention
and treatment of this disease, specifically by using germline targeting
method (Liu Y. et al., 2020; Xie et al., 2024). In this strategy, naïve
B cells are recruited to the germinal center and by a guided
maturation and sequential exposures to the B cells to the
designed antigens, they will be activated and the related memory
B cells will be generated. These memory B cells can induce the required
immune response (bnAbs) when the protection is needed against the
virus infection. In a clinical trial, the germline targeting method was
evaluated as a proof of the concept through inducing VCR01-class of
bnAbs for engineered outer domain germline targeting version 8 (eOD-
GT8) 60mer [(Cohen et al., 2023), NCT03547245]. Given the ease of
design, scale up, and adaptability of the mRNA to variants, mRNA-LNP
can also be a promising candidate to induce the immunogens in germline
targets. For instance, Xie et al. reported the efficacy of a mRNA-LNP
delivering germline-targeting N332-GT5 and two other booster
immunogens (B11 and B16) to immunize mice against HIV-1 virus
in BG18gH mouse model. They found that their prime-boost strategy
using mRNA-LNPs could derive affinity maturation in the target B cells
and elicit precursors to bnAbs against HIV-1 variants. They concluded
that this strategy may resolve some of the major HIV-related vaccine
developments challenges (Xie et al., 2024).

Though maternal antibodies provide infants with crucial early
immune protection, they can also interfere with de novo infant
antibody responses. This challenge is especially pertinent for HIV-1
vertical transmission. To address maternal antibodies-mediated
suppression of immune response, mRNA-LNPs vaccines are
being explored in preclinical models. Willis et al. (Willis et al.,
2020) reported a nucleoside-modified mRNA-LNP vaccine that
could establish prolonged germinal center reaction and partially

overcome maternal antibody neutralization in mice pups to induce
de novo immune response against influenza virus. They
hypothesized that this prolonged immune response could be due
to the prolonged antigen availability by mRNA-LNPs leading to
stronger germinal center responses.

Despite efforts in antiviral development, no definitive HIV cure
or universal prophylaxis exists. Emerging RNA-LNP platforms,
bnAbs, and combination therapies may improve patient
outcomes by targeting multiple steps in viral pathogenesis, with
particular relevance to maternal and infant health (Landovitz
et al., 2023).

3.3 Other disease areas affecting
women’s health

Although gynecologic cancers and viral infections are among
the main concerns in women’s health, additional conditions, such
as osteoporosis, endometriosis, uterine fibroids, and various
congenital disorders, also significantly affect the well-being of
many women. In this section, we discuss the potential of RNA-
LNP technologies to address these conditions by offering novel
RNA-based therapeutic strategies that go beyond the scope of
traditional interventions.

3.3.1 Osteoporosis
Osteoporosis is a common disorder characterized by low bone mass,

deterioration of bone microarchitecture, and increased risk of brittle
fracture (NIH, 2001). The imbalance between bone formation and
resorption is more prevalent in postmenopausal women, leading to
heightened susceptibility to fractures. Current anti-osteoporosis
treatments primarily include hormonal therapies and
bisphosphonates, both of which aim to prevent bone resorption or
enhance restoration.

Gene therapy offers a promising route for novel osteoporosis
treatments. For instance, studies targeting bone marrow
mesenchymal stem cells (MSCs) have demonstrated the potential
of manipulating endogenous bone morphogenetic proteins (BMPs)
and growth differentiation factors (GDFs) to promote osteo-
induction (Vhora et al., 2019). Vhora et al. (2019) employed
ionizable LNPs bearing bone-homing peptides to deliver plasmid-
encoded BMP-9, thereby stimulating osteoblastic lineage cells. In
another study, Basha et al. (2022) used LNPs encapsulating siRNA to
silence the suppressor gene GNAS, facilitating bone restoration.
Also, Xue and colleagues built upon these concepts by developing a
series of bisphosphonate (BP) lipid-like materials to identify an BP-
LNP formulation 490BP-C14. This formulation improved mRNA
expression and localization in the in vivo bone microenvironment
when tested in mice (Xue et al., 2022). Intravenous administration of
490BP-C14 resulted in therapeutic bone morphogenetic protein-2
secretion from the bone microenvironment. Such targeted LNP
systems could complement current therapies by preventing bone
loss and enhancing new bone formation in women diagnosed with
osteoporosis.

Non-coding RNAs – such as RNA interference (RNAi), circular
RNAs (circRNAs), and long non-coding RNAs (lncRNAs) – have
also demonstrated therapeutic potential for managing osteoporosis
(Ko et al., 2020; Silva et al., 2019). CircRNAs are particularly
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interesting because of their unique structure, which makes them less
prone to degradation than non-circular RNAs (Enuka et al., 2016).
They have been shown to serve as biomarkers for the treatment of
osteoporosis by promoting osteogenesis (Huang et al., 2019; Zhao
et al., 2018; Yu and Liu, 2019; Hansen et al., 2013; Chen et al., 2019;
Gu et al., 2017). In this regard, LNPs, as the delivery vehicle, can
improve RNA therapy for osteoporosis by enhancing its efficacy by
successfully delivering the RNA cargo to the desired cell lineages
(Basha et al., 2016; Hallan et al., 2022).

3.3.2 Endometriosis
Endometriosis is caused by the ectopic endometrial tissue

dispersion and growth outside the endometrium (Kabani et al.,
2022). It affects roughly 10% of women of reproductive age,
causing pain and infertility with a considerable impact on quality
of life (Giudice and Kao, 2004; Culley et al., 2013). The currently
available treatments include surgical interventions and medications
such as nonsteroidal anti-inflammatory drugs (NSAIDs) and
hormonal therapy using progestins (Vercellini et al., 2011; Becker
et al., 2017). However, these treatments have several side effects and
are not always effective in women who plan to conceive (Vercellini
et al., 2011). Therefore, there is a growing need for nonhormonal, safe,
and effective therapies that can target endometriosis by inhibiting the
development of new lesions (Adams et al., 2017).

Non-coding RNAs (ncRNAs), such as miRNAs and lncRNAs,
are among the non-conventional therapeutic tools for gene
regulation and potential treatment of endometriosis (Adams
et al., 2017; Evans et al., 2016). Many studies have demonstrated
that miRNAs significantly regulate gene expression in endometriosis
(Panir et al., 2018; Teague et al., 2010). Preclinical studies in murine
models have shown that the therapeutic delivery of miRNAs, such as
Let-7b and miRNA-142-3p, can effectively suppress endometriotic
lesions via downregulation of various genes that have a role in
endometriosis, including Kruppel-like factor 9 (KLF9) and vascular
endothelial growth factor A (VEGF-A) signaling (Sahin et al., 2018;
Ma et al., 2019). Moreover, miRNAs can modulate endometrial
inflammation by regulating pro-inflammatory cytokines, such as
TNF-α, interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in
patients with endometriosis (Nematian et al., 2018).

LncRNAs likewise influence transcription and translation, with
aberrant expression linked to endometriosis onset (Yan et al., 2020).
For example, downregulation of the lncRNA H19 reduces
endometrial cell dissemination via the H19/let-7/insulin-like
growth factor 1 receptor (Igf1r) pathway (Ghazal et al., 2015).
Another study demonstrated that a lncRNA (LINC00261) could
inhibit the growth and proliferation of endometriotic cells (Sha
et al., 2017).

In parallel, nanoparticle-based delivery strategies have
shown promise for targeting endometriotic cells. Bedin et al.
combined a low-density lipoprotein (LDL)-like nanoemulsion
loaded lipid nanoparticles (LDE) with a chemotherapeutic agent
to target endometrial cells and prevent significant systemic side
effects of chemotherapy (Bedin et al., 2019). A significant uptake
of LDE was observed in the endometriotic foci to enhance the
consumption of LDL by these endometrial cells. Building on
these findings, RNA-LNP systems designed to modulate key
regulatory RNAs may offer an alternative therapeutic approach
for endometriosis.

3.3.3 Uterine fibroids
Uterine fibroids (leiomyomas) are the most common benign

uterine tumors in reproductive-age women, impacting up to 70%
over their lifetimes (Baird et al., 2003; Wise and Laughlin-
Tommaso, 2016; Al-Hendy et al., 2017; Yang et al., 2022).
Although benign, fibroids can cause extensive symptoms,
including heavy menstrual bleeding, pelvic discomfort, and
infertility. Standard treatments – ranging from surgery and
hormonal therapies (e.g., gonadotropin-releasing hormone or
GnRH, agonists) to uterine artery embolization – often carry
side effects or risks that necessitate the search for safer
alternatives (Yang et al., 2022). While published research on
RNA-LNPs for fibroid treatment is limited, other nanoparticle
approaches have demonstrated feasibility for delivering
therapeutic nucleic acids. For instance, a peptide-based
nanoparticle targeting αvβ3 integrin transported a suicide gene
(HSV-TK) to uterine leiomyoma cells, increasing cytotoxicity with
ganciclovir (Egorova et al., 2022). Under a similar strategy, the
researchers demonstrated that a peptide-based magnetic
nanoparticle formulation could promote the delivery of plasmid
DNA to uterine leiomyoma cells and induce cell death after
sequential GCV treatments (Shtykalova et al., 2022). Given
LNPs’ favorable safety profiles and proven clinical success, their
application in uterine fibroid therapy – especially for gene-based or
immunotherapeutic approaches – holds potential. Indeed,
immunotherapy is an emerging area of investigation, as evidenced
by a Phase II trial using inactivated myoma tissue and blood samples
for oral vaccination (NCT03550703). By leveraging tumor-specific or
personalized antigenic targets, mRNA-LNP vaccines akin to those
developed for certain gynecologic cancers may represent a future
direction for fibroid management.

3.3.4 Fetal congenital disorders and other
complications in pregnant women

Congenital disorders involve structural or functional
abnormalities that arise prenatally, often causing significant
morbidity and mortality. Existing interventions – such as fetal
surgery, in utero gene therapy, and in utero stem cell
transplantation (IUSCT) – frequently pose high risks (Swingle
et al., 2023a; Palanki et al., 2021). Amongst these, in utero gene
therapy offers advantages, including being minimally invasive
and achieving sustained phenotype correction for many genetic
diseases. Recent advances have explored in utero mRNA-LNP
delivery to treat or prevent congenital conditions. Swingle and
co-workers developed stable mRNA-LNPs for intra-amniotic
delivery to show potent mRNA delivery in vitro and in utero
in a murine model (Swingle et al., 2022). They used the
orthogonal design of experiments (DOE) to screen a space of
256 possible LNP formulations. They identified that more stable
mRNA-LNPs have higher in utero mRNA delivery than unstable
LNPs. Therefore, developing this stable ionizable RNA-LNP
formulation in amniotic fluid paved the way for screening
potential LNPs designed for prenatal delivery to treat
congenital diseases in pregnant women. This group also
formulated VEGF-A mRNA-LNPs for delivery to the placental
cells, including trophoblasts, endothelial cells, and immune cells,
to achieve placental vasodilation that would benefit maternal and
fetal health (Swingle et al., 2023b).
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Another research group also built a library of ionizable LNPs for
in utero mRNA delivery to mouse fetuses that resulted in the
accumulation with the livers, lungs, and intestines with higher
efficiency and safety as opposed to DLin-MC3-DMA and
jetPEI®-based delivery systems (Riley et al., 2021). There have
also been attempts to target organs like the heart, kidneys, lungs,
and gastrointestinal tract via in utero delivery of LNPs. Gao et al.
demonstrated that using mRNA-LNP complexes, 0.64%–12.4% of
the cells in the lungs, heart, liver, kidneys, brain, and gastrointestinal
tract were transfected with low toxicity. Additionally, LNPs
complexed with Cas9 mRNA and sgRNA could edit 0.2%–0.8%
of cells in the liver, heart, gastrointestinal tract, and kidneys of
Ai9 mice following in utero delivery (Gao et al., 2023). This
extrahepatic targeting could be leveraged to address various
congenital diseases in pregnant women.

Furthermore, hereditary angioedema (HAE), a rare genetic
disorder with a strong female predominance, exemplifies how
RNA-LNP delivery might also combat rare pregnancy-aggravated
conditions (Caballero et al., 2014). For example, NTLA-2002, a
CRISPR/Cas9 LNP platform, was developed by Intellia
Therapeutics® to target the kallikrein B1 (KLKB1) gene. Its single
administration resulted in ~70% KLKB1 gene editing and >90%
reduction of kallikrein protein when tested in mice and monkeys.
NTLA-2002 is undergoing a Phase II clinical trial in recruited HAE
patients (NCT05120830).

The diverse applications of RNA-LNP therapeutics in women’s
health, from gynecologic cancers and viral infections to osteoporosis
and congenital disorders, underscore the immense potential of this
platform. Nevertheless, the successful translation of RNA-LNPs into
clinical practice hinges on overcoming multiple challenges –

particularly those related to targeted delivery, safety, and long-term
efficacy. The following section explores these obstacles and discusses
emerging strategies to optimize RNA-LNPs for women’s health
applications.

4Challenges and opportunities of RNA-
LNPs in women’s health application

4.1 Targeted RNA-LNP delivery for
female disorders

LNPs are a powerful system for delivering nucleic acids, which
offers numerous advantages such as efficient packaging, high cargo
capacity, low immunogenicity, scalable manufacturing, long-term
physical stability, and adjustable physicochemical properties (Cullis
and Hope, 2017; Kenjo et al., 2021). Despite these strengths,
conventional LNPs often accumulate in and are extensively
cleared by the liver for two main reasons: 1) anatomical and
physiological features that foster LNP uptake (Tsoi et al., 2016)
and 2) the formation of a protein corona that intensifies hepatic
clearance (Dilliard and Siegwart, 2023; Loughrey and Dahlman,
2022; Akinc et al., 2019). Hence, to unlock the full potential of RNA-
LNPs in women’s health, it is crucial to achieve non-liver-targeted
LNP delivery. Several strategies have been proposed to mitigate liver
uptake and reroute LNPs to other organs, tissues, and cells –many of
which are directly applicable to female conditions. Below, we outline
three broad approaches for optimizing RNA-LNP delivery: local

administration, passive targeting, and active targeting. Select
examples then illustrate how each strategy can be harnessed for
women’s diseases.

4.1.1 Local delivery of RNA-LNPs
A straightforward way to bypass hepatic accumulation of LNPs

is to change the administration route from intravenous delivery to
other administration routes, which could shorten the delivery path
and enhance accessibility to the target cells (Figure 3)
(Chenthamara et al., 2019; Kim J. et al., 2022; Zimmermann
et al., 2022; Leong and Ge, 2022; Patel et al., 2019; Kumbhar
et al., 2022; Bardoliwala et al., 2021). For example, intra-tumoral
injection has been utilized to deliver LNPs and could slow down
tumor progression or even eliminate established tumors (Liu et al.,
2022; Li et al., 2020; Hsu et al., 2013). In one study on a TNBC
model, a tumor acidity-responsive nanoparticle released
chemokine C-C motif ligand 25 (CCL25) protein and cluster of
differentiation 47 (CD47) siRNA sequentially after intra-tumoral
administration, and therefore enhanced immunotherapy against
the cancer cells by promoting CCR9+ CD8+ T cell tumor
infiltration (Chen et al., 2020).

Additionally, intramuscular (IM) administration has been
chosen for mRNA vaccine development. This approach can
shorten the route for LNPs to lymph node clusters and enhance
immune responses (Miao et al., 2021; Hassett et al., 2019). Zika virus
is of particular concern to women’s health because it affects them at
nearly twice the rate of men and can be transmitted from a pregnant
woman to her fetus. Richner et al. developed the modified mRNA
vaccines with LNP, successfully preventing Zika virus disease
through IM delivery. One concern for Zika virus mRNA therapy
is that the produced antibody against Zika may cross-react with the
Dengue virus and enhance its infection in cells. However, Richner
et al. have shown that the mRNA-LNP approach reduced cross-
reaction risk and sensitized individuals to subsequent exposure to
Dengue virus in mice (Richner et al., 2017). Furthermore, clinical
trials for mRNA-1893 and mRNA-1325 from Moderna are
underway to combat the Zika virus (Essink et al., 2023).

The intraperitoneal (IP) route of administration has also been
explored for targeted gene editing using LNPs as delivery systems in
gynecological cancers such as ovarian cancer. For instance,
Rosenblum and Gutkin et al. developed EGFR-targeted CRISPR-
LNPs against PLK1 (sgPLK1-cLNPs) that led to selective uptake into
disseminated ovarian cancer cells and facilitated up to ~80% gene
editing in vivo, significantly inhibiting tumor growth and improving
survival by 80% in a mouse model (Rosenblum et al., 2020).

Another method of the local delivery in female disorders is the
intravaginal administration. Using vaginal delivery, the cargos avoid
liver first-pass clearance and systemic dilution effects and can be
used for uterovaginal viral infections and gynecologic cancers. Upon
vaginal administration, the first uterine pass effect (Campana-
Seoane et al., 2019; De Ziegler et al., 1997) allows preferential
drug accumulation in the uterus and vagina through counter-
current drug exchange between the blood in the vaginal veins
and the uterine artery. Vagina tissues have a high surface area
with high blood flow in the muscular layers, which helps improved
drug absorbance at this route. Also, it has been reported that adding
polyethylene glycol to the surface of liposomes can enhance tissue
penetration of intravaginal delivery against HPV infection in the ex
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vivo sheep vaginal epithelium model (Joraholmen et al., 2017).
However, unlike the successful application of intravaginal
delivery of small molecules, for macromolecules such as RNAs,
the thick mucosal layer of vagina and fast clearance of the mucous
layer limit the delivery. Additionally, the delivery of RNA molecules
through this route faces another challenge due to the low
pH (3.5–4.5) of the vagina’s surface (Kim et al., 2018). Since
RNA-LNPs are a self-assembled and pH-dependent structure, the
low pH of the vaginal environment may significantly affect the
stability of the particles and their efficacy.

In fetal congenital disorders, in utero delivery can be a
valuable option for gene delivery (Swingle et al., 2022; Riley
et al., 2021; Ullrich et al., 2021). It can be accomplished either
by injection in the vitelline vein (which provides direct access to
the fetal liver) or through intra-amniotic fluid (Palanki et al.,
2021; Swingle et al., 2022; Ullrich et al., 2021). For example, in a

study by Riley et al., different LNPs were screened for luciferase
mRNA delivery via mouse vitelline vein injection (Riley et al.,
2021). They identified formulations that efficiently could
accumulate within fetal livers, lungs, and intestines compared
to DLin-MC3-DMA and jetPEI. They observed that the selected
LNPs could deliver mRNAs and induced significant expression of
the target protein in the liver. Also, from the same scientific
group, Swingle et al. engineered a library of LNPs using
orthogonal design of experiments to evaluate the effect of LNP
structure on their stability in amniotic fluid and to enable intra-
amniotic mRNA delivery in utero (Swingle et al., 2022). Their
study found multiple lead LNPs that were stable in ex utero
amniotic fluids of different animal species and in humans. Also,
they showed that these ex-vivo screened LNPs enabled effective
mRNA delivery in primary fetal lung fibroblast cell culture and in
utero by intra-amniotic injection in a murine model.

FIGURE 3
Top left panel shows schematic representation of the strategies for RNA-LNP therapeutics targeting through different routes of administration in
non-pregnant and pregnant women. Top right panel emphasizes the crucial features and components (cell receptors, ligands) for the apoprotein E
(ApoE)-mediated versus monoclonal antibody-targeted LNPs endocytosis after systemic administration. Bottom panel shows the strategies for
engineering physicochemical properties of RNA-LNPs. The figure has been made using icons from BioRender.com
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4.1.2 Surface engineered and actively targeted
RNA-LNPs

Table 2 depicts selected studies on actively targeted RNA-LNPs
for women’s health. Although local delivery bypasses many systemic
barriers, IV administration remains vital for widespread treatment
of women’s diseases. Under these conditions, targeted LNPs must
traverse the bloodstream and overcome organ-specific barriers en
route to non-liver tissues (Figure 3, and (Mitchell et al., 2021;
Whitehead et al., 2009; Yin et al., 2014). There are some
challenges and opportunities that targeted delivery in female
patients need to be considered when applying the targeted RNA-
LNP therapy. Below, we first discuss targeted RNA-LNP delivery as a
general term. Then, we give a few brief examples of delivery for
women’s diseases by RNA-LNPs.

As a general term, the targeted LNP delivery system must: 1)
prevent glomerular filtration, phagocytosis, and degradation of
nucleic acid therapeutics in the kidney, liver, and bloodstream; 2)
cross the vascular endothelial barrier and extracellular matrix; and
3) enter targeted cells, escape endosomes, and release loaded
nucleic acids. Successful retargeting of LNPs to non-liver sites
first requires de-targeting from the liver, and thus extending the
blood circulation time. Immune-invisible coatings like PEGylation
(Suk et al., 2016), inert polymeric coatings (Debayle et al., 2019;
Chen et al., 2021), cell membrane coating (Fang et al., 2018; Luk
and Zhang, 2015), and “self” peptides (Khan et al., 2022; Oltra
et al., 2014) resist serum protein binding, reducing clearance by the
reticuloendothelial system (RES). Elongated circulation time
increases the likelihood of LNPs encountering targeted cells.
Saunders et al. (Saunders et al., 2020) developed an effective
method to minimize LNP capture by liver cells. By pretreating
with a “nanoprimer” before LNPs loaded with RNA therapeutics,
the bioavailability of RNA-loaded LNPs significantly improved
(Saunders et al., 2020). Ouyang et al. (Ouyang et al., 2020)
discovered a threshold dose that overwhelms Kupffer cell
uptake rates. Above this threshold, liver clearance of
nanoparticles nonlinearly decreases, extending circulation time
(Ouyang et al., 2020).

Researchers have made significant advancements in re-targeting
strategies by exploring the potential of passive and active targeting
techniques/engineering (Figure 3) for redirecting LNPs toward
desired targets (Dilliard and Siegwart, 2023).

4.1.2.1 Passive targeting
Passive targeting leverages the physical properties of LNPs, such

as size, shape, and charge, to facilitate their accumulation at specific
sites (Mitchell et al., 2021; Truong et al., 2015). Notably, an in vivo
systemic investigation revealed that nanoparticles with a diameter of
50 nm exhibited superior tumor accumulation and penetration
compared to counterparts measuring 20 nm or 200 nm in
diameter (Tang et al., 2014). Adjusting the net charge of RNA
lipoplex nanoparticles allowed precise and effective targeting in vivo,
specifically to the lung or spleen (Kranz et al., 2016).

Furthermore, recent studies have shed light on the relationship
between passive targeting factors and the formation of a protein
corona on the nanoparticle surface. In a study examining the impact
of nanoparticle shape on protein corona formation, researchers
observed a significantly higher protein deposition on rod-like
particles compared to spheres, potentially influencing the fate of
the nanoparticles in vivo (Madathiparambil Visalakshan et al.,
2020). Another intriguing approach, known as selective organ
targeting (SORT), has gained considerable attention (Wang et al.,
2023). Incorporating SORT molecules with altered charges enables
precise modulation of LNP biodistribution, therefore facilitating
non-liver tissue-specific gene editing (Wang et al., 2023).
Subsequent research uncovered that the inclusion of SORT
components influenced the apparent pKa and serum protein
adsorption of LNPs. The targeting mechanism was also
elucidated, revealing that the disassociation of sheddable PEG-
lipids resulted in distinct protein bindings to the exposed SORT
molecules. This mechanism facilitated the delivery of LNPs to
specific tissues expressing high levels of cognate receptors
(Dilliard et al., 2021). Thus, akin to ApoE mediating Onpattro’s
targeting of the liver, other serum proteins could mediate these LNPs
to different organs or tissues (Akinc et al., 2019).

In their research, another group of scientists achieved the
absorption of different serum proteins with different
compositions on the surface of LNPs by modifying the chemical
structure of ionizable cationic lipids (Qiu et al., 2022; Chen et al.,
2022). This finding holds significant potential for influencing the
biodistribution of LNPs. Specifically, their N-series LNPs effectively
delivered mouse tuberous sclerosis complex-2 mRNA to the lungs,
consequently resulting in reduced tumor burden in a preclinical
model of lymphangio-leiomyomatosis (Qiu et al., 2022).

TABLE 2 Selected studies on the targeting of RNA-LNPs applied for women’s health.

Targeting approach Cargo Lipid components Targeted
diseases

References

Lipoplex through IV injection (BNT-
114+BNT-122)

mRNA Lipoplex (not disclosed) Triple-negative breast
cancer

Lorentzen et al.
(2022)

Lipoplex through IV injection (BNT115) mRNA Lipoplex (not disclosed) Ovarian cancer Lorentzen et al.
(2022)

LNP through IM injection mRNA LNP (Ionizable lipid/DSPC/Cholesterol/PEG-lipid) Zika virus Richner et al. (2017)

LNP (mRNA-1325, mRNA-1893) through IM
injection

mRNA LNP (not disclosed) Zika virus Essink et al. (2023)

Active targeting LNP through IV injection (Anti-
HB-EGF Fab’s)

siRNA LNP (PP-13/DOPE/Cholesterol/DMPG/DSPE-
PEG2k-Mal)

Triple-negative breast
cancer

Okamoto et al.
(2018)

Active targeting LNP through IV injection
(EGFR Ab)

Sg RNA +
mRNA

LNP (Ionizable lipids/Cholesterol/DSPC/DMG-
PEG2k/DSPE-PEG2k)

Ovarian cancer Rosenblum et al.
(2020)
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Furthermore, using a novel ionizable cationic lipid and optimized
formulation, they successfully developed LNPs that displayed lymph
node-specific targeting capabilities and enhanced CD8+ T cell
response to the encoded full-length ovalbumin model antigen
(Chen et al., 2022).

The tuning of physicochemical properties in LNPs shows
promise for achieving targeted delivery to several major organs
and tissues. However, further improvements are necessary to direct
LNPs to additional organs and specific cell subgroups while
minimizing delivery to undesired cells and tissues, particularly
the liver. Notably, successful passive targeting methods
mentioned above involve the formation of distinct protein
coronas. It can be challenging to isolate and determine the
contributions of passive targeting and serum protein-mediated
targeted delivery. Moreover, the adsorption of serum proteins
onto LNPs is difficult to control and determine precisely, as
protein binding is dynamic and exchangeable. Additionally,
variations in serum protein compositions and cell receptor levels
across different species further complicate the situation in the
research and preclinical vs clinical studies.

4.1.2.2 Active targeting
Active targeting strategies have effectively enhanced targeting

precision and efficiency by incorporating ligands into LNPs. These
ligands can include aptamers, sugars, antibodies, antibody
fragments, and vitamins, which can be modified on the LNP
surface to facilitate ligand-mediated targeted delivery (Mitchell
et al., 2021; Liang et al., 2015; Rurik et al., 2022; Katakowski
et al., 2016). Various techniques, such as direct conjugation, post-
insertion, and biological approaches, can fabricate ligand-modified
nanoparticles (Heath et al., 1980; Torchilin et al., 1979; Huang et al.,
1980; Marcos-Contreras et al., 2020; Kedmi et al., 2018). Notably,
this active targeting approach has been recently used in research to
direct and preferentially accumulate RNA-LNPs for women’s
disorders such as gynecological cancers (Tang et al., 2019;
Rosenblum et al., 2020; Okamoto et al., 2018).

Directly targeting cancer cells is an effective and straightforward
approach to cancer treatment. Okamoto et al. decorated siRNA-
loaded LNPs with Fab’ against heparin-binding epidermal growth
factor (EGF)-like growth factor (Okamoto et al., 2018). The targeted
LNPs successfully delivered siRNA to MDA-MB-231 human triple-
negative breast cancer cells in vivo and suppressed polo-like kinase 1
(PLK1), thus leading to significant inhibition of tumor growth
(Okamoto et al., 2018). For targeted gene editing in cancer
treatment, Rosenblum et al. encapsulated gene editing tools
(Cas9 mRNA and sgRNA) in LNPs and engineered the LNPs for
targeted delivery by modifying EGFR antibodies on the surface
(Rosenblum et al., 2020). In the ovarian tumor model, the targeted
LNPs achieved selective uptake mediated by the targeting ligands,
achieved up to 80% gene editing in vivo, inhibited tumor growth,
and improved survival by 80% (Rosenblum et al., 2020).

In another study, Tang and co-workers also achieved cervical
cancer cell-selective mRNA delivery and CRISPR/Cas9 genome
editing by designing phenylboronic acid (PBA) derived LNPs
(PBA-BADP/p53 mRNA NPs) to prohibit cancer cell growth and
show higher gene expression in HeLa cells over non-cancerous cells
(Tang et al., 2019). They concluded that this active targeting of LNPs
was achieved by the high affinity of PBA-modified LNPs to the cell

surface sialic acid which is significantly over-expressed in cancer
cells than normal cells.

Bioconjugation targeting ligands onto LNPs provides a more
accurate and predictable approach for targeted delivery outside the
liver. The targeted LNPs can benefit from over 3 decades of historical
efforts in learning about immunoliposomes (antibody-coupled
liposomes) using similar strategies for antibody conjugations and
designs. Clinical trials such as on MM-302 and C225-Ils-dox for
breast cancer (NCT01702129, NCT03603379, NCT01304797) and
other lipid-based delivery clinical studies can be useful to pave the
correct path for RNA-LNP therapy in women’s health. However,
extensive works are needed for successful clinical translation of these
modalities.

4.2 Next-generation RNA therapeutics

4.2.1 Self-amplifying RNA-LNPs
Although mRNA vaccines can generate rapid protein

expression, their short half-life may limit applications requiring
longer-term protein production. Self-amplifying RNA (saRNA) was
developed to address this challenge (Figure 2). By incorporating a
viral replicon encoding nonstructural genes, saRNA constructs can
amplify themselves intracellularly, prolonging protein expression
and enhancing immunogenicity compared to conventional mRNA
(Blakney et al., 2021; Bloom et al., 2021). Lower doses of saRNA-
LNPs can thus achieve higher immune responses, offering potential
in both prophylactic vaccines and therapeutic applications
demanding substantial protein expression.

Nevertheless, presence of a viral replicon in the saRNA structure
significantly increases its size by thousands of bases to pose stability
issues. Also, these nucleotides that are incorporated into the saRNA
structure must be compatible with the T7 RNA polymerase and
cellular translation machinery, as well as the viral nonstructural
genes that are necessary for RNA amplification and subsequent
protein expression (Maruggi et al., 2019). To resolve this issue, Aziz
et al. utilized noncanonical nucleotides, such as 5-methylcytidine
(m5C) and 5-methyluridine (m5U), that were found to be
compatible with standard mRNA translation and reduced the
immune stimulation and recognition of RNA molecules by Toll-
like receptors (TLRs) (Azizi et al., 2024). Hence, the use of such
modified nucleotides with saRNA-based LNPs displayed great
potential for a variety of therapeutic applications. Similarly,
another group of researchers developed an saRNA-LNP vaccine
to demonstrate substantially increased immunogenicity in
comparison to the unformulated RNA (Geall et al., 2012). Ramos
da Silva et al. explored the potential of saRNA-LNP as a cancer
vaccine for human papillomavirus-associated cancers. It was shown
that a single dose of an saRNA-LNP vaccine encoding a fusion
protein of the type 1 herpes simplex virus (HSV-1) glycoprotein D
(gD) and the HPV-16 E7 oncoprotein (E7) could induce robust
immune response to control advanced tumor progression in
preclinical settings (Ramos da Silva et al., 2023b).

Despite these advances, concerns remain regarding the
replicative nature of such vaccines, particularly in pregnant
women where viral replicons could theoretically affect fetal
development (Comes et al., 2023). However, studies on
attenuated YFV17D vector vaccines suggest that, while replicons
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can cross the placenta, they may not necessarily harm embryonic
growth (da Silva et al., 2020). Additional preclinical and clinical
studies are still required to implement saRNA-LNP based vaccines
in vulnerable individuals.

4.2.2 Circular RNA-LNPs
Circular RNAs (circRNAs) are a novel vaccine platform in

which the RNA is covalently closed without free ends, increasing
resistance to enzymatic degradation (Figure 2). Translation of
circRNAs relies on internal ribosome entry sites (IRES) or m6A
modifications, leading to higher protein expression and a longer
half-life than linear mRNA counterparts (Bai et al., 2022;
Wesselhoeft et al., 2018). Even low doses of circRNA
formulations can generate robust immune responses, making
them attractive candidates for next-generation vaccine
development. For instance, CircRNARBD and VFLIP-X have
shown potent immunogenicity against SARS-CoV-2 in preclinical
models (Qu et al., 2022; Seephetdee et al., 2022). Moreover, a
circRNAOVA-luc-LNP (OVA[257-264]-luciferase-coding circRNA)
vaccine was also constructed by a group of researchers to show
anti-tumor immune response in a wide range of difficult-to-treat
malignancies (Li et al., 2022).

Despite these promising results, the clinical translation of
circRNA-LNP formulations is yet limited by various challenges
encountered in their development, manufacturing, quality control,
and safety. Designing circRNA-LNP vaccines to optimize self-
adjuvant effects, improve circularization efficiency, and refine
fragment length remains a key step for maximum efficacy
(Chen et al., 2023). Additional safety concerns center on that
fact that exogenous circRNAs may disrupt the biological functions
of naturally present circRNAs in the body following
administration. Noticeably, it has been shown that circRNAs
are present in granulosa cells in ovarian follicles, placenta,
several different fetal tissues, and maternal blood in pregnant
women (Arthurs et al., 2022). It has also been proven that
circRNAs are involved in a variety of biological processes that
are related to the pathogenesis of pre-eclampsia during pregnancy
(Liao et al., 2024). Given this, administration of circRNA-LNP
formulations in pregnant women can also result in unnecessary
complications. Also, circRNA-LNP vaccines contain residual
dsRNA content, which could result in unwanted
immunogenicity or myocarditis after vaccination (Han et al.,
2021; Singh et al., 2021).

Although little research exists specifically for circRNA-LNPs in
gynecologic cancers, expanding these studies could illuminate their
therapeutic potential while addressing the unique safety
requirements of pregnant women. Technological advancements
that address current delivery and formulation challenges will be
necessary to fully exploit circRNA vaccines and therapeutics against
infections and malignancies.

4.3 Safety and efficacy evaluations of the
RNA-LNP therapy in women’s diseases

A more comprehensive understanding is needed regarding the
safety and efficacy of RNA-LNPs before these modalities can be
widely used for gynecological conditions in clinics. As of late 2024,

we could find three clinical trials directly mentioned pregnant
women, neonates, or lactation when searching “mRNA vaccine”
plus “pregnancy” terms on the search engine www.clinicaltrials.gov
website (NCT06143046 on RSV vaccination and NCT06503900 and
NCT05618548 on COVID vaccine). Current data – especially from
mRNA-LNP vaccines – suggest comparable safety profiles in
pregnant and nonpregnant women, with no elevated risk of
severe adverse effects in infants (Swingle et al., 2023a; Ellington
and Olson, 2022; Prahl et al., 2022; Ogata et al., 2022; Yeo et al.,
2021). Nonetheless, broader studies with diverse populations are
essential to confirm the safety of repeated RNA-LNP administration
during and after pregnancy. Historically, many early non-viral
vectors (e.g., lipoplexes and polyplexes) failed in vivo due to
permanently charged cationic or non-biodegradable lipids/
polymers in their formulations. Today’s LNPs typically feature
lower surface charge, improved biocompatibility, and less tissue
accumulation (Liao et al., 2024; Moghimi and Simberg, 2022;
Dolgin, 2021). However, mRNA-LNPs still trigger innate
immune responses via Toll-like receptors (TLRs), melanoma
differentiation-associated protein 5 (MDA5), and NOD-like
receptor protein 3 (NLRP3), leading to the production of
interferon-gamma (IFN-γ), IL 1β, and IL 6. Moreover, mRNA-
LNP platforms induce CD8+ T cells, T follicular helper (Tfh) cells,
and germinal center (GC) B cells, potentially heightening
immunogenicity.

The adverse effects of mRNA-LNP can be caused by three
currently known mechanisms, including i) IgE-mediated
anaphylaxis ii) IgM-mediated complement activation-related
pseudoallergy (CARPA) and iii) autoimmune reaction (Khalid
and Frischmeyer-Guerrerio, 2023; Lee et al., 2023). PEG-lipid
components are reported as the underlying reason for the side
effects through mechanisms i and ii (Khalid and Frischmeyer-
Guerrerio, 2023), while mechanism iii is mainly caused by
mRNA-LNP itself when it is recognized as a self-antigen that can
initiate autoimmune diseases. To modulate the immune response,
several strategies are suggested such as adjusting the size and
sequence chemistry of the mRNA and nucleotides, modifying the
charge of the LNP by changing the lipid composition and chemistry,
addition of adjuvants in case of vaccines, or exploring different
routes of administration.

Having said that, concerns initially raised about the current LNP
formulations due to the need for more clarity about the potential
direct or indirect toxic or immune adverse effects on mothers and
fetuses. These concerns were regarding the induction of a systemic
inflammatory immune response against the nucleic acid cargo or
synthetic lipids (PEGylated lipids and ionizable lipids) in humans,
especially in susceptible and already immune-compromised
conditions such as pregnancy. These concerns and uncertainty
resulted in excluding pregnant women in the initial clinical trials
of the COVID-19 vaccine, and by far, we still have a limited
understanding of the mRNA-LNP vaccines on pregnant women
and fetuses. In a study by Prahl et al., they found that COVID
mRNA-LNP products were detectable for up to 1 month in the
serum of pregnant or lactating women after the first vaccine shot and
up to 1 week after the second shot (Prahl et al., 2022). The possibility
of bypassing the placenta barrier by these nanoparticles and entering
the fetal bodies was among the primary reasons for excluding
pregnant women from the clinical trials.
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Despite these concerns, real-world data from pregnant women
receiving mRNA-LNP COVID-19 vaccines suggest that LNPs at the
used composition and dose for vaccination cannot pass through the
placenta (Prahl et al., 2022; Ogata et al., 2022). While anti-COVID
IgG is detectable in both fetuses and neonates, conferring passive
immunity, no mRNA-LNP particle has been identified in neonates
(Prahl et al., 2022). Given that currently there is no approved
COVID-19 vaccines for children younger than 6 months, this
vertically transmitted immunity would be life-saving for the
newborn at this stage.

The mRNA used in the COVID vaccine is N1-methyl-
pseudouridine-modified (N1m). Although N1m-mRNA is less
detectable by the toll-like receptors (TLR) 7 and 8 and
considered a safer modality, it requires continued surveillance to
address uncertainties around maternal-fetal impacts. The ionizable
lipids are of primary concern in interleukin (mainly, IL-1) induction
and, thus, subsequent activation of the pro-inflammatory cytokines,
leading to a general immune activation with the general
manifestation of pain, swelling, fever, and in some cases, severe
inflammation reaction in patients (Tahtinen et al., 2022).

Additionally, recent studies emphasize that both the chemical
structure of ionizable lipids and the administration route
significantly influence toxicity, transfection efficiency, and
immunogenicity in pregnant women. For instance, Chaudhary
et al. (Chaudhary et al., 2024) reported that the ionizable lipid
amine headgroup defines the delivery and expression of LNPs to
placental BeWo b30 human trophoblasts. They observed that
structures similar to naturally occurring polyamine such as
spermidine and spermine showed the highest delivery and
efficacy. However, with concern to the safety, the lipid tail
imposed the most effect with branched ionizable lipids eliciting
highest hemolytic activity compared to the linear lipid tails.
Furthermore, they evaluated the cytokine and chemokine profiles,
and they demonstrated the organ tropism in pregnant mice
correlated with the immunogenic routes and structures of the
screened ionizable lipids. After intravenous administration, some
of the screened LNPs suppressed IL-1B in pregnant mice. Patrolling
myeloid cells are among the abundantly transfected cells by the
administered LNPs and IL-1B is a factor that promotes infiltration of
these myeloid cells in spleen and lymph nodes. They concluded that
this IL-1B suppression by certain intravenous LNPs might indirectly
cause the reduced spleen and lymph node mRNA-LNP transfection
through suppressed myeloid cells infiltration into these organs. They
also observed that LNPs with high impact on the immune
homeostasis could significantly impact pup development. The
elevated B and T cell infiltration in the placenta was correlated
with the impeded pup growth which was supposed to be due to the
elevated inflammatory cytokines (Chaudhary et al., 2024; Graham
et al., 2021).

Such findings underscore the complexity of selecting suitable
LNPs and necessitate extensive preclinical safety testing, especially
given the proliferation of next-generation lipid moieties [e.g., see
(Han et al., 2024; Liu et al., 2021)]. Overall, although current
evidence indicates that RNA-LNPs can be relatively safe and
efficacious, especially in nonpregnant adults, more comprehensive
preclinical and clinical investigations are required. This is
particularly true for vulnerable populations (e.g., pregnant
women) and for conditions needing repeated dosing. Low-cost,

validated animal models for women’s diseases remain essential
for early-stage screening, as discussed below.

4.3.1 Animal models for women’s disease studies
Preclinical models are indispensable for understanding the

therapeutic mechanisms, safety, and efficacy of RNA-LNP
interventions in women’s diseases. Larger species such as bovine,
porcine, and ovine models can mimic human physiology in specific
contexts, but mice remain the most common due to their
availability, cost-effectiveness, and well-characterized genetics. For
the purposes and scope of this review, we are focusing on the latter
category. Table 3 briefly overviews some mouse models used to
study various women’s diseases. Murine models fall into two main
categories: (i) genetically modified mice that replicate molecular
pathways relevant to human disease, and (ii) chemically or surgically
induced models. While these systems afford invaluable mechanistic
insights, they do not always recapitulate the complexity of human
pathology. For instance, the keratinized mouse vaginal
epithelium – with thickness fluctuating across estrous
phases – limits translational relevance for human vaginal drug
delivery (McCracken et al., 2021). Some gynecological conditions
are challenging to mimic in mice models mainly because of their
short duration and lack of spontaneous incidence in mice. For
instance, endometriosis at the late stages requires that mice be
evaluated for months to a year, which makes it very hard to keep
the animal alive for such a duration. Additionally, only non-human
primate species have spontaneous endometriosis, and other animals,
including mice, lack this capability (Lagana et al., 2018). Similarly,
most murine models of ovarian and cervical cancers cannot
accurately capture recurrent malignancies or drug resistance.
Moreover, placental differences (haemotrichorial in mice vs.
haemomonochorial in humans) complicate direct extrapolation
to pregnancy-related conditions (Furukawa et al., 2014).

Despite these constraints, innovations in genetic engineering
and immunocompromised “humanized” mice can bring preclinical
studies closer to clinical reality. Nevertheless, investigators must
remain cautious when inferring therapeutic outcomes for women’s
health. Mouse data, while foundational, should be integrated with
complementary in vitro and in silico studies, as well as larger, more
physiologically analogous animal models, to robustly predict
clinical responses.

4.3.2 Lack of acute and chronic safety information
on RNA-LNPs use in gynecology, pregnancy,
and lactation

Recent research has explored the possible benefits of using
nanoparticles (including LNPs) in gynecological and pregnancy-
related disorders (Bedin et al., 2019; Riley et al., 2021; Michy et al.,
2019; Liu et al., 2017; Zhai et al., 2018). Such systems could be used
for targeted drug delivery to the female reproductive system in both
pregnant and non-pregnant women, improving treatment outcomes
(Riley et al., 2021; Sharma et al., 2021; Young et al., 2022) and even
serve as a theranostic platform in gynecological disorders (Moses
et al., 2020). Despite these benefits, detailed knowledge of
nanoparticle risk/benefit profiles in gynecology, pregnancy, and
lactation remains limited, largely due to the complexity of female
reproductive physiology and ethical restrictions on clinical testing
(Sharma et al., 2021).
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The female reproductive system is dynamic and undergoes
significant changes during pregnancy and lactation, making it
essential to understand the interactions between nanoparticles
and the maternal-fetal interface, as well as their potential impact
on fetal and neonatal health (Sharma et al., 2021; de Araujo et al.,
2020; Grafmuller et al., 2013). Ethical considerations further restrict
data availability, particularly regarding potential risks to pregnant
women and their fetuses. Current knowledge gaps include whether
nanoparticle exposure affects ovulation, implantation, embryo
development, and hormonal balance (Ajdary et al., 2021; Ahmad,
2022), and how placental accumulation might impair fetal growth or
health (Ahmad, 2022). Having said that, this direct impact of NPs is
not always the only issue in pregnancy applications. The other

deriving fetal toxicity may come through the maternal toxic
response to the administered dose that can be vertically
transmitted through the placenta and impact the fetus with
toxicity and abnormal growth or teratogenicity (Dugershaw et al.,
2020). These concerns largely explain why pregnant women are
typically excluded from early drug discovery trials (Mazer-
Amirshahi et al., 2014), as witnessed during initial COVID-19
vaccine testing (Prahl et al., 2022; Dangel et al., 2022; Couzin-
Frankel, 2022). Recent studies eventually shed some light on the
safety of mRNA-LNP vaccines in pregnancy. The available data
show that LNP products can be detected in serum for a month after
the first dose of the COVID vaccine and a week after the second dose
administration. Prahl et al. found that LNPs cannot pass the placenta

TABLE 3 Some of the mouse models used in research and clinical trials to study women’s diseases.

Model
preparation

Disease Mouse model LNP
application

Important features Limitations References

Genetically
Modified

Breast Cancer MMTV-PyMT transgenic
mice

siRNA delivery to
target oncogenes

High specificity and efficacy
with minimal toxicity

Limited targeting of
deep-seated tumors

Attalla et al. (2021)

Cervical Cancer HPV16-positive cervical
cancer

HPV-specific siRNA
delivery to inhibit viral
oncogenes

High specificity and efficacy
with minimal toxicity

Limited relevance to
human cervical
cancer

Jiang et al. (2018)

Endometrial
Cancer

BAC-Sprr2f-Cre — Mice with uterine-specific
and conditional genetic
engineering which is easier
to produce than permanent
genetically-modified mouse

Limited availability
of disease-specific
targets

Cuevas et al. (2019)

Ovarian/
fallopian tube
Cancer

PTEN/KRASG120

conditional knockout
— — Limited availability

of disease-specific
targets

Garson et al. (2012)

HPV Infection HPV16 transgenic mouse
model

Delivery of CRISPR/
shRNA to target viral
infection

High specificity and efficacy
with minimal toxicity

Limited relevance to
human HPV
infection

Hu et al. (2015), Zhu
et al. (2018), Santos

et al. (2017)

HIV Infection Humanized mouse model
with engrafted human
CD4+ T cells (humanized-
DRAG mice)

— — Limited relevance to
human HIV
infection

Allam et al. (2015)

Chemically/
surgically Induced

Ovarian Cancer DMBA-induced ovarian
cancer model

— Well-established model
with high tumor incidence

Limited relevance to
human ovarian
cancer

Marion et al. (2013)

Endometriosis Surgically-induced
endometriosis lesions

— The altered gene expression
pattern observed in
endometriotic lesions from
mice better mirrors that
observed in women with the
disease

Requires a precise
surgery

Sahin et al. (2018),
Pelch et al. (2012)

Zika Virus
Infection

AG129 mouse model with
Zika virus infection

— High specificity and efficacy Limited relevance to
human Zika virus
infection process

Aliota et al. (2016)

Osteoporosis Ovariectomized mouse
model

Delivery of the
cytotoxic T
lymphocyte-associated
antigen-4Ig
(CTLA-4Ig)

— — Nagao et al. (2020)
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and were not detected in the fetus, though IgGs against SARS-CoV-
2 antigens were detectable in the fetal blood, indicating passive
immunization of the fetus (Prahl et al., 2022). While small molecules
and certain antibodies (such as IgG but not IgM) generally traverse
the placental barrier and reach the neonatal organs, nanoparticles,
such as conventional LNP composition (used in mRNA-LNP
COVID vaccines), do not unless specially engineered to passively
or actively target in utero delivery (Figueroa-Espada et al., 2020).

Another challenge of LNPs is the unclear acute and chronic
effects of LNPs and RNA molecules on women’s health. As the
treatment with gene therapy modalities, such as mRNA in enzyme
replacement therapy, is chronic, accumulating LNPs in tissues over
repeated administration may result in adverse health effects.
Nevertheless, this may be less crucial for the limited-dosing
frequency of gene correction methods, such as CRISPR/Cas, etc.
Our knowledge of chronic immune system interaction with LNPs or
in vitro-transcribed RNA molecules has yet to mature fully. This
potential chronic immunogenicity could be a concern for vulnerable
populations such as immune-compromised elderly women or
pregnant women. Our understanding of COVID-19 vaccines and
RNA delivery by lipids may help to elucidate some of the other
individual and sex-related influences and allergic reactions to the
LNP components, especially for the maternal and perinatal situation
where the mother’s physiology is already at a relatively immune-
compromised state (Sharma et al., 2021).

It has been shown that some of the administered lipids in RNA-
LNP products can enhance the adjuvant effects of the carrying
components and induction of efficient immune response in a useful
way for vaccine purposes (Luan et al., 2022). Nonetheless, there is a
possibility that an uncontrolled immune response may also lead to
unintended consequences, such as inflammation due to reactive
oxygen species production (ROS) in the placenta of pregnant
women or tissue/organ damage. Furthermore, the potential
impact of LNPs and RNA molecules on the reproductive system,
particularly post-partum and lactation, requires careful scrutiny. In
a survey of lactating mothers who received the COVID vaccine, all
participants showed detectable levels of neutralizing antibodies in
breastmilk after the second dose of vaccine, and only 2% of the
mothers had detectable mRNA-vaccine particles or components in
their breastmilk over 1 week post-vaccination (Yeo et al., 2021). This
study did not find any sensitivity in newborns after maternal
vaccination, and the authors concluded that nursing post-
vaccination confers temporary passive immunity (Yeo et al.,
2021). Further studies are needed to fully uncover the safety of
these therapeutics for both the mother and the developing fetus or
breastmilk-fed infant to avoid any potential harm.

5 Future directions and conclusion

RNA-LNP therapeutics present a promising modality in
women’s health, potentially addressing a host of gynecological
and obstetric conditions, including endometriosis, gynecologic
cancers, and viral infections. Nonetheless, several challenges
remain, particularly regarding targeting efficiency, safety in
pregnancy, and long-term effects on reproductive organs and
maternal-fetal and nursing health. Followings are some suggested
future directions to drive this field forward.

5.1 Next-generation lipid and RNA
development using high throughput
approaches

Continued innovation and screening in biocompatible and
biodegradable ionizable lipid chemistries and substitutes to the
PEG-lipid can reduce toxicity and immunogenicity, limit selective
tissue accumulation, and extend circulation time. Similarly, newer
generations of RNAs, such as circRNA, and saRNA, can improve the
efficacy of RNAs while reducing impurities (like double stranded
RNAs) and address the short-half-life of mRNA in vivo. Systematic
and high throughput screening in preclinical models, including
DNA and RNA barcoding (Xue et al., 2024; Dahlman et al.,
2017) will facilitate the development of safer, more potent RNA-
LNP formulations, paving the way for repeated or long-term
applications in women’s health.

5.2 Refinement of targeting strategies

New approaches are needed to enhance extra-hepatic delivery of
RNA-LNPs. The efforts should not only cover the physicochemical
properties, such as optimal particle size and surface engineering, but
it also requires improving the active targeting approach via ligand
conjugation for precise accumulation in female reproductive tissues.
Improved targeting can be achieved through conjugation of
bispecific mAbs or smaller fragments of mAbs (e.g., antibody
Fabs, VHHs, Affibodies, Nanobodies, etc.) (Wang S. et al., 2024;
Amabile et al., 2024) with higher affinity so that the developed LNPs
retain their size ideal for enhanced extra-hepatic delivery and target
organs cellular uptake.

5.3 Personalized and combination therapy
approaches

Integrating RNA-LNP therapies with other modalities – such as
existing hormonal and small molecule treatments – can harness
synergistic effects. Furthermore, individualized cancer vaccine
designs, tailored to patient-specific biomarkers hold potential for
more effective targeted treatments. Several of these individualized
cancer vaccines are under development and the preliminary results
indicate the potential of using RNA-LNPs for inducing long-term
prevention of recurrence with improved prognosis for the female-
related cancer patients (Huang T. et al., 2022; Jacob et al., 2024).

In conclusion, although the field of RNA-LNP therapeutics for
women’s health remains relatively nascent, advances in high
throughput screening, targeted LNP design, next-generation RNA
and lipid chemistries, and gene-editing technologies such as
CRISPR/Cas systems, signal a rapidly evolving landscape. This
platform’s capacity for high specificity, adaptable treatment
durations, potential synergy with other therapies, and ease of
manufacturing/scale up highlights its transformative promise.
Nevertheless, to ensure long-term success, safety must be
thoroughly established through extensive research and clinical
validation – especially in vulnerable populations such as pregnant
and lactating women. By addressing these challenges and building
upon current achievements, RNA-LNP therapeutics can realize their
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full potential in delivering personalized, highly effective treatments
for conditions that profoundly affect women’s lives.
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