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In this study, we investigated the dynamics of unsteady electroosmotic pulsatile
flow involving a hybrid nanofluid within a curved artery, influenced by both
stenosis and an embedded catheter. The hybrid nanofluid, a mixture of silver (Ag)
and aluminum oxide (Al2O3) nanoparticles dispersed in blood, was modeled via
the Carreau non-Newtonian framework to more accurately represent the
intricate nature of blood flow. The electroosmotic forces introduced
simulated the effect of an external electric field, while the catheter served as
an additional structural constraint within the artery. To account for both the
curvature of the vessel and the overlapping stenosis, we derived the governing
equations for this model. Using numerical methods, particularly the finite-
difference approach, we solved the nonlinear partial differential equations that
govern the flow, temperature, and concentration distributions. Our findings
suggest that the hybrid nanofluid demonstrates enhanced thermal and flow
properties compared to standard fluids. The results showed significant
influences from electroosmotic forces, curvature, and pulsatility on the
velocity, temperature, and concentration profiles. Furthermore, an increase in
the electroosmotic and Weissenberg parameters substantially accelerated fluid
velocity by reducing viscous drag while improving mass transport. These results
offer valuable insights into the behavior of blood flow in catheterized arteries and
may inform future advancements in cardiovascular treatment technologies.
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1 Introduction

Hybrid nanofluids, particularly those with non-Newtonian properties, have attracted
significant interest lately due to their broad applications in biomedical engineering and fluid
transportation. When combined with electroosmotic flow, these hybrid nanofluids exhibit
additional complexities in behavior, making them well suited for use in microscale and
nanoscale fluid manipulation scenarios (Sundar et al., 2013). Nanofluids and hybrid
nanofluids are utilized in various disciplines, demonstrating their flexibility and
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potential impact. There are a variety of applications for nanofluids
and hybrid nanofluids in fields such as biomedical applications, the
energy sector, manufacturing, and engineering (El Kot and Abd
Elmaboud, 2021; El-Masry et al., 2020; Ali et al., 2020). Abdal et al.
(2021) investigated the effects of bio-convection and activation
energy on the Reiner–Rivlin nanofluid flow over a rotating disk
with partial slips. By deriving a system of coupled nonlinear
differential equations based on the Reiner–Rivlin fluid
relationships, the study explores a variety of non-Newtonian fluid
models and slip coefficients for numerical analysis. Ali et al. (2022)
delved into the impact of volume fraction and Coriolis and Lorentz
forces on the behavior of water-based silver (Ag) nanoparticle flow
toward a continuously stretching sheet.

Electroosmotic flow, influenced by applied electric fields, offers
precise control over fluid movement, which is highly desirable in
medical contexts such as targeted drug delivery and microfluidic
systems. Wang et al. (2009) demonstrated the ability of
electroosmotic pumps to precisely regulate microflow in
microfluidic applications. Hybrid nanofluids, typically composed
of metal-based nanoparticles dispersed in base fluids, provide
enhanced thermal and flow properties, making them ideal for
improving the fluid efficiency in medical systems. Sarkar et al.
(2015) and Huminic and Huminic 2018() reviewed hybrid
nanofluids and their improved thermal properties, emphasizing
their potential in various heat transfer applications. Bhatti et al.
(2024) investigated third-grade fluid motion between vertical
parallel walls utilizing an electromagnetic hydrodynamic
approach. The walls, oriented vertically, contain a nanofluid with
sodium alginate infused with gold and iron oxide nanoparticles in a
porous structure. The Darcy–Brinkman–Forchheimer model is
applied, particularly in scenarios with non-Darcy media.
Numerical solutions are obtained using a shooting approach for
the nonlinear differential equations. The results are analyzed
through graphs and tables, revealing the favorable industrial
application potential of the nanoparticle combination studied.
Recent research has shown that these fluids exhibit superior heat
transfer capabilities, which is crucial for biomedical use cases.
Sundar et al. (2014) demonstrated that hybrid nanofluids
containing multiwalled carbon nanotubes (MWCNTs) and Fe3O4

nanoparticles significantly improve heat transfer performance,
indicating their potential in advanced thermal management systems.

The study of pulsatile flow in curved arteries with stenosis has
gained importance in understanding cardiovascular health. Long
et al. (2001) conducted numerical investigations on physiologically
realistic pulsatile flow through arterial stenosis, providing key
insights into flow patterns and wall shear stress distributions
essential for understanding atherosclerosis. Pulsatile flow, which
mimics the heartbeat’s rhythm, is greatly influenced by arterial
curvature and stenosis (Perktold et al., 1991). Perktold et al.
(1991) performed three-dimensional numerical analyses of
pulsatile flow in carotid artery bifurcations, revealing that arterial
geometry significantly affects flow patterns and wall shear stress,
both critical factors in atherosclerosis.

Stenosis, or the narrowing of arteries, presents challenges to
blood flow, increasing wall shear stress and pressure gradients,
potentially leading to adverse cardiovascular events (Johnston
et al., 2004). Curved arteries add to the complexity by
introducing secondary flow patterns that further influence flow

dynamics. Studying such systems is crucial for advancing
treatments for vascular diseases (Berger et al., 1983). Berger et al.
(1983) reviewed the flow in curved pipes, showing how curvature
induces secondary flows that alter the shear stress distribution,
which is critical in understanding vascular pathologies. Recent
research underscores the importance of considering realistic
arterial geometries for accurate predictions of hemodynamic
forces (Morris et al., 2016) (Cheng et al., 2006). Morris et al.
(2016) discussed how computational fluid dynamics modeling
using patient-specific geometries improves our understanding of
cardiovascular hemodynamics, aiding in diagnosis and treatment.
Cheng et al. (2006) used in vivo MR angiography to quantify
deformations of the superficial femoral artery. Numerical studies
indicate that stenosed arteries under pulsatile flow behave differently
from healthy arteries, highlighting the need for specialized
treatments (Gijsen et al., 1999). Huo and Kassab (2006)
developed a theoretical and experimental model of pulsatile
blood flow in the coronary arterial tree, demonstrating significant
differences in hemodynamic parameters in stenosed arteries
compared to healthy arteries, emphasizing the need for tailored
therapeutic strategies.

The finite-difference technique is widely used for numerically
solving complex fluid flow problems, particularly in biomedical
applications like cardiovascular treatments (Quarteroni et al.,
2000). Quarteroni et al. (2000) discussed computational methods
in vascular fluid dynamics and how numerical techniques like the
finite difference method solve fluid–structure interaction problems
in blood flow simulations. This method is highly beneficial for
solving nonlinear partial differential equations, which arise in
blood flow modeling, especially in stenosed and catheterized
arteries. Basha et al. (2022) used finite volume methods to study
the behavior of gold and copper biomagnetic blood flow in an
inclined stenosed artery with varying viscosities. Haghighi et al.
(2006) numerically investigated pulsatile blood flow through a
stenosed elastic artery. The finite-difference method provides a
stable and efficient framework for understanding the intricate
interactions between blood, vessel walls, and medical devices
such as stents or catheters (LaDisa et al., 2005). LaDisa et al.
(2005) used computational models to predict the sites of
neointimal hyperplasia after stent implantation, demonstrating
the role of numerical methods in improving cardiovascular
device design and patient outcomes. Studies have shown that the
finite-difference method can efficiently model heat transfer and
predict flow behavior in biomedical systems, leading to better
clinical outcomes (Xu et al., 2009). Xu et al. (2009) reviewed
mathematical modeling of skin bioheat transfer, emphasizing the
role of numerical methods like the finite-difference technique in
predicting thermal responses in tissues.

Mathematical modeling and analysis are essential for
understanding the complex behaviors of non-Newtonian hybrid
nanofluids in biomedical applications. The Carreau non-Newtonian
model is a foundational mathematical framework for characterizing
shear-thinning fluids, like blood, especially under pulsatile flow in
stenosed and curved arteries (Apostolidis and Beris, 2014).
Apostolidis and Beris (2014) provided a detailed mathematical
analysis of blood rheology using the Carreau model, advancing the
understanding of non-Newtonian fluid dynamics under physiological
conditions. Recent studies have also explored the impact of magnetic
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fields on the flow of non-Newtonian fluids in stenosed arteries. The
mathematical analysis of pulsatile flow in curved arteries has advanced
through the use of numerical methods like the finite-difference method
(Tzirtzilakis, 2005). Tzirtzilakis (2005) developed amathematical model
to study the effects of magnetic fields on blood flow using finite-
difference techniques. Additionally, studies on thermophoretic effects in
non-Newtonian fluid flow have provided new perspectives on heat
transfer in biological systems. Pal and Mondal (2011) analyzed
thermophoresis and Brownian motion effects in non-Newtonian
nanofluid flow over a stretching sheet, offering mathematical models
that can be applied in biomedical engineering. Hassan et al. (2024)
discussed a viscoelastic three-element viscous model, comprising a
spring in parallel with one dashpot and a second dashpot in series,
and used it to analyze the heat and mass flow properties of the fluid
across a variable-thickness sheet. Transport equations incorporating
thismodel are solved using the numerical Runge–Kutta (RK) technique.
The research highlights that viscosity exerts amore substantial influence
on the outcomes than other parameters. Notably, a significant
enhancement of 22% in the Nusselt number and 137% in the
entropy generation rate was observed.

The main objective of this research is to analyze the unsteady
electroosmotic pulsatile flow of a hybrid nanofluid through a
stenosed, curved, catheterized artery using the Carreau non-
Newtonian model. The study uses a numerical approach based
on the finite-difference method to solve the governing equations
of fluid motion, temperature, and concentration. This research is
significant because it offers new insights into the behavior of hybrid
nanofluids under electroosmotic forces in complex arterial
geometries, which could help design more effective
cardiovascular treatments and medical devices. The study results
contribute to a broader understanding of hemodynamics in diseased
arteries, providing valuable implications for improving patient
outcomes in cardiovascular care.

2 Problem description and
mathematical model

In our paper, we examine the unsteady laminar electroosmotic
pulsatile flow of an incompressible Carreau non-Newtonian hybrid
nanofluid (Ag − Al2O3/blood) through a curved catheterized artery
with stenosis. The blood is a base fluid containing suspended
nanoparticles of both Ag and aluminum oxide (Al2O3). The
artery segment with length L has a mild constriction coiled in a
circle with radius R* from the center O. Another solid circular
cylinder balloon catheter is inserted into this curved artery. We
choose a coordinate system in which r aligns with the radial
direction and z aligns with the artery axis. We also choose r � 0
as the axis of symmetry for the two coaxial cylinders. The fluid is
subjected to an axial electric field of strength Ez and an imposed
magnetic field R*Bo

r+R* in the radial direction. The temperature,
concentration, and zeta potential near the arterial wall are given
by T1, C1, and ζ1, respectively. The catheter wall is maintained at
temperature To, concentration Co, and zeta potential ζ1, where
T1 >To, C1 >Co, and ζ1 > ζo. We assume that the nanoparticles
are uniformly dispersed within the blood and that there is no
agglomeration. The thermophysical properties of the hybrid
nanofluid, such as thermal conductivity and viscosity, are

considered to be functions of the nanoparticle volume fraction
and temperature. Viscous dissipation is taken into account to
understand the conversion of kinetic energy into thermal energy
due to the fluid’s viscosity. Joule heating, resulting from the
interaction of the electric field with the fluid, is also considered,
which affects the temperature distribution within the artery. The
arterial wall geometry with overlapping stenosis and the balloon
model are defined as follows (see Equations 1, 2 and Figure 1)
(Chakravarty and Mandal, 1996; Pincombe and Mazumdar, 1977):

R′ z′( ) � Ro − δ z′ − d( )
Lo

11 − 94 z′ − d( )
3Lo

+ 32 z′ − d( )2
L2
o

− 32 z′ − d( )3
3L3

o

[ ] d≤ z′≤ d + 3Lo

2

Ro otherwise,

⎧⎪⎪⎨⎪⎪⎩
(1)

h′ z′( ) � Ro a + b exp −π2 z′ − zd − 1
2

( )2( )[ ] d≤ z′≤ d + 3Lo

2

aRo otherwise,

⎧⎪⎪⎨⎪⎪⎩
(2)

where d is the stenotic position, 3Lo2 is the length of the overlapping
stenosis, and Ro is the non-tapered artery’s radius in the non-
stenotic portion. As a result, the proportion δ

Ro
≪ 1 occurs in two

different locations, namely, z′ � d + Lo
2 and z′ � d + Lo. Here, δ

represents the essential altitude of the stenosis. At z′ � d + 3Lo
4 ,

the elevation of the stenosis from the starting position is 3δ
4 . For

the annular inflated catheterization, it is presumed that b is the
catheter’s maximum height at z′ � zd + 0.5, zd is the balloon’s axial
displacement throughout catheterization, aRo is the catheter’s inner
radius, and a seems extremely small. At any given value z′, the
gradient of pressure can be written as

−dp′
dz′ � A0 + A1cos ωPt′( ), (3)

where (A0 & A1) are the pressure gradient’s steady and pulsatile
components, respectively, and ωp � 2πfp, where fp is the
pulse’s frequency.

FIGURE 1
Geometrical configuration.

Frontiers in Nanotechnology frontiersin.org03

El Kot et al. 10.3389/fnano.2024.1520183

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1520183


The conservative continuity, momentum, energy, and
concentration governing equations with thermophoresis and
Brownian motion are as follows (Ramanamurthy et al., 2013; El
Kot and Abd Elmaboud, 2024; El-Dabe and Mostapha, 2020;
Tawade et al., 2022; El Kot and Abd Elmaboud, 2023):

Continuity equation:

∂u′
∂r′ +

u′
r′ + R*

+ R*
r′ + R*

∂w′
∂z′ � 0. (4)

Momentum equations:

ρhnf
∂u′
∂t′ + u′∂u′

∂r′ +
R*

r′ + R*
w′∂u′

∂z′ −
w′2

r′ + R*
( )
� − ∂p′

∂r′ +
1

r′ + R*
∂

∂r′ r′ + R*( )τrr′[ ]
+ R*
r′ + R*

∂τrz′
∂z′ −

τzz′
r′ + R*

, (5)

ρhnf
∂w′
∂t′ + u′∂w′

∂r′ +
R*

r′ + R*
w′∂w′

∂z′ +
u′w′
r′ + R*

( )
� − R*

r′ + R*
∂p′
∂z′ +

1

r′ + R*( )2 ∂

∂r′ r′ + R*( )2τrz′[ ]
+ R*
r′ + R*

∂τzz′
∂z′ −

R*
r′ + R*
( )2σhnfB2

ow′ + ρe′Ez

+ ραT( )hnf g T′ − To( ) + ραC( )hnf g C′ − Co( ).
(6)

Energy equation:

ρ cp( )
hnf

∂T′
∂t′ + u′∂T′

∂r′ +
R*

r′ + R*
w′∂T′

∂z′( )
� Khnf

∂2T′
∂r′2

+ 1
r′ + R*

∂T′
∂r′ +

R*
r′ + R*
( )2∂2T′

∂z′2
[ ] + τrr′

∂u′
∂r′ + τrz′

∂w′
∂r′

+ τzr′
R*

r′ + R*
∂u′
∂z′ −

w′
r′ + R*

( ) + τzz′
u′

r′ + R*
+ R*
r′ + R*

∂w′
∂z′( )

+ 16σoT
3
a

3k2
( ) ∂2T′

∂r′2
+ σhnf E2

z +
R*

r′ + R*
( )2B2

ow
′2[ ]

+ τ1 ρ cp( )
hnf

⎧⎨⎩DB
∂C′
∂r′

∂T′
∂r′ +

R*
r′ + R*
( )2∂C′

∂z′
∂T′
∂z′( )

+DT

Tm

∂T′
∂r′( )2

+ R*
r′ + R*
( )2 ∂T′

∂z′( )2( )⎫⎬⎭. (7)

Concentration equation:

∂C′
∂t′ + u′∂C′

∂r′ +
R*

r′ + R*
w′∂C′

∂z′

� DB
∂2C′
∂r′2

+ 1
r′ + Rc

∂C′
∂r′ +

R*
r′ + R*
( )2∂2C′

∂z′2
[ ]

+ DT

Tm

∂2T′
∂r′2

+ 1
r′ + R*

∂T′
∂r′ +

R*
r′ + R*
( )2∂2T′

∂z′2
[ ]

− Ko C′ − Co( ),
(8)

where (u′, w′) are the radial and axial velocities, respectively; ρhnf is
the density of the hybrid nanofluid; t′ is the time; p symbolizes the
pressure of the fluid; σhnf is the electrical conductivity of the hybrid
nanofluid; ρe′ is the total ionic charge density; g is gravitational

acceleration; (αT, αC) are coefficients of thermal and solutal
expansions, respectively; T′ is the fluid temperature; cp indicates
specific heat at a constant pressure;K indicates the heat conduction;
σo is the Stefan–Boltzmann constant; Ta is the fluid’s average
temperature; k2 is the Rosseland absorption coefficient; τ1 is the
effective heat capacity ratio;DB is the Brownian diffusion coefficient;
DT is the diffusion coefficient for thermophoresis; Tm is the
medium’s temperature; C′ is the concentration of the fluid; and
Ko is the chemical term.

Considering that the electrolyte combination (Na+Cl−) is
homogeneous, the Poisson–Boltzmann equation provides the
electrical potential disturbance for it by (Akhtar et al., 2021)

∇2Φ′ � −ρe′
ε
, (9)

where Φ′ is the potential electricity and ε is the dielectric
permittivity.

Ionic energy density is described as ρe′ � ez*(n+ − n−). When an
overlaid double electrical layer is ignored, the cation and anion
densities (n+, n−) are expressed as

n± � no exp ±
ez* Φ′
KB T*

( ). (10)

Here, no represents the concentration of ions, e stands for electrical
charge, z* reflects the charge balance, KB indicates the Boltzmann
constant, and T* denotes the electrolytic solution’s mean
temperature.

By substituting n± and ρe′ for their respective values in Equation
9, and by using the Debye–Hückel approach, the
Poisson–Boltzmann equation for potential electricity can be
expressed as

∂2Φ′
∂r′2

+ 1
r′ + R*

∂Φ′
∂r′ +

R*
r′ + R*
( )2∂2Φ′

∂z′2
� 2 no ez*( )2

ε KB T*
Φ′. (11)

The extra stress tensor for the Carreau hybrid nanofluid
according to the shear rate is formulated as (Akbar and Nadeem,
2014; Rana and Liao, 2019; Wajihah and Sankar, 2021; Zaman and
Khan, 2021)

τ′ � μ∞ + μhnf − μ∞( ) 1 + Γ _ξ′( )2( )n−1
2[ ]ϑ′, (12)

_ξ′ �
���
Π′
2

√
�

�������
1
2
tr ϑ′( )2√

and ϑ′ � ∇V′ + ∇V′( )⊤, (13)

where τ′ is the extra stress tensor, μ∞ is the viscosity at an infinite
shear rate, μhnf is the viscosity of the hybrid nanofluid, Γ is the
constant of time, _ξ′ is the shear rate, n is the power-law index, ϑ′ is
the first Rivlin–Ericksen tensor, Π′ is the strain rate tensor’s second
invariant, V′ � (u′, 0, w′) is the vector of velocity, and ⊤ denotes
the transpose.

Except for the fluid’s thermal conductivity and viscosity, all of its
physical properties should remain constant. It is hypothesized that
the viscosity varies with temperature in addition to shear rate
dependence and presuming Γ _ξ′≪ 1, μ∞ � 0. Consequently, the
apparent viscosity is described as follows:

τ′ � μhnf 1 + n − 1
2

( ) Γ _ξ′( )2[ ]ϑ′. (14)
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Here, the initial and boundary constraints are

u′ � 0, w′ � 0, T′ � To, C′ � C0 at t′ � 0,
u′ � 0, w′ � 0, T′ � To, C′ � C0, Φ′ � ζ0 at r′ � h′ z′( ),
u′ � 0, w′ � 0, T′ � T1, C′ � C1, Φ′ � ζ1 at r′ � R′ z′( ).

(15)
Non-dimensional variables and parameters are defined as [(El

Kot and Abd Elmaboud, 2024) (El Kot and Abd Elmaboud, 2023)]

r � r′
Ro
, z � z′

Lo
, w � w′

AoR
2
o

μf
⎛⎝ ⎞⎠, u � u′

AoR
2
oδ

Loμf
⎛⎝ ⎞⎠, R � R′

Ro
,

t � t′
1
fp

( ), p � p′
AoLo

, θ � T′ − To

T1 − To
, ϕ � C′ − Co

C1 − Co
, Φ � Φ′

ζ1
,

ρe �
ρe′

−εζ1
R2
o

( ), τrr � τrr′
AoR

2
o

Lo
( ), τrz � τrz′

AoRo
, τzr � τzr′

AoRo
,

τzz � τzz′
AoR

2
o

Lo
( ), _ξ �

_ξ′
AoRo

μf
⎛⎝ ⎞⎠, Rc � R*

Ro
, γ2 � ρfR

2
ofp

μf
,

Re �
ρfAoR

3
o

μ2f
, e � A1

Ao
, Ha �

���
σf
μf

√
BoRo, κ � Ro

λD
,

λD � 2no ez*( )2
εKBT*

( )−1
2

, uHS � −εEzζ1
AoR

2
o

, Gr �
ραT( )f g T1 − To( )

Ao
,

Gc �
ραC( )f g C1 − Co( )

Ao
, We � ΓAoRo

μf
, Pr �

cpμf
Kf

,

Ra � 16σoT
3
a

3k2Kf
, S � σfE

2
zR

2
o

Kf T1 − To( ), Br � A2
oR

4
o

μf T1 − To( )Kf
,

Nb �
ρcp( )

f
τ1DB C1 − Co( )

Kf
,Nt �

ρcp( )
f
τ1DT T1 − To( )
KfTm

,

Sc �
μf

ρfDB
, βc �

ρfKoR
2
o

μf
,

(16)
where Rc is the curvature parameter, γ is the Womersley frequency
parameter, Re is the Reynolds number, e is the parameter of
amplitude fluctuation, Ha represents the Hartmann number, Da
is the Darcy number, κ symbolizes the electroosmotic parameter, λD
is the Debye length, uHS is the Helmholtz–Smoluchowski velocity,
Gr is the thermal Grashof number,Gc is the solutal Grashof number,
We is the Weissenberg number, Pr is the Prandtl number, Ra is the
radiation parameter, S is the Joule heating parameter, Br is the
Brickman number, α is the heat source parameter, Nb is the
Brownian motion parameter, Nt is the thermophoresis
parameter, Sc is the Schmidt number, and βc is the
chemical parameter.

Based on the suppositions and simplifications outlined by
Young (1968) for mild stenosis ( δ

Ro
≪ 1), (Ro

Lo
~ o(1)). Applying

Equation 16 and using the abovementioned presumption, the
non-dimensional form of the Equations 3–15 is as follows:

∂w

∂z
� 0,

∂p

∂r
� 0, (17)

∂2Φ
∂r2

+ 1
r + Rc

∂Φ
∂r

� κ2 Φ, (18)

ρhnf
ρf

⎛⎝ ⎞⎠ γ2
∂w

∂t
� Rc

r + Rc
1 + e cos 2πt( )[ ] + μhnf

μf
⎛⎝ ⎞⎠ 1

r + Rc( )2
∂

∂r
r + Rc( )2 ∂w

∂r
− w

r + Rc
( ) +W2

e

n − 1
2

( ){[
∂w

∂r
− w

r + Rc
( )3⎤⎦⎫⎬⎭ − σhnf

σf
( ) Rc

r + Rc
( )2

H2
a[ ]w

+ uHS κ
2 Φ + ραT( )hnf

ραT( )f Gr θ +
ραC( )hnf
ραC( )f GC ϕ,

(19)
ρ cp( )

hnf

ρ cp( )
f

Pr γ
2 ∂θ

∂t

� Khnf

Kf
+ Ra( ) ∂2θ

∂r2
+ Khnf

Kf
( ) 1

r + Rc

∂θ

∂r

+ Br

μhnf
μf

⎛⎝ ⎞⎠ ∂w

∂r
− w

r + Rc
( )2

+W2
e

n − 1
2

( ){
∂w

∂r
− w

r + Rc
( )4⎫⎬⎭ + Br

σhnf
σf

( ){
Rc

r + Rc
( )2

H2
a

⎫⎬⎭ w2 + σhnf
σf

( )S + ρ cp( )
hnf

ρ cp( )
f

Nb
∂ϕ

∂r

∂θ

∂r
( ) +Nt

∂θ

∂r
( )2{ }, (20)

Sc γ
2 ∂ϕ

∂t
� ∂2ϕ

∂r2
+ 1
r + Rc

∂ϕ

∂r
− βc Sc ϕ + Nt

Nb
( ) ∂2θ

∂r2
+ 1
r + Rc

∂θ

∂r
( ).

(21)
The corresponding initial and boundary constraints are

w � 0, θ � 0, ϕ � 0 at t � 0,

w � 0, θ � 0, ϕ � 0, Φ � ζ � ζo
ζ1

( ) at r � h z( ),
w � 0, θ � 1, ϕ � 1, Φ � 1 at r � R z( ),

(22)

R z( ) � 1 − δ* z − d*( ) 11 − 94 z − d*( )
3

+ 32 z − d*( )2 − 32 z − d*( )3
3

( ) d*≤ z≤ d* + 3
2

1 otherwise,

⎧⎪⎪⎨⎪⎪⎩
(23)

h z( ) � a + b e−π
2 z−zd*−1

2( )2 d*≤ z≤d* + 3
2

a otherwise,

⎧⎪⎨⎪⎩ (24)

where Equations 23, 24 are the non-dimensional walls and δ* � δ
Ro
,

d* � d
Lo
, and zd* � zd

Lo
.

Comparing hybrid nanofluids to simple nanofluids, the former
have shown better stability and thermal properties. In many facets of
human endeavor, such as electronics, medical, power, and chemical
engineering equipment, tiny concentrations of hybrid nanoparticles of
metal or metal oxides are used. Tables 1, 2 list the thermal and physical
characteristics of blood, silver nanoparticles, and aluminum oxide
nanoparticles. In this case, the volume fraction for silver and
aluminum oxide nanoparticles is denoted by ϕ1 and ϕ2, respectively.
The solid nanoparticles of Ag, solid nanoparticles of aluminum oxide
(Al2O3), base fluid (blood), and nanoblood hybrid are denoted by the
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suffices s1, s2, f, and hnf, respectively. Specifically, if (ϕ1 � ϕ2 � 1),
the hybrid nanofluid is transformed into a nanofluid (Das et al., 2021).

3 Numerical solution technique

The unsteady electroosmotic pulsatile flow-governing equations of
the hybrid nanofluid are nonlinear partial differential equations
governed by continuity, momentum, energy, and species
concentration. To solve these equations, the finite-difference method
was used due to its effectiveness in handling complex boundary
conditions typically encountered in arterial geometries. More
specifically, the Crank–Nicolson scheme was chosen as it provides a
good balance between computational cost and accuracy. The solution
domain was discretized using a uniform grid, and a semi-implicit
formulation was used to ensure convergence. The resulting algebraic
equations were solved iteratively until the desired level of accuracy was
achieved, ensuring reliable simulations of the flow dynamics within the
stenosed, curved, and catheterized artery. We used the finite-difference
method to solve the coupled nonlinear partial differential Equations
17–21 with initial and boundary conditions given by Equation 22. To
proceed, the physical domain is transformed into a regular uniform
domain using the transformation:

t � τ,

η � r − h

R − h
.

(25)

Using Equation 25 in Equations 17–24, we obtain:

1

R − h( )2
∂2Φ
∂η2

+ 1
h + Rc + η R − h( )[ ] R − h( )

∂Φ
∂η

� κ2 Φ, (26)

ρhnf
ρf

⎛⎝ ⎞⎠ γ2
∂w

∂τ
� Rc

h + Rc + η R − h( )[ ] 1 + e cos 2πτ( )[ ]

+ μhnf
μf

⎛⎝ ⎞⎠ 1

R − h( ) h + Rc + η R − h( )( )2 ∂

∂η

h + Rc + η R − h( )( )2 1
R − h( )

∂w

∂η
([

− w

h + Rc + η R − h( )[ ])× 1 +W2
e

n − 1
2

( ){
1

R − h( )
∂w

∂η
− w

h + Rc + η R − h( )[ ]( )2}]
− σhnf

σf
( ) Rc

h + Rc + η R − h( )[ ]( )2

H2
a[ ]w

+ uHS κ
2 Φ + ραT( )hnf

ραT( )f Gr θ

+ ραC( )hnf
ραC( )f GC ϕ, (27)

ρ cp( )
hnf

ρ cp( )
f

Pr γ
2 ∂θ

∂τ

� Khnf

Kf
+ Ra( ) 1

R − h( )2
∂2θ

∂η2
+ Khnf

Kf
( )

1
h + Rc + η R − h( )[ ] R − h( )

∂θ

∂η
+ Br

μhnf
μf

⎛⎝ ⎞⎠
1

R − h( )
∂w

∂η
− w

h + Rc + η R − h( )[ ]( )2

1 +W2
e

n − 1
2

( ) 1
R − h( )

∂w

∂η
({

− w

h + Rc + η R − h( )[ ])2} + Br
σhnf
σf

( ){
Rc

h + Rc + η R − h( )[ ]( )2

H2
a} w2

+ σhnf
σf

( )S + ρ cp( )
hnf

ρ cp( )
f

1

R − h( )2

TABLE 1 Thermal physical features of the hybrid nanoparticles.

Property Hybrid nanoblood (Ag-Al2O3/blood)

Density ρhnf � (1 − ϕ2)[(1 − ϕ1)ρf + ϕ1ρs1] + ϕ2ρs2

Viscosity μhnf � μf
(1−ϕ1 )2.5(1−ϕ2 )2.5

Thermal expansion coefficient (ραT)hnf � (1 − ϕ2)[(1 − ϕ1)(ραT)f + ϕ1(ραT)s1] + ϕ2(ραT)s2

——- (ραC)hnf � (1 − ϕ2)[(1 − ϕ1)(ραC)f + ϕ1(ραC)s1] + ϕ2(ραC)s2

Heat capacity (ρcp)hnf � (1 − ϕ2)[(1 − ϕ1)(ρcp)f + ϕ1(ρcp)s1] + ϕ2(ρcp)s2

Electrical conductivity σhnf � σbf[σs2+2σbf−2ϕ2(σbf−σs2)σs2+2σbf+ϕ2(σbf−σs2) ] where σbf � σf[σs1+2σf−2ϕ1(σf−σs1)σs1+2σf+ϕ1(σf−σs1) ]
Thermal conductivity Khnf � Kbf[Ks2+2Kbf−2ϕ2(Kbf−Ks2)

Ks2+2Kbf+ϕ2(Kbf−Ks2) ] where Kbf � Kf[Ks1+2Kf−2ϕ1(Kf−Ks1)
Ks1+2Kf+ϕ1(Kf−Ks1 ) ]

TABLE 2 Thermal physical properties of silver (Ag) and aluminum oxide
(Al2O3) nanoparticles and blood fluid:

Property Ag Al2O3 Blood

σ(s/m) 6.3 × 107 35 × 106 6.67 × 10−1

ρ(kg/m3) 8,933 6,320 1,063

cp(J/kgK) 235 765 3,594

αC × 10−5(1/K) 16.7 18 0.18

K(W/mK) 401 76.5 0.492
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Nb
∂ϕ

∂η

∂θ

∂η
( ) +Nt

∂θ

∂η
( )2{ }, (28)

Sc γ
2 ∂ϕ

∂τ
� 1

R − h( )2
∂2ϕ

∂η2
+ 1

h + Rc + η R − h( )[ ] R − h( )
∂ϕ

∂η
− βc Sc ϕ

+ Nt

Nb
( ) 1

R − h( )2
∂2θ

∂η2
+ 1

h + Rc + η R − h( )[ ] R − h( )
∂θ

∂η
( ).

(29)
The associated initial and boundary conditions are

w � 0, θ � 0, ϕ � 0 at τ � 0,

w � 0, θ � 0, ϕ � 0, Φ � ζ � ζo
ζ1

( ) at η � 0,

w � 0, θ � 1, ϕ � 1, Φ � 1 at η � 1.

(30)

The finite-difference approach is used by the Crank–Nicolson
semi-implicit discretization because it is unconditionally stable. Let
us consider a uniform grid with spacing Δη(� 1

Nη
) in the η direction

and time Δτ(� 1
Nτ
) in the τ direction. Consider the discrete

approximation of w, θ, ϕ and Φ at the grid point iΔη, (i �
1, 2, 3, . . . . . . , Nη) and jΔτ (j � 1, 2, 3, . . . . . . , Nτ). The
discretization of the above equations (Equations 26–30) will be

1

R − h( )2
Φj

i+1 − 2Φj
i + Φj

i−1
Δη( )2{ } + 1

h + Rc + ηi R − h( )[ ] R − h( )
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i+1 +Φj
i−1

2Δη{ } � κ2 Φj
i , (31)
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i−1
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− h + Rc + ηi R − h( )( ) wj+1
i+1 − wj+1

i−1 + wj
i+1 − wj

i−1
4Δη( )

− R − h( )wj
i } + 2 h + Rc + ηi R − h( )( ) R − h( )

wj+1
i+1 − wj+1

i−1 + wj
i+1 − wj

i−1
4Δη( ) − wj

i
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+3W2
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n − 1
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i−1
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− wj
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FIGURE 2
Grid independence test for the velocity, heat, and concentration.
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The associated initial and boundary conditions are

w0
i � 0, θ0i � 0, ϕ0

i � 0,
wj

0 � 0, θj0 � 0, ϕj
0 � 0, Φj

0 � ζ ,
wj

Nη
� 0, θjNη

� 1, ϕj
Nη

� 1, Φj
Nη

� 1.
(35)

The function FindRoot in Mathematica software is used to solve
the produced system of nonlinear algebraic equations (Equations
31–35) and obtain the consecutive solutions. After several cycles of
this procedure, a steady state is achieved. The steady-state solution is
assumed to be obtained when the absolute differences between the
values of w, θ and ϕ at two subsequent time steps are less than 10−5

at all grid points.

4 Results and discussions

In this section, we discuss the effects of various physical
parameters on the flow, heat transfer, and mass transfer
characteristics of the hybrid nanofluid through a stenosed curved
artery. Specifically, the influences of electroosmotic forces,
pulsatility, curvature, and nanoparticle concentration on velocity,
temperature, and concentration profiles are examined. The
interaction of these parameters shows significant variations in
hemodynamic parameters, which may hold relevance for medical
applications involving catheters. The following sections present the
results in relation to the figures provided, highlighting trends and

FIGURE 3
Potential electricity Φ [Panels (A, B)] for different values of the wall zeta potential ζ and Debye–Hückel parameter κ.

FIGURE 4
Potential electricity Φ for different values of the curvature
parameter Rc.

FIGURE 5
Velocity distributions w for different values of the wall zeta
potential ζ and Weissenberg number We.
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comparing the effects of different governing parameters on velocity,
temperature, and concentration.

4.1 Grid independence test

The grid independence test was carried out to ensure that the
solution was not dependent on the mesh size used in the numerical
solution, guaranteeing credible and ensuring computational
efficiency for the velocity, temperature, and concentration profiles
without sacrificing accuracy. The model was solved by using grids
with dimensions of 50 × 50, 100 × 100, and 200 × 200. Figure 2
shows that the solutions found are always the same regardless of

whether one uses a relatively small or large grid. We choose a grid
size of 100 × 100 for subsequent simulations.

4.2 Velocity

Figures 3, 4 show the behavior of the electric potential (Φ) under
different conditions. Figures 3A, B show the effects of the wall zeta
potential (ζ) and Debye–Hückel parameter (κ) on the electric
potential distribution. As the wall zeta potential increases, the
electric potential within the flow domain increases, increasing the

FIGURE 6
Velocity distributions w versus the time t for different values of
the Hartmann number Ha and fluctuation parameter (e).

FIGURE 7
Velocity distributions w for different values of the Grashof
number Gr and volume concentrations ϕ1 , ϕ2.

FIGURE 8
Velocity distributionsw for different values of the electroosmotic
parameter κ and solutal Grashof number Gc.

FIGURE 9
Velocity distributions w versus the time t for different values of
the curvature parameter Rc .
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electroosmotic effect. This results in a more uniform electric
potential distribution along the artery, which enhances the
electroosmotic flow and affects the velocity profile. The
Debye–Hückel parameter, characterizing the thickness of the
electrical double layer, also affects the electric potential
distribution, with higher values causing a steeper potential
gradient near the walls. Figure 4 highlights the impact of the
curvature parameter (Rc) on the electric potential. The results
indicate that increasing the curvature enhances the asymmetry in
the potential distribution, particularly near the outer wall of the
curved artery segment, influencing the velocity distribution
observed in subsequent figures.

The velocity profiles for the hybrid nanofluid are shown in
Figures 5–9, illustrating the complex interaction of various physical
parameters. Figure 5 shows the velocity distribution across the artery
for different values of wall zeta potential (ζ) and the Weissenberg
number (We). As the wall zeta potential increases, the
electroosmotic force strengthens, enhancing the overall velocity
of the fluid. This is because the increased electrokinetic force
reduces the resistance imposed by viscous forces. Additionally,
the Weissenberg number, which characterizes the fluid’s
elasticity, plays a key role. Higher values of (We) increase the
velocity peak near the artery’s central axis as the elastic
properties of the Carreau fluid work to minimize viscous drag.

FIGURE 10
Heat and concentration distributions [Panels (A, B)] for different values of the curvature parameter Rc and radiation parameter Ra.

FIGURE 11
Heat and concentration distributions [Panels (A, B)] for different values of the thermophoresis parameter Nt .
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The combined effect of the higher wall zeta potential and
Weissenberg number produces a more favorable velocity
distribution, enhancing mass transport, which is beneficial in
medical applications involving catheterized arteries.

Figure 6 shows the velocity distributions over time t for different
values of the Hartmann number (Ha) and the fluctuation parameter
(e). The Hartmann number reflects the influence of the magnetic
field on the flow, with higher values corresponding to a stronger
magnetic field. As Ha increases, the velocity decreases, indicating
that the magnetic field exerts a damping effect on fluid motion,
reducing the overall velocity. This magnetic damping effect is critical
for controlling blood flow in biomedical applications where precise

modulation is needed. In contrast, the fluctuation parameter (e),
representing the amplitude of the pulsatile flow, causes more
pronounced oscillations in the velocity profile with higher values,
reflecting the increased impact of pulsatility on flow dynamics. The
interplay between (Ha) and (e) reveals that although the magnetic
field lowers the peak velocity, the pulsatile nature of the flow can
counterbalance this effect, maintaining a dynamic and controlled
flow environment.

Figure 7 shows the velocity distributions for different values of
the Grashof number (Gr) and volume concentrations (ϕ1, ϕ2). The
Grashof number represents the ratio of buoyancy to viscous forces,
and as (Gr) increases, the velocity profile exhibits a notable

FIGURE 12
Heat and concentration distributions [Panels (A, B)] for different values of the Brownian motion parameter Nb.

FIGURE 13
Concentration distributions ϕ versus time t for different values of the Schmidt number Sc and chemical parameter βc [Panels (A, B)].
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enhancement due to the increased buoyant force acting on the fluid.
This buoyant force helps overcome the resistance of the arterial
walls, thus increasing the flow rate. The volume concentrations of
hybrid nanoparticles (ϕ1, ϕ2) also significantly influence the
velocity. Higher concentrations lead to improved thermal
conductivity and reduced effective viscosity, resulting in a more
pronounced velocity peak. The combined effect of an increased
Grashof number and higher nanoparticle concentration significantly
enhances the overall velocity, which can help improve blood flow in
stenosed arteries.

Figure 8 shows the velocity distributions for different values of
the electroosmotic parameter (κ) and solutal Grashof number (Gc).
The electroosmotic parameter (κ) influences the electrokinetic flow
within the artery, and as its value increases, the overall fluid velocity
increases due to the enhanced electroosmotic force, providing
additional driving support for the flow. The solutal Grashof
number (Gc), which represents the ratio of solutal buoyancy
forces to viscous forces, also significantly affects the velocity
profile. Higher Gc values increase the buoyant force, enhancing
fluid velocity, particularly in the core region of the artery. The
combined effects of (κ) and (Gc) contribute to a more efficient flow,
crucial for optimizing mass transport in biomedical applications
involving stenosed arteries.

Figure 9 presents the velocity distributions over time t for
different values of the curvature parameter (Rc). The curvature
parameter strongly influences the velocity profile due to the
centrifugal forces generated by the artery’s curved geometry. As
Rc increases, the velocity near the outer wall of the artery increases,
leading to an asymmetric velocity distribution. This effect is due to
centrifugal forces pushing the fluid toward the outer curvature,
increasing the velocity in that region while reducing it near the inner
wall. The pulsatile nature of the flow further modulates these effects,
with peak velocity occurring during the systolic phase, especially in
regions affected by a higher curvature. This interaction between the
curvature and pulsatility is critical for understanding hemodynamics
in curved arterial segments, particularly in the presence of stenosis
or catheterization.

4.3 Heat and concentration distribution

Figure 10 shows the distribution of temperature and
concentration for different values of the curvature parameter
(Rc) and radiation parameter (Ra). Panel (a) shows the
temperature distribution, which is significantly influenced by the
artery’s curvature. As Rc increases, the temperature distribution
becomes more asymmetric, with higher temperatures near the
artery’s outer curvature. This asymmetry is attributed to
enhanced convective heat transfer driven by centrifugal forces
that push the fluid carrying thermal energy toward the outer
wall. The radiation parameter (Ra) also plays an important role;
higher Ra values increase radiative heat flux, leading to a more
uniform temperature profile across the artery, which is crucial for
maintaining stable thermal conditions. Panel (b) shows the
concentration distribution for various values of (Rc) and (Ra).
Similar to the temperature distribution, the concentration profile
is influenced by curvature and radiation effects. Higher Rc values
result in an asymmetric concentration profile, with more

concentration near the artery’s outer wall. (Ra) enhances mass
diffusion, leading to a more uniform concentration distribution.
The combination of curvature and radiation parameters is crucial in
optimizing both heat and mass transfer, making it valuable for
biomedical applications like targeted drug delivery and
thermal therapies.

Figure 11 shows the heat and concentration distributions for
different values of the thermophoresis parameter (Nt). Panel (a)
shows how the temperature distribution is significantly affected by
the thermophoresis effect. AsNt increases, the temperature gradient
becomes steeper, enhancing heat transfer from regions of higher
temperature to lower temperature. This effect is particularly
important in applications where maintaining a controlled
temperature gradient is essential, such as in hyperthermia
treatments. Panel (b) shows the concentration distribution for
different (Nt) values. The thermophoresis effect causes particles
to move from hot to cold regions, leading to a decrease in the
concentration in the hotter areas and an increase in the cooler areas.
As Nt increases, the concentration distribution becomes more
uniform, reflecting enhanced mass transfer and more effective
diffusion of nanoparticles within the fluid. Generally, a decrease
in the concentration in hotter regions and an increase in the
concentration in cooler areas align with thermophoresis, which
drives movement from hot to cold. However, achieving a more
consistent concentration across the entire domain or a uniform
reduction suggests a balanced distribution, which is beneficial in
biomedical applications like targeted drug delivery, where a
homogeneous distribution is often desired for optimal
therapeutic outcomes.

Figure 12 shows the heat and concentration distributions for
different values of the Brownian motion parameter (Nb) at a fixed
thermophoresis parameter (Nt) value. Panel (a) illustrates that the
Brownian motion parameter significantly affects the temperature
distribution. Panel (b) shows the concentration distribution for
different values of the Brownian motion parameter (Nb). The
concentration distribution is highly sensitive to the Brownian
motion at the beginning of the time interval; this sensitivity
decreases as time increases, and the concentration goes to its
steady state.

Figure 13 shows the impact of the Schmidt number (Sc) and
chemical parameter (βc) on the concentration distribution. Panel (a)
and Panel (b) illustrate that the Schmidt number (Sc) and chemical
parameter (βc) significantly affect the concentration distribution.
Furthermore, the concentration distribution is reduced by
increasing Schmidt number (Sc) and chemical parameter (βc).
Physically, a thicker hydrodynamic layer compared to the mass
transfer layer is indicated by a greater Schmidt number, which
causes the concentration to diffuse more slowly. In processes like
chemical reactors or environmental engineering, where regulated
mass transfer is sought, this is essential.

5 Conclusion

The flow of hybrid nanofluid through a stenosed, curved, and
catheterized artery was treated as unsteady electroosmotic pulsatile
flow using the Carreau non-Newtonianmodel. The characteristics of
the velocity, temperature, and concentration distributions were
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analyzed for various representative physical parameters. The main
findings are as follows.

• The results of the dimensionless potential distribution shown
in Figure 2B match the results obtained by Wang et al. (2020).

• Numerical analysis of the hybrid nanofluid flow within a
stenosed, curved, and catheterized artery showed significant
influences of electroosmotic forces, curvature, and pulsatility
on velocity, temperature, and concentration profiles.

• Increases in the electroosmotic and Weissenberg parameters
substantially accelerated fluid velocity by reducing viscous
drag while improving mass transport.

• The curvature parameter and radiation effects played a crucial
role in creating asymmetric heat and concentration
distributions, optimizing thermal and mass transport.

• The thermophoresis parameter influenced temperature and
concentration distributions by promoting uniformity, which is
beneficial in biomedical applications for efficient mass diffusion.

• The fluctuating patterns imply that the concentration
distribution is extremely responsive to the parameter of
Brownian motion. In procedures requiring exact
concentration control, such as chemical reactions or
material creation, this might be extremely important.
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