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This report demonstrates the development of carbon fibers (CFs) decorated with
TiO2 nanoparticles (NPs) as an efficient photocatalyst for the photocatalytic
degradation of methylene blue (MB) as a model dye. Carbon fibers were
produced by carbonization of polyacrylonitrile fibers, previously produced by
centrifugal spinning. Subsequently, the CFs were decorated with TiO2 NPs (CFs@
TiO2) by tailored soaking protocol using aqueous TiCl4 solution with different
concentrations (0.025, 0.05, 0.1, and 0.2M). SEM analyses revealed that soaking in
TiCl4 produced a smooth, conformal, continuous TiO2 nanoparticulate coating
with thickness increasing from 40.4 ± 21.2 to 257.9 ± 63.9 nm with increasing
TiCl4 concentration. X-ray diffraction and Raman spectroscopy confirmed the
anatase nature of TiO2. Photocatalytic decomposition rates of MB were assessed
under UV light illumination for all CFs@TiO2 samples, and it was revealed that the
lowest amount of TiO2 NP on C yielded the highest rates. The synergistic
interaction between CFs and TiO2 NPs with a uniform morphology and a
well-crystalline anatase structure, present in an optimal amount of fiber
bodies, is the key reason for the remarkable photocatalytic performance. This
work shows that C fibers decorated with an optimal amount of TiO2 NPs have a
great potential as an effective photocatalytic material.
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1 Introduction

Water pollution is a major environmental issue around the world (Parrott et al., 2016;
Sobana et al., 2016). Dyes are the most common source of water contamination due to their
widespread use in the textile industry, poor biodegradability, and high toxicity (Asiltürk and
Şener, 2012). Dyes in wastewater alter the appearance of water and reduce dissolved oxygen
levels, both of which have adverse impacts on the ecosystem (Muñoz-Fernandez et al., 2016;
Binaeian et al., 2016). Among the dyes used in the textile industry, reactive dyes must be
removed by water purification due to their higher concentration and carcinogenic
properties (Pandimurugan and Thambidurai, 2016; Mortazavi-Derazkola et al., 2017).
Water treatment technologies include flocculation (Lee and Choo, 2014), carbon adsorption
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(Malik, 2004), reverse osmosis (Malaeb and Ayoub, 2011), the
activated sludge process (Pala and Tokat, 2002), and biological
approaches (Bhatia et al., 2017). However, these technologies
only transfer contaminants (dyes) from one phase to another,
resulting in secondary contamination (Lakshmipathi Naik et al.,
2010; Shakouri et al., 2016). As an ideal environmentally friendly
technology for the degradation of dye molecules, advanced
oxidation processes based on a semiconductor metal oxide
photocatalyst have attracted considerable interest in wastewater
treatment (Sobana et al., 2016). Photocatalytic processes under
ambient conditions (Lin et al., 2015) can degrade many tenacious
organic pollutants without adding chemical oxidants. Additionally,
photocatalytic degradation is considered as a clean, cost-effective,
exceptional reusability, and environmentally beneficial method for
the complete degradation of organic dyes (Lee et al., 2015; Farouk
et al., 2016).

Metal oxide semiconductors such as iron oxide (Fe2O3) (Hitam
and Jalil, 2020), titanium dioxide (TiO2) (Schneider et al., 2014), zinc
oxide (ZnO) (Mclaren et al., 2009; Ong et al., 2018) and cerium
dioxide (CeO2) (Samai and Bhattacharya, 2018; Naidi et al., 2021)
are frequently used as photocatalysts. Titanium dioxide (TiO2) is the
most widely used metal oxide photocatalyst due to its high stability,
low cost, abundance, stability, strong photoactivity, and human and
environmental safety (Hir et al., 2017). On the other hand, carbon
(C) is a nonmetallic element with a large electron storage capacity.
The combination of C and semiconductors, such as TiO2, produces
very interesting mixtures for heterogeneous photocatalytic processes
(Takeda et al., 1998; Keller et al., 2005; Shan et al., 2010; Asencios
et al., 2022). C accepts photogenerated electrons (e−CB in
semiconductor conductor bands) and holes (h+

VB in
semiconductor valence bands) promoting the separation of
photogenerated electron-hole pairs, increasing their lifetime. The
presence of C can also reduce semiconductor bandgap energy, thus
extending light absorption and enhancing its photocatalytic activity
(Cui et al., 2013; Teng et al., 2014).

Techniques such as melt-blowing (Hiremath and Bhat, 2015),
bicomponent fiber spinning (Naeimirad et al., 2018) electrospinning
(Huang et al., 2003), phase separation (Zhao et al., 2011), template
synthesis (Ikegame et al., 2003), and self-assembly (Kievsky and
Sokolov, 2005) have been used to produce nanofibers. Unlike
electrospinning, all of the aforementioned nanofiber production
methods have limited applications due to the complexity of
fabrication procedures and limited material selections (Lu et al.,
2013). The most published approach for producing polymeric and
inorganic nanofibers has been electrospinning. However, the high-
voltage power supply, dielectric constant sensitivity, extensive
amount of solvents, sensitivity to weather, and poor fiber yield
restrict its use. These concerns can be efficiently addressed by
centrifugal spinning. The benefits of centrifugal spinning have
been thoroughly documented in the literature (Sarkar et al., 2010;
Rihova et al., 2021) including higher production rates, fewer hazards
(the absence of an electrostatic charge capable of igniting organic
solutions), improved reproducibility, and dimensional control
(Rihova et al., 2021). In recent years, the reproducible production
of large amounts of micro - and nanoscale fibers by centrifugal
spinning using polymers such as poly (vinylidene fluoride) (Vazquez
et al., 2012), polycaprolactone (McEachin and Lozano, 2012),
nylon6 (Mihut et al., 2014), biopolymers (Rihova et al., 2022), or

forming inorganic fibers, such as tungsten trioxide (Hromádko et al.,
2021), silicon dioxide (Hromádko et al., 2017), cobalt (II, III) oxide
(Ayala et al., 2021), aluminum oxide (Natarajan and Bhargava,
2018), etc., has been shown to be very successful.

During the centrifugal spinning process (Hromádko et al.,
2017), a strong centrifugal force acts on the spinneret precursor
to push the fibers out. Optimized circulation from the air inlet to the
air outlet in the spinning chamber expedites the solvent’s
evaporation, leaving the fibers behind, on a fiber collector, where
these fibers are collected. Theoretically, the most important factors
affecting fiber yield are the spinneret speed, the collector distance,
and the diameter of the spinneret nozzle Furthermore, the viscosity
of the solution, the spinneret’s rotational speed, and the evaporation
rate significantly influence the fibers’ morphology and size (Rihova
et al., 2021). Depending on the process settings and spinning
solution employed, fibers with diameters ranging from a few
hundred nanometers to a few micrometers can be generated.

In this work, we report the decoration of CFs with TiO2 NPs
(CFs@TiO2) by immersing them in aqueous TiCl4 solutions with
various concentrations of and a post-annealing process at 400 °C for
30 min TiO2 decorated samples were examined by using X-ray
diffraction (XRD), scanning electron microscopy (SEM), energy
dispersive X-ray analysis (EDX), ultraviolet-visible diffuse
spectroscopy (UV-Vis), Raman spectroscopy (RS), and
Photoluminescence spectroscopy (PL). The synthesized TiO2 NPs
decorated samples were compared with commercially available
reference TiO2 nanofibers produced by electrospinning (TiO2@
ES) for photodegradation of methylene blue dye under UV
irradiation (λ = 365 nm).

2 Materials and methods

2.1 Materials

DOLAN GmbH, Germany, supplied polyacrylonitrile granulate
(molecular weight 116,000 g/mol, N-PAN). Penta Chemicals (Czech
Republic) provided N, N-dimethylacetamide (DMAC, min. 99.5 wt
%), which was used as a solvent for PAN. TiCl4 for synthesis was
provided by Sigma-Aldrich. Other chemicals (H2SO4, KMnO4,
H3PO4) mentioned in this work were purchased from Sigma-Aldrich.

2.2 Centrifugal spinning of
polyacrylonitrile (PAN)

At room temperature, PAN was dissolved in DMAC by stirring
with magnetic stirrers. The solution was prepared at a concentration
of 15 wt%. The total weight of the PAN solution intended for the
spinning process on Cyclone Pilot G1 (centrifugal spinning pilot
tool, Pardam Nano4Fibers Ltd., Czech Republic) was 300 g
(Hromádko et al., 2017). The following processing conditions
were used for fiber production: 10,000 rpm rotational speed,
35°C ± 5°C temperature, and 25% ± 5% relative humidity (RH).
The resulting fibers were collected and dried in air in the form of
bulky 3D structures. The efficiency of the production process was
approximately 70%, corresponding to 32 g of dry
nanofibrous material.
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2.3 Carbonization processes

The process of obtaining CFs was described in the previous work
(Chennam et al., 2024). In brief, to stabilize the PAN fibers, they
were heated in an XERION XRETORT 1200 furnace at 240°C for
60 min, with a ramp rate of 1°C.min−1. The stabilized fibers were
carbonized in an argon environment at 900°C, with a heating rate of
5°C.min−1. After the optimal temperature for carbonization was
reached, the furnace was left to naturally cool down to ambient
temperature.

2.4 Chemical surface treatment

CFs are hydrophobic by nature; therefore, an acid treatment was
used to improve their wettability (hydrophilic nature) (Marcano
et al., 2010; Thalluri et al., 2023). The Marcano-Tour method
(Marcano et al., 2010) was used to treat the CFs. 170 mg of
KMnO4 (potassium permanganate) and 9:1 (v/v ratio) solution of
H2SO4 (sulfuric acid)/H3PO4 (phosphoric acid) solution were used
for the conventional Marcano-Tour procedure. Using a
temperature-controlled water bath, the mixture was heated to
45 °C and stirred continuously for 24 h. Finally, they are dried in
the oven at 60°C.

2.5 Decoration of CFs with TiO2

To obtain CFs decorated with TiO2 NPs, the CFs were immersed
in ice-cooled solutions of deionized (DI) water and titanium
tetrachloride (TiCl4) of various concentrations (0.025, 0.05, 0.1,
and 0.2 M). 30mg of the CFs were immersed in a solution that
was 1 mL in volume. Following immersion, the samples were
subjected to sonication for 1 min in an ultrasonic bath to ensure
uniform dispersion. Subsequently, the fibers were soaked in a
temperature-controlled water bath (70°C, 30 min), drying (70°C,
30 min) (Sopha et al., 2017). Finally, the annealing process was
carried out in a muffle oven at 400°C for 30 min in a static air
environment, with a heating rate of 2.1°C·min−1 to obtain the
structure of anatase (Sopha et al., 2020).

2.6 Photodegradation tests

Photocatalytic experiments were performed following the
relevant processing parameters reported in previous work
(Hromádko et al., 2021). For all these experiments, 10 mg of
each sample was employed. On the basis of prior experience and
preliminary experiments, this amount of fibers was determined to be
the best match for accurately depicting the differences in
degradation rates among the samples. Photocatalytic degradation
of the methylene blue (MB) solution (initial concentration = 1 ×
10−5 M) was used to evaluate the photocatalytic activities of CFs
decorated with TiO2 NPs using various concentrations of TiCl4. As a
reference, commercial TiO2 nanofibers produced by electrospinning
(TiO2@ES) were used (gift sample from PardamNano4Fibers Ltd.).
To establish the equilibrium between dye adsorption and
desorption, 10 mg of CFs decorated with TiO2 NPs were soaked

in 30 mL of MB solution for 1 h in the dark with constant stirring at
300 rpm. After equilibrium was reached, all fibers were irradiated
with an LED-based UV lamp (10W) using the particular wavelength
of λ = 365 nm. nn The degradation rates were monitored by
measuring the absorbance of the MB solution every 10- or 30-
min steps using a visible light spectrophotometer (S-200, Boeco).
Before absorbance measurements, carbon and pure TiO2 fibers were
separated from the MB solution using a combination of
ultracentrifugation at 15,000 rpm for 5 min at 25°C using a fixed
angle rotor (MLA-50) and a high-speed centrifuge (Fisherbrand,
HSE09225) at 11,000 rpm for 3 min.

2.7 Characterization techniques

Using a field emission scanning electron microscope (SEM, FEI,
Verios 460 L) with an acceleration voltage of 5 kV, the surface
morphology of CFs and CFs decorated with TiO2 NPs using various
concentrations of TiCl4 were observed. Average TiO2 coating
thicknesses were determined using Nanomeasure from cross-
sectional SEM images. A minimum of 100 measurements were
made using three or four SEM images. A Tescan MIRA3 XMU
scanning electron microscope equipped with an energy-dispersive
X-ray detector (Oxford Instruments, United Kingdom) at an
acceleration voltage of 7 kV was used to analyze the elemental
composition. The structure of the samples was evaluated using an
X-ray diffractometer (XRD; Smart Lab 3 Kw from Rigaku, Japan),
which was set in Bragg-Brentano geometry with Cu-Kα radiation
(λ = 0.154 nm) and fitted with the Dtex-Ultra 1D detector. A 30-Ma
current and 40 kV were employed to power the Cu radiation. The
diffraction patterns were captured from 10° to 90° with a step size of
0.01° and a scan speed of 4° min−1. Diffuse reflectance spectroscopy
(DRS) measurements were performed in the wavelength range of
200–800 nm using a UV-visible-NIR Jasco V-770 spectrometer with
a 16 mm diameter Spectralon-coated integrating sphere and 1 nm
spectral resolution. Each sample was deposited in a quartz cuvette,
sealed, and mounted in a sample holder. Raman spectroscopy (RS)
was performed on CFs with and without decoration using a Witec
alpha300R spectroscope (WITec, Ulm, Germany). In the Raman
shift range of 100–2000 cm-1, spectra were obtained in continuous
scanning mode at a laser excitation wavelength of 532 nm. The laser
beam was focused using a ×100 objective lens, resulting in a 1 µm
diameter point. The measurement signal was reconstructed using
five accumulations and a 20-s integration time. The
photoluminescence (PL) measurements were conducted using a
WITec Alpha 300R instrument equipped with a 355 nm
excitation laser operating at a power of about 3.89 mW.
A ×40 objective lens with a numerical aperture (N.A.)
of 0.6 was used.

3 Results and discussion

3.1 Morphological analysis

Figure 1 shows SEM images of the CFs samples with and without
TiO2 nanoparticulate coatings. The morphology of all CF is fibrous,
and remains fibrous, even when used as a substrate for subsequent
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deposition of TiO2 nanoparticles (NPs). The average diameter of the
CF is 1.4 ± 0.21 µm, based on the measurement of 100 counts (N =
100) and statistical evaluation. As can be seen, the concentration of
TiCl4 in the soaking solution has a significant effect on the resulting
amount of the TiO2 NPs on the CF. It can be seen that the TiO2 film
is composed of NPs that have covered the surface of the CFs using
various concentrations (0.025, 0.05, 0.1, and 0.2 M) of TiCl4. For the
0.025 M case, decoration resulted in a smooth, uniform, and
continuous TiO2 nanoparticulate coating with negligible peeling.
For higher concentrations of TiCl4, peeling of deposited TiO2

nanoparticulate coating was observed on some spots, which
indicated rather limited adhesion of TiO2 on CFs, which may be
attributable to the excessive thickness of the TiO2 nanoparticulate
coating resulting from an excessively high TiCl4 concentration.
However, the peeling was observed only, when samples were
mechanically pressed, such as for the SEM inspection on the
SEM stub. No significant peeling was observed when the samples
were employed in photocatalysis without external applied pressure.
TiO2 fibers produced by electrospinning (TiO2@ES) showed a
smooth fiber surface, free of defects, cracks, or other imperfections.

The thickness of CFs decorated TiO2 nanoparticulate coatings
was estimated from the cross-sectional SEM images (Figure 2). The

thickness of TiO2 coatings were 40.4 ± 21.2, 76.5 ± 28.1, 185.4 ± 63.5,
and 257.9 ± 63.9 nm, respectively, for 0.025, 0.05, 0.1 and 0.2 M
TiCl4 solutions. Overall, the sample with 0.2 M showed the highest
thickness, as expected. Supplementary Figure S1 in SI shows the
overall morphology of CFs with and without TiO2 nanoparticulate
coatings at a low magnification.

3.2 EDX analysis

EDX analyses were performed to analyze the composition of CFs
that have been decorated with TiO2 NPs using various concentrations
of TiCl4. EDX examinations were carried out at four distinct locations
on each sample to ensure that the elements were evenly distributed.
The statistically enriched results are outlined in Table 1. The following
table shows that the only element present in CFs is carbon. The TiO2

NPs decorated samples exhibit the presence of titanium (Ti), oxygen
(O), and carbon (C). The EDX results for sample 0.2 M in Table 1
confirm this, showing that Ti and O were present in higher quantities,
while C was present in lower quantities. The relatively low percentage
of carbon implies that most of the surface of the CFs was
covered with TiO2.

FIGURE 1
SEM images of CFs, CFs decorated with TiO2 NPs using various concentrations of TiCl4 and reference TiO2@ES fibers.
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3.3 Crystallinity analysis

Figure 3 shows the XRD patterns of CFs and CFs decorated with
TiO2 NPs(CFs@TiO2) using various concentrations of TiCl4. As one
can see from Figure 3 there are two broad bumps for the CFs at
approximately 26° and 45° that could be assigned to the (002) and
(101) planes of graphite (Cao et al., 2019) respectively. For all CFs@
TiO2 samples, these broad bumps are no longer visible, which is
attributable to the presence of TiO2 on CF bodies, which is
responsible for the weakening of the CF diffraction peaks.

For CFs@TiO2 (0.025 M), the XRD pattern exhibits one TiO2

apparent diffraction peak at about 25.7° that becomes increasingly
intense with increasing TiCl4 concentration. Six additional
diffraction peaks appear in the XRD pattern of CFs@TiO2

(0.2 M). The diffraction peaks at 25.7°, 38.4°, 48.4°, 55°, 63.1°,
69.9°, and 75.7° match the crystal faces (101), (004), (200), (105),
(213), (116) and (215) of anatase TiO2 [JCPDS # 75–1537]. Using
Scherrer’s equation (Langford and Wilson, 1978) for the diffraction

peak at 25.7⁰ (which corresponds to the main anatase (101) peak),
the crystallite size of CFs decorated TiO2 NPs using various
concentrations (0.025, 0.05, 0.1, and 0.2 M) of TiCl4 were
calculated and was found to be 3.6, 4.9, 7.3, and 9.1 nm,
respectively. Supplementary Figure S2 illustrates an additional
XRD pattern of the reference TiO2 fibers generated through
electrospinning (TiO2@ES). The power law relationship D = K.Tn

(Dulmaa et al., 2021) was used to illustrate the relationship between
the crystallite size (referred to as D) and the thickness of the TiO2

layer (referred to as T) for CFs @TiO2. In this equation, D represents
the crystallite size, T represents the thickness, n represents the
growth exponent, and K is the proportionality constant. It
demonstrates that when the concentration of TiCl4 increases
from 0.025 M to 0.2 M, the crystallite size increases in
proportion to the square root of the thickness. More information
about this relationship is available in Supplementary Table S1 in the
Supplementary Material.

3.4 Raman analysis

Raman spectroscopy (RS) is a versatile technique for identifying
the phase composition, the defect concentration of the materials
(Kiran and Sampath, 2012), etc. Since the carbon information was
not well defined by XRD patterns (Figure 3) for CFs@TiO2 NPs, the
aim of RS measurements was to investigate whether there are any
structural changes in the CFs observed after the TiO2 NPs
decoration on CFs. Figure 4 shows the RS of blank CFs and
CFs@TiO2 NPs.

The RS of the CFs decorated with TiO2 NPs using different
concentrations of TiCl4 exhibits four peaks with strong intensities at
150 (Eg), 395 (B1g), 515.3 (A1g) and 642 (Eg) cm−1, which are

FIGURE 2
Cross-sectional SEM images of CFs decorated with TiO2 NPs using various concentrations of TiCl4.

TABLE 1 EDX analyses of CFs and CFs decorated TiO2 NPs using various
concentrations of TiCl4.

Sample ID Mass content (wt%)

Ti O C

CFs — — 100.00

0.025 M 44.55 ± 2.19 8.09 ± 0.9 47.36 ± 3.05

0.05 M 48.58 ± 2.19 10.24 ± 2.42 41.18 ± 4.55

0.1 M 55.62 ± 2.15 13.92 ± 0.98 30.46 ± 2.80

0.2 M 58.00 ± 2.58 16.62 ± 2.41 25.40 ± 4.91
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consistent with those of published anatase TiO2 (Yanagisawa and
Ovenstone, 1999; Liu et al., 2015). The strongest Eg mode at
150 cm−1 is clearly visible and can be attributed to the external
vibration of the anatase phase (Appadurai et al., 2019). RS also
confirms the existence of carbon for CF@TiO2. The spectra reveal
the existence of two bands, one near 1580 cm−1 (G band) attributed

to a graphitic structure with sp2 hybridization, while another near
1350 cm−1 (D band) represents defects present in the hexagonal
graphitic structure (Cai et al., 2020). The observed increase in the ID/
IG intensity ratio was between 0.99 and 1.02 for CFs@TiO2 NPs
using different concentrations of TiCl4, respectively, demonstrating
that the addition of TiO2 could lead to more defects (Ye et al., 2022).

FIGURE 3
XRD patterns of CFs and CFs decorated by TiO2 NPs using various concentrations of TiCl4.

FIGURE 4
Raman spectra of CFs and CFs decorated with TiO2 NPs using various concentrations of TiCl4.
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3.5 UV-vis analysis

The UV–Vis diffuse reflectance spectroscopy (DRS) was used to
acquire the UV–Vis reflectance spectra of CFs@TiO2. As shown in
Figure 5A, the reflectance spectra of CFs decorated with TiO2

provided a redshift (to longer wavelengths), extending their
response from UV (200–400 nm) to visible (400–800 nm) regions.

The diffuse reflectance (R) is converted to an equivalent F(R)
absorption coefficient using the Kubelka-Munk (Equation 1)

F R( ) � 1-2R( )2
2R

(1)

where R corresponds to the reflectance of the sample and F(R) is the
absorbance. The band gap energy (E.g.,) in Figure 5B was calculated
by extrapolating the linear part of the Tauc plot and intersecting it
with the abscissa axis. Supplementary Figure S3 shows the
reflectance spectra and bandgap energy (E.g.,) of the reference
TiO2 fibers produced by electrospinning (TiO2@ES). The band
gap energy calculated for TiO2@ES is about 3.14 eV, typical for
TiO2 (3.0–3.2 eV) (Fujishima et al., 2008). The optical bandgap of

CFs decorated with TiO2 NPs using various concentrations of 0.025,
0.05, 0.1, and 0.2 M was 2.98 eV, 2.95 eV, 2.82 eV, and 2.77 eV,
respectively. It has been demonstrated that increasing the thickness
(Ghemid et al., 2021), the crystallite size (Ghemid et al., 2021), and
the chemical interaction between TiO2 and CFs (El-Sayed et al.,
2019) leads to a decrease in the band gap energy.

3.6 Photocatalytic activity

The photocatalytic activities of CFs decorated TiO2 NPs using
various concentrations of TiCl4 and reference TiO2 fibers (TiO2@
ES) were investigated for the photodegradation of MB under UV
light illumination (λ = 365 nm). As one can see, CFs decorated with
different TiO2 NPs amount needed different degradation times. As
part of our standard process conditions, during the first hour,
measurements were taken every 10 min, which accurately
captured the degradation process. For samples with rather poor
performance, after the first hour, photodegradation significantly
slowed down, therefore, the measurement intervals were increased
to 30 min (this applies to the photofading, CFs, 0.025 M, 0.05 M,
0.1 M, and 0.2 M TiCl4 concentration).

During the photocatalytic degradation of methylene blue, both
oxidation reactions (driven by holes and reactive oxide species
(ROS)) and reduction reactions (driven by electrons) happen at
the same time. When these processes work together, they break
down methylene blue into CO₂, water, and other less dangerous
substances (Rajeshwar et al., 2008). Considering the shape of the
resulting photocatalytic degradation curves, the photocatalytic
degradation was governed by first-order kinetics. The expression
for kinetics is as follows: ln (C/C0) = kat (Yu et al., 2007).

The photocatalytic degradation was governed by first-order
kinetics. The expression for kinetics is as follows: ln (C/C0) = kat.
The linear relationship between ln (C/C0) and time is illustrated in
Figure 6, where C0 (mg·L−1) and C (mg·L−1) represent the initial and
residual concentrations of MB, respectively, t is the reaction time

FIGURE 5
(A) UV-Vis diffuse reflectance spectra (DRS) of CFs decorated
TiO2 NPs and (B) Kubelka-Munk curves for an estimation of the optical
band gap for CFs decorated TiO2 NPs using various concentrations
of TiCl4.

FIGURE 6
Photocatalytic degradation kinetics curves of MB for CFs
decorated TiO2 NPs and their corresponding rate constants.
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and ka is the reaction rate constant. The photocatalytic results for
CFs, TiO2@ES, 0.025 M, 0.05 M, 0.1 M, and 0.2 M reveal the
degradation rates of MB (k = 9.6202 × 10−5, 0.06177, 0.20931,
0.05468, 0.0309 and 0.03218 min−1, respectively). This means that
the reference pure TiO2@ES fibers provided the second-highest
degradation rate after the 0.025 M CFs@TiO2 sample in this
particular experiment. Furthermore, the linear correlation
coefficients (R2) for the CFs, TiO2@ES and 0.025 M, 0.05 M,
0.1 M, and 0.2 M CFs@TiO2 sample were 0.11927, 0.99908,
0.9566, 0.92275, 0.98298, and 0.9836. For all CFs@TiO2, the
correlation coefficients (R2) found were greater than 0.92,
indicating that the first-order kinetic equation fits the
experimental data quite well.

Figure 7 shows an overall photocatalytic trend, obtained from
the statistical evaluation of three different photodegradation
experiments. The results of the statistical distribution for Figure 7
for samples with concentrations of 0.025 M, 0.05 M, TiO2@ES,
0.1M, and 0.2Mwere 0.1269 ± 0.08744, 0.12011 ± 0.0671, 0.07856 ±
0.02272, 0.06965 ± 0.03833, and 0.03022 ± 0.00791, respectively. It
confirms that 0.025 M samples have the highest photocatalytic
activity even in this comparison. The reaction rate of 0.025 M
samples is 1.6 times that of the TiO2@ES samples. However, in this
statistically rich representation, the 0.05 M samples were also better
than the reference TiO2@ES. Based on previous studies, crystallite
size (Allen et al., 2018), crystalline structure (Tsai and Cheng, 1997),
and surface area and mass of TiO2 (which translates into a thickness
of the TiO2 nanoparticulate coating in this case) (Wu et al., 2013) are
crucial factors that influence photocatalytic activity. These
parameters are quite sensitive to the preparation procedures and
deposition conditions (Smirnov et al., 2010).

The rate of photocatalytic degradation is mainly determined by
the number of reactive species generated, which is influenced by the
surface of the photocatalyst and the separation of electrons and
holes. The more efficiently electrons and holes are separated and the
larger the surface of the photocatalyst, the more reactive species are
produced, leading to a faster degradation rate (Gaya and Abdullah,

2008; Henderson, 2011). The 0.025 M CFs@TiO2 sample likely has a
lower specific surface area (not measured though and difficult to
measure due to an extensive mass needed for that) compared to the
pure TiO2@ES fibers, thus, its better performance can be assigned
rather to a better separation of electrons and holes.

In order to provide additional insight, the photocatalytic
performance was further investigated in the presence of
methanol, which is well known to act as a hole and a hydroxyl
radical scavenger (Prakash et al., 2016; Djellabi et al., 2017; Parvizi
et al., 2019). The photocatalytic degradation kinetics curves of
methanol for CFs@TiO2 samples and reference TiO2@ES fibers
are depicted in Supplementary Figure S4. As can be seen there,
the photodegradation rates decreased in the presence of methanol
for the lowest TiO2 content (0.025 M CFs@TiO2 sample), whereas it
almost did not decrease for all other CFs@TiO2 samples and the
reference TiO2@ES fibers. This confirmed that for the least
decorated CFs@TiO2 sample (i.e. 0.025 M), the photocatalytic
activity is governed mainly by •OH radicals created from holes
and very minorly by superoxide anion (O2

−) created from the
interaction of oxygen and electrons. However, in the case of
TiO2@ES fibers and other decorated CFs@TiO2 (such as 0.2 M)
the photocatalytic degradation effect is mainly governed by
superoxide anion (O2

−) because the use of scavenging methanol
did not have any significant effect.

Moreover, it is also evident from the photoluminescence (PL)
analysis (Supplementary Figure S5) that the 0.025 M sample
experienced a low PL intensity. This could be attributed to good
surface contact between twomaterials (CFs and TiO2) that may have
contributed to charge separation. As a result, the peak intensity for
sample 0.025 M was significantly reduced, suggesting that CFs could
prevent photoelectrons and holes from recombining (Chandra et al.,
2018; Tahir et al., 2023) and thus increase the photocatalytic activity.

Crystallite size has been recognized as one of the factors
influencing photo-reactivity since it affects multiple physical
attributes, such as surface area, surface energy, light absorptivity,
and lattice distortion (Swamy et al., 2006; Henderson, 2011). On the
basis of the XRD findings, the highest photocatalytic activity (sample
0.025 M) was observed with the lowest crystallite size (3.6 nm).
Similarly, it has been reported that the smallest crystallite size has
been shown to give the highest photocatalytic hydrogenation of
propyne (Anpo et al., 1987). As a result of the quantum confinement
effect, it has been stated that the energy of photo-generated radicals
increases with decreasing crystallite size, thereby increasing
photocatalytic activity (Wang et al., 2014). This has been further
supported by other authors who have studied several other
photoreactions (Yeung et al., 2002). Furthermore, it has been
reported that a smaller crystallite size leads to a higher surface
area, which improves the absorption of the reactants and then
improves the photo-reactivity (Xu et al., 1999; Xie et al., 2010).

Several studies have shown that the photocatalytic activity of
thin films depends on thickness (Quici et al., 2010; Davisdóttir et al.,
2014; Kenanakis et al., 2015). However, in this work, such a direct
trend was not observed. Based on the SEM cross-sectional images
(Figure 2) and photocatalytic experiments conducted in this work,
the sample 0.025 M with a TiO2 nanoparticulate layer thickness of
40.4 ± 21.2 nm showed the highest photocatalytic activity. An
additional increase in thickness for the samples from 0.05 M to
0.2 M led to a decrease in photocatalytic activity, although the

FIGURE 7
Variation of MB degradation rates for CFs@TiO2 NPs and
reference TiO2@ES fibers.
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penetration depth of UV-vis light increased and the mass of TiO2

also increased. This clearly shows that it is the interplay between C
and TiO2 that plays a major role, rather than other parameters
(Wu et al., 2013). This observation is in good agreement with
previously reported findings (Subramanian et al., 2003; Malagutti
et al., 2009; Kumar et al., 2011). In addition, the current study
identifies factors that could influence the photocatalytic
degradation of methylene blue, including the concentration of
TiO2 on CFs, poor adhesion of TiO2 on CFs, inadequate light
penetration, higher recombination rates, and the generation of
degradation intermediates. This study showed that structural
properties and thickness have a significant impact on the
photocatalytic activity of carbon fibers decorated with TiO2

NPs using various concentrations of TiCl4.

4 Conclusion

In this study, PAN fibers (produced by centrifugal spinning)
were stabilized and then carbonized at 900°C to produce CFs.
Subsequently, the CFs were decorated with TiO2 NPs
nanoparticles by soaking in TiCl4 solutions with different
concentrations (0.025, 0.05, 0.1, and 0.2 M) and subsequent
annealing at 400°C for 30 min. SEM, EDX, UV-Vis, XRD, and
Raman analyses were used to examine the resulting CFs@TiO2

materials. According to SEM analysis, TiO2 peeling occurred for
0.05, 0.1 M, and 0.2 M samples, while did not appear for the
0.025 M sample, which led to defect-free homogeneous TiO2

nanoparticulate coatings on carbon fiber bodies without
flaking. EDX analysis showed that 0.2 M had a relatively low
carbon content, which means that most of the CF surface was
covered by TiO2 nanoparticulate coating. The UV-Vis DRS
showed that an increase in TiCl4 concentrations of 0.025 M to
0.2 M leads to a drop in the optical band gap energy from 2.98 eV
to 2.77 eV. XRD reveals that the intensity of the TiO2 diffraction
peak increases with TiCl4 concentration from 0.025 M to 0.2 M.
The crystallite size increases linearly from 3.6 to 9.6 nm for
0.025 M to 0.2 M samples. RS was used to investigate the
changes observed after TiO2 decoration on CFs. RS of CF@
TiO2 NPs reveals four strong peaks at 150, 395, 515, and
642 cm-1, confirming the presence of the anatase phase. The
ID/IG ratio increases from 0.99 to 1.02 after TiO2 loading,
demonstrating that the addition of TiO2 could lead to more
defects. The results of the photocatalytic activity for TiCl4
concentrations ranging from 0.025 M to 0.2 M revealed that
the sample 0.025 M exhibits the highest photocatalytic activity,
which is 1.6 times greater than that of the reference TiO2 fibers
produced by electrospinning (TiO2@ES), which themselves are
good photocatalyst, according to our measurements and available
literature. This may be attributed to the presence of a uniform and
defect-free morphology of TiO2 on the surface of CFs.
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