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Increasing cancer mortality statistics demand more accurate and efficient
treatments. Nanostructures have proved to be promising choices in this
regard. Nanotubes with large surface areas can play multiple roles from drug
carriers in targeted drug delivery to beam absorbers in the photothermal method.
While carbon nanotubes (CNTs) show cytotoxicity, Boron Nitride Nanotubes
(BNNTs) offer wide bandgap and biocompatibility. In this study, we investigate the
electronic and solvation properties of (5,5), (6,6), and (7,7) BNNTs computationally
by the density functional theory. For multimodal therapy, we considered Iron (Fe)
doping in the BNNT, which can be helpful in hyperthermia due to the magnetic
moment of Fe. Our results show that doping has improved the band positions.
Furthermore, we implemented an organic anticancer molecule, genistein, a
metastasis inhibitor. All potent configurations connecting genistein with BNNT
covalently demonstrated enhanced water solubility as compared to pristine and
Fe-doped BNNTs. The results suggest that the (7,7) C3 complex is themost stable
structure and the best drug carrier.
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1 Introduction

Due to the inadequacy of traditional medications and treatment methods, millions of
people worldwide are dying. There has always been a tradeoff between accumulating drugs
in the target cell and achieving the desired distribution, solubility, and selectivity
(Mortazavifar et al., 2019). There is a possibility of accumulation of drug carriers at the
target site when passively targeting the pathological state of cancer cells, but effectiveness is
not guaranteed. Such problems have significantly been solved by advancing drug delivery
capabilities using new generations of drugs (Emanet et al., 2017; Ahmad et al., 2010). The
recent development of nanocarrier-based medicines has opened a new window to a more
efficient therapy method as they can be widely manipulated, resulting in greater selectivity
and lower toxicity. Nanotubes are perfect nanocarrier candidates for enhancing the
therapeutic effects of drugs because their wide inner and outer surface area and
corresponding internal volume fundamentally open many doors for the
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functionalization and even encapsulation of effective drug molecules
since their endcaps can be removed (Iijima, 1991; Ferreira and
Sousa, 2016).

Genistein (Gen), one of the natural and active soy isoflavones,
has attracted great scientific interest due to its antitumor properties.
Gen exhibits various pharmacological activities through its cancer
prevention and anticancer efficacy in various preclinical model
systems at low and high concentrations. Previous studies, in both
in vivo animal tests and in human clinical trials, have shown that
when consumed at low concentrations, similar to those achieved
through dietary consumption, Gen inhibits the promotion of cancer
cell migration, detachment, and invasion. While at high
concentrations, it suppresses several proteins associated with
tumorigenesis and apoptosis (Pavese et al., 2010). The broad
anticancer properties of Gen include its effectiveness in inhibiting
matrix metalloproteinase type 2 (MMP-2) and type 6 (MMP-6)
(Huang et al., 2005; Xu et al., 2019). It also prohibits protein tyrosine
kinase (PTK) and angiogenesis-promoting variables such as vascular
endothelial growth factors (VEGF), which trigger the expression of
the breast tumor suppressor protein BRCA. Additionally, it inhibits
prostate-specific antigen (PSA) (Tyagi, Song, and De, 2019). In
addition to reducing the chemoresistance and radioresistance of
cancer cells, Gen is known for its antioxidant properties (Banerjee
et al., 2008), which help in the treatment and control of various types
of cancer, including breast cancer, prostate cancer, ovarian cancer,
and colon cancer (Tyagi, Song, and De, 2019; Huang et al., 2005;
Chen et al., 2020; Lee et al., 2012).

The theoretical prediction of boron nitride nanotubes (BNNTs)
was made in 1994, which led to their synthesis in 1995 (Rubio et al.,
1994; Blase et al., 1994). The tremendous properties of BNNTs
include mechanical strength, chemical and thermal stability,
electrical insulation, and biocompatibility, making them potential
for numerous applications including pharmaceuticals, chemistry,
high-temperature technologies, and cosmetics (Han, 2008; Lipp
et al., 1989). Although they are structurally similar to carbon
nanotubes (CNTs), BNNTs are considered better candidates than
CNTs for various applications due to their superior properties.
BNNTs are semiconductors with a wide band gap of around
5.5 eV, while CNTs can be either semiconductors or metals
based on the chirality of the nanotubes (Ahmad et al., 2015).
Moreover, BNNTs demonstrate higher resistance to oxidation
and fewer toxic effects than CNTs in previous investigations,
which makes them a preferable choice for biomedical
applications (Kostoglou et al., 2020; Simon et al., 2019; Kakarla
and Kong, 2022). In the context of the biological application of
BNNTs, they provide promising advances in medical imaging,
molecular biology, and biomedical technologies as well as
theoretically supporting the identification and treatment of a
range of diseases, including cancer (Ciofani et al., 2009; Ciofani
et al., 2013). Although BNNTs have become a controversial figure
due to their effectiveness and toxicity, many recent experimental
studies suggest that they have little adverse side effects on the
response of cells and organisms (Ferreira et al., 2015); for
example, Chen et al. (2009) have shown that it delivers DNA
into cells efficiently and without apparent toxicity.

While gold and silver nanoparticles have been studied as carriers
of Gen (Ahmad et al., 2010), no research has examined BNNTs as
carriers for them. When exploring a new carrier-biomaterial system,

it is wise to assess the system’s properties computationally before the
experimental phase to save time and money. BNNTs have diverse
applications in various cancer therapy methods, including
hyperthermia, boron neutron capture therapy, gene transfection,
and photothermal therapy (Ferreira and Sousa, 2016). As the length
of a BNNT is positively correlated with its cytotoxicity (Merlo et al.,
2018), we limited the BNNT length to no more than 10Å in this
study (Kakarla and Kong, 2022; Kim et al., 2018). Doping BN
nanotubes with Fe induces magnetic properties, making Fe-doped
BNNTs suitable for hyperthermia and suggesting the potential of
this system as an efficient drug in a multitherapeutic approach
(Ciofani et al., 2009; Zhi et al., 2005). Fe can be doped in either the
B-site or N-site and the magnetic moment is higher when doping a
Fe atom at the B site. Doping Fe atoms in BNNTs increase their
chemical reactivity compared to pure BNNTs due to their higher
adsorption energy, as shown by electronic analyses. While a doped
Fe atom improves adsorption performance, this atom has the
greatest local reactivity and is the most reactive site. In addition
to having a lower formation energy and significantly larger binding
energy compared to N-site doping, the formation energy and
binding energy of a Fe atom-substituted BNNT at the B site are
lower, indicating a more stable structure. Among BNNTs
substituted with transition metals at the B site, Fe doping
achieves the shortest bond length between the doped atom and
neighboring N atoms and the highest magnetic moment
(Farmanzadeh and Rezainejad, 2016; Ferreira et al., 2015;
Jalalinejad et al., 2021; Li et al., 2011; Thapa et al., 2021).

2 Computational method

The study used Density Functional Theory (DFT) calculations
with the Dmol3 module in Materials Studio software version 23
(Basiuk and Henao-Holguín, 2013). Dmol3 is commonly employed
for various DFT calculations of transition metal-functionalized
BNNTs (Zhang et al., 2012). This research focused on single-
walled armchair BNNTs with three different chirality indices:
(5,5), (6,6), and (7,7), which were doped with a Fe atom at the B
site. These nanotubes contained 80, 96, and 112 atoms, with
respective diameters of about 6.88 Å, 8.25 Å, and 9.63 Å.
Additionally, the BNNTs selected had a length of approximately
7.48 Å and an average B-N bond length of 1.44 Å. Both ends were
saturated with hydrogen atoms to prevent dangling bonds. The
shorter length of the nanotubes provides a more favorable
environment for functionalization in biomedical applications
(Juárez et al., 2013).

The exchange-correlation function was estimated using the
generalized gradient approximation (GGA) and the
Perdew–Burke–Ernzerhof functional (PBE) (Perdew et al., 1996;
Lee and Martin, 1997). GGA is preferred over local density
approximation (LDA) for its more accurate estimation of
interaction energies (Liang et al., 2009). For improved accuracy,
unrestricted DFT with dispersion (DFT-D) developed by Grimme
was employed (Delley, 2002). The DFT semi-core pseudopotentials
(DSPP) with the double numerical polarization (DNP) basis set were
utilized (Luo et al., 2014). The DNP basis set, available in Dmol3, is
comparable to the 6-31G (d,p) and 6-31G** Gaussian basis sets and
is considered one of the best basis sets (Wang et al., 2017;
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Hosseinzadeh et al., 2020). The maximum energy tolerance,
maximum force, and maximum displacement convergence during
geometry optimization were set at 10−6 Ha, 0.004 Ha/Å, and 0.005Å,
respectively (Warrag et al., 2020; Hatab et al., 2020; Lemaoui et al.,
2021). To ensure accuracy, the multipolar expansion analysis was
employed in the calculations for both gas and solution phases. For
considerations in a biological context, the dielectric constant of
water was used for the aqueous environment. Consequently, the
conductor-like screening model for real solvation (COSMO-RS) in
Dmol3 was applied for solubilization analysis (Klamt and
Schüürmann, 1993).

Our proposed Gen/FeBNNT complex is formed by conjugating
an active Gen molecule with the Fe atom doped in the BNNTs
structure through a single covalent bond. The charge distribution,
analyzed using the Hirshfeld method, and the density of states
(DOSs) of the Gen/FeBNNT are discussed. To analyze the electronic
properties, we calculate the energy gap (Eg) of the different
configurations using EHOMO and ELUMO, as follows in Equation 1:

Eg � ELUMO − EHOMO (1)

Where EHOMO and ELUMO represent the highest energy level of
the occupied molecular orbital and the lowest energy level of the
unoccupied molecular orbital, respectively.

The chemical reactivity and stability properties of the complex
were investigated in both solution and gas phases by calculating the
electrochemical potential (µ) (Klamt and Schüürmann, 1993), global
hardness (η) (Chattaraj and Roy, 2007), and electrophilicity index
(ω) (Sheela et al., 2014) as shown in Equations 2–4:

µ � 1
2

ELUMO + EHOMO( ) (2)

η � 1
2

ELUMO − EHOMO( ) (3)

ω � µ2

2η
(4)

The stability of Gen/FeBNNT complexes in the solvent model is
calculated through Equation 5:

Esolvation � Eaqueous − Egas (5)

Where Esolvation, Eaqueous, and Egas are the solvation energy of the
complex, the total energy of the complex in the aqueous phase, and
the total energy of the complex in the gas phase, respectively.

Equation 6 yields the adsorption energy of the optimized
structure of the investigated complex (Eads) as follows:

Eads � EGen/FeBNNT − EFeBNNT + EGen( ) (6)

Where EGen/FeBNNT is the energy of optimized complex, EFeBNNT

and EGen are the energies of the BNNT doped with a Fe atom and Gen
molecule, respectively.

3 Results and discussion

3.1 Geometry optimization

To gain a better understanding of how Gen interacts with
FeBNNTs, we studied three different configurations for active

Gen molecules, named G1, G2, and G3, as depicted in Figure 1.
An active Gen molecule has lost a hydrogen atom from its hydroxyl
group and can form a bond with the Fe atom in the FeBNNT.
Supplementary Figure S1 shows the geometrically optimized 3D
structures of pristine and Fe-doped BNNTs with chiralities of (5,5),
(6,6), and (7,7). The geometrically optimized 3D structures of the
Gen/FeBNNT complexes can be found in Supplementary Figure S2.
The complex formed by covalent bonding between the active oxygen
of G1 and the Fe atom doped in the nanotube structures is labeled as
C1, and so on.

Increasing the diameter of nanotubes, such as carbon nanotubes
(CNTs) and aluminum nitride nanotubes (AlNNTs), can enhance
the binding energy, resulting in more stable structures (Muz et al.,
2021; Muz and Kurban, 2019; Muz et al., 2021). This positive
correlation also applies to boron nitride nanotubes (BNNTs).
Our results show that as the diameter increases from 7.16 Å to
9.98 Å, the binding energy rises from 6.56 to 6.60. Furthermore, our
calculations indicate that a larger diameter can lead to a reduced
energy band gap, confirming previous findings. Although the
adsorption energies of C1–C3 complexes fluctuate and do not
appear to be affected by diameter changes, all adsorption energies
remain significantly negative, highlighting the sensing capability of
BNNTs toward Gen molecules.

3.2 HOMO and LUMO analysis

Understanding the electronic properties of a molecule or
complex is crucial for various applications. By analyzing the
highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO), we can gain valuable
insights into electrophilic and nucleophilic sites. Additionally,
determining the HOMO and LUMO energies provides vital
information about electrical transport properties by calculating
the energy gap between these two levels (Shayan and Nowroozi,
2018). Supplementary Figure S3 shows the HOMO and LUMO
orbitals of G1-G3, with the colors indicating the phases of the wave
function (Streitwieser, 2013). Furthermore, Supplementary Figure
S4 reveals the HOMO and LUMO orbitals of pristine and Fe-doped
BNNTs, showing the localized HOMO orbitals around nitrogen
atoms in pristine BNNTs and the strong localization of the LUMO
orbitals around the Fe atom in FeBNNTs. Thus, Fe atoms in the
doped nanotubes are susceptible to nucleophilic attack (Xu et al.,
2018). Meanwhile, Supplementary Figure S3 indicates that the
HOMO orbitals are located at the active oxygen in the G1-G3
structures. Our results suggest that the interaction between the
active oxygen site in Gen and the Fe atom doped in the
nanotube is very likely, facilitating the formation of the C1-C3
Gen-nanotube complexes we offer. According to Supplementary
Figures S5–S7, the HOMO and LUMO of the C1 complexes in all
nanotubes considered show charge transfer from the HOMO to the
LUMO since they are located on the Genmolecule and the Fe-doped
nanotubes, respectively.

Using the HOMO and LUMO orbital energies, we can calculate
the electrochemical potential (µ), global hardness (η), and
electrophilicity index (ω). In the gas phase, a distinct interaction
between Gen and BNNT is observed without external effects,
whereas in the aqueous solution phase, the solvent has a
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noticeable impact on the energetic interaction between Gen and the
nanotube in a biological system (Bououden et al., 2021).

Supplementary Tables S1, S2 present the results of the electronic
property calculations for the C1-C3 complexes in both gas and
solution phases. When a Fe atom is doped into the BNNT structures,
the energy gap, indicated by |ELUMO − EHOMO|, is significantly
reduced. This reduction follows the same order as the global
hardness in all C1-C3 complexes, in both phases:

C2 configurations < C1 configurations < C3 configurations.
This result illustrates that C2 configurations exhibit the highest

chemical reactivity and the lowest kinetic stability, in contrast to
C3 configurations, which demonstrate the lowest chemical reactivity
and the highest kinetic stability. However, the reduction in Eg after
the Gen/nanotube interaction shows successful charge transfer from
donor to acceptor and better bonding (Shayan and Nowroozi, 2018).
In Supplementary Table S1, it is shown that after the complex is
formed, the bandgap (Eg,) is reduced to around 1eV. This reduction
in bandgap causes longer excitation wavelengths in the red and
infrared regions, which makes the proposed complexes suitable for
the photothermal method. The quantitative calculations for the
excitation wavelength of the complex can be found in the
Supplementary Material. When a Fe atom is doped at the B site
of the pristine BNNT and the Gen molecule is adsorbed on it, the
global hardness decreases by about 1.7 eV and the gap energy
decreases by about 3 eV. The exception is observed in the
C2 configuration of (5,5) and (6,6) BNNTs in the gas phase,
where the energy gap decreases by approximately 4 eV.

In both phases, the chemical potential of all considered Fe-
doped nanotubes decreases by about 0.5 eV compared to their
pristine nanotubes, except for (5,5) FeBNNT in the gas phase,
which is reduced by about 1 eV, possibly due to the
morphological properties of the nanotube. This indicates

increased reactivity by doping a Fe atom as well as improved
adsorption.

Charge transfer can occur from a higher chemical potential to a
lower one (Kamel et al., 2018). It is worth noting that the chemical
potential of C1-C3 complexes in the gas and solution phases varies
in the range of about −4.3 eV to −4.8 eV.

Lower chemical potential in the solution phase may be due to
solvation effects and increased entropy, resulting in a more stable
and favorable structure. The electrophilicity index values of C1-C3
complexes are at least about six times higher than those of pristine
nanotubes in both phases. A higher electrophilicity index reflects
higher stability of the complex.

Among all complexes considered, (6,6) C2 and (6,6) C3 have the
highest and the lowest electrophilicity index in the gas phase,
respectively, while (6,6) C1 and (7,7) C3 in the solution phase
have the highest and the lowest electrophilicity index, respectively.

Supplementary Table S2 shows the same DFT calculation in the
Dmol3 module performed for the solution phase to study the
behavior of Gen/FeBNNT complexes in the human body. Water
with a dielectric constant of 78.54 was used as the solvent to simulate
the human biological system best. A comparison with the gas phase
revealed that the band gap energy of (5,5) C2 and (6,6) C2 complexes
in the solution phase increased by approximately 0.7 and 0.9 eV,
respectively. For other complexes, these fluctuations were less than
about 0.15 eV. In the solution phase, the electrophilicity index for
(5,5) C2 and (6,6) C2 complexes decreased by almost half, while it
increased for all other complexes compared to the gas phase.
Additionally, the Fe-O bond length between Gen and nanotube
decreased by about 0.1 Å in the mentioned structures. Fluctuations
in the electrophilicity index in the solution phase, compared to the
gas phase, could have various causes, such as changes in the activity
coefficients of the reactants in different reaction pathways.

FIGURE 1
3D geometry optimized structures of (A) genistein molecule and its three different active structures (B)G1, (C)G2, and (D) G3. Carbon, oxygen, and
hydrogen atoms are represented by gray, red, and white spheres, respectively.
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Table 1 lists the adsorption energy of a Gen molecule to BNNTs
with C1-C3 configurations in both the solution and gas phases, as
well as the solvation energy of the studied complexes, calculated by
Equations 5, 6. Negative values indicate that the interaction between
the Gen molecule and the Fe-doped BNNT is an exothermic
reaction, suggesting more stable interactions. The fluctuations in
adsorption energy between the gas phase and the solution phase (e.g.
water) are due to solvation effects (Chen and Wu, 1998; Singh and
Campbell, 2019). The C2 configurations have the highest absolute
value of adsorption energy in all phases except for the (5,5) and (7,7)
configurations in the solution phase, where their C1 configurations
have a slightly higher absolute value than their C2 complexes.
However, the C3 complexes have the lowest absolute value
overall, yet remain advantageous. Additionally, the solvation
energy values are negative, indicating that the solvation of the
studied complexes in water occurs spontaneously and therefore
they are readily soluble in water. This is advantageous for their
use in a biological system. The (7,7) complexes generally have higher
solvation energy compared to other complexes, and one of the
reasons for this is their higher electrostatic interactions (Wei and
Luo, 2018).

Based on the information in Supplementary Table S3, which
displays the order of the C1-C3 complexes in terms of, Eg, µ, η, ω,
Eads, Esolvation, we can infer that the (7,7) C3 Gen-FeBNNT complex
offers the highest stability and one of the best solubilities in water. As
a result, it is considered the top candidate for use in
biological systems.

3.3 Density of states (DOS)

To understand the effects of the Gen molecule adsorption on the
electronic properties of the studied nanotubes, we calculated the
total density of states (DOSs). The results are shown in Figure 2,
which shows the DOS of the pristine BNNT, the Fe-doped BNNT,
and the C1–C3 complexes. BNNTs are semiconductors with a wide
band gap of about 5 eV, achieved by HOMO-LUMO gap, tight
binding, or ab initio-based calculations, and our determined energy
gaps for studied pristine nanotubes are consistent with previous
works (Wu, Yang, and Zeng, 2006; Bououden et al., 2021;
Hosseinzadeh et al., 2020). Doping a Fe atom into these

structures significantly reduced the energy band gap to generally
around 1.9 eV, increased the valence bandwidth and added a peak at
the top of this band. The highest peak in the valence band varies
about 1 eV, which is generally around −5.7 eV for doped nanotubes
in all phases (except for the (5,5) chirality in the gas phase, which is
at −5.35 eV in the doped state and differs from their pristine model
by 0.5 eV). The mentioned peak appeared to be at around 0.7 eV
higher level after the Gen molecule interaction, except for the (5,5)
chirality in the gas phase, which remains almost the same. As we can
see Gen molecule’s covalent bonding with the Fe atom in BNNT
structures slightly decreases the energy gap compared to the Fe-
doped structures. As a result, the studied Fe-doped BNNTs offer
higher conductivity in the range of 0–4 eV when functionalized with
a Gen molecule, demonstrating their reduced semiconductor
behavior and improved electronic properties.

3.4 Sigma profiles and COSMO 3D surfaces

When conducting DFT calculations using the Dmol3module for
aqueous phases, we utilized COSMO-RS to generate sigma profiles
and COSMO 3D surfaces for the molecules and complexes under
investigation. The sigma profile is a distribution function that
illustrates the average screening charge density on specific
segments of a molecule or complex (Mohammed et al., 2023;
Babiker, Shuhaimi, and Mutalib, 2014). Supplementary Figures
S8, S9 display the COSMO surfaces of active Gen molecules and
pristine and doped BNNTs. The COSMO surfaces of various BNNT
complexes are shown in Supplementary Figures S10–S12.
Additionally, Supplementary Figure S13 presents sigma profiles,
which are categorized into three segments as follows:

- Sigma profile values less than −0.01 indicate positive charges
and hydrogen bond donor (HBD) regions, displayed as red
segments on the COSMO surface.

- Sigma profile values greater than +0.01 represent negative
charges and hydrogen bond acceptor (HBA) regions, shown
as blue segments on the COSMO surface.

- Sigma profile values between −0.01 and +0.01 signify neutral
charges and non-polar regions of the COSMO surface
(Boudjelida et al., 2022).

TABLE 1 Calculated Eads in the gas phase and solution phase and Esolvation for studied complexes.

System Eads (gas phase) (kJ/mol) Eads (solution phase) (kJ/mol) Esolvation (kJ/mol)

(5,5) C1 −348.958 −283.515 −157.598

(5,5) C2 −402.584 −277.857 −123.162

(5,5) C3 −351.294 −256.637 −128.649

(6,6) C1 −370.721 −251.890 −137.122

(6,6) C2 −411.833 −260.764 −129.739

(6,6) C3 −358.021 −247.873 −147.582

(7,7) C1 −381.012 −275.743 −158.170

(7,7) C2 −385.371 −263.204 −166.131

(7,7) C3 −361.321 −252.342 −156.246
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In Supplementary Figure S13, we observe at least three peaks in
the HBD regions for all G1-G3 molecules. The COSMO surfaces in
Supplementary Figure S8 display these regions in red color,
indicating the presence of active oxygen molecules. Both pristine

and Fe-doped BNNTs do not reach the HBA region. However, when
interacting with G1-G3, a very weak peak appears. There is a weak
peak in the HBD region for all studied pristine BNNTs, while this
peak is slightly higher and broader for C1-C3 complexes. The

FIGURE 2
Total density of states in the gas and the solution phase for (A) (5,5), (B) (6,6), and (C) (7.7) BNNTs.
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equilibrium between HBD and HBA peaks of the C1–C3 complexes,
caused by the presence of oxygen and hydrogen atoms in the Gen
molecule, suggests better solvation and increased hydrophilic
behavior (Hosseini et al., 2019). In the non-polar area, the Gen-
nanotube complexes display a higher and broader peak compared to
the pristine BNNTs, with the C3 configuration showing the highest
peak except in (5,5) chirality, where the C2 complex has the highest
peak. This indicates better dispersion in water for these complexes.

4 Conclusion

In the present study, we have proposed a new complex involving
boron nitride nanotubes and a biomolecule for treating cancer
through multiple methods. We used DFT calculations to study
boron nitride nanotubes with armchair structure and chirality
indices of (5,5), (6,6), and (7,7). These nanotubes act as carriers
for the anti-cancer biomolecule, genistein. We also studied the
effects of introducing iron (Fe) into the nanotubes, which
enhanced their electronic and magnetic properties and facilitated
bonding with the genistein molecule. We investigated three different
configurations of covalent bonding between the active oxygen in
genistein and the doped Fe atom, labeled C1, C2, and C3. We
examined the proposed complexes in both solution and gas phase.
Our findings indicated that the adsorption of genistein on the
nanotube surface led to a reduction in the band gap. This
reduction subsequently led to a higher excitation wavelength in
the infrared region, pointing to the exceptional potential of the
complex for photothermal treatment. Moreover, the inclusion of Fe
resulted in the addition of a magnetic moment to the structure,
potentially reducing the necessary magnetic field application to the
human body in hyperthermia treatment and enabling more precise
cell targeting. Notably, the studied complex also presents a
significant advantage in providing an adequate dose of boron
atoms for boron neutron capture therapy, underscoring its
potential as a multi-therapeutic treatment.

The comprehensive analysis of the quantum molecular
descriptors of the complexes revealed that the (7, 7) C3 and
(6, 6) C3 configurations exhibited the greatest stability and the
least chemical reactivity in both phases. All interactions were
found to be exothermic and stable, with high adsorption energy
values for the mentioned complexes. The solvation energy
comparison showed that (7, 7) genistein-nanotube complexes
were the most soluble structures. The total density of states
(DOS) of the complexes displayed a reduction in the band gap
after the interaction, which is in agreement with the energy gap
values calculated by the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO).
The sigma profile from COSMO-RS files showed that the
hydrophilic behavior and dispersion of the complexes in water
were enhanced after interaction with genistein molecules.

Ultimately, the rigorous analysis led to the unequivocal
conclusion that the (7, 7) C3 complex emerges as the optimal
genistein carrier within the biological system. Further
experimental investigations are encouraged to synthesize and
characterize the proposed complex.
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