
Designing a set of criteria for
evaluating artificial neural
networks trained with
physics-based data to replicate
molecular dynamics and other
particle method trajectories

Alessio Alexiadis*

School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom

This article presents an in-depth analysis and evaluation of artificial neural
networks (ANNs) when applied to replicate trajectories in molecular dynamics
(MD) simulations or other particle methods. This study focuses on several
architectures—feedforward neural networks (FNNs), convolutional neural
networks (CNNs), recurrent neural networks (RNNs), time convolutions (TCs),
self-attention (SA), graph neural networks (GNNs), neural ordinary differential
equation (ODENets), and an example of physics-informed machine learning
(PIML) model—assessing their effectiveness and limitations in understanding
and replicating the underlying physics of particle systems. Through this
analysis, this paper introduces a comprehensive set of criteria designed to
evaluate the capability of ANNs in this context. These criteria include the
minimization of losses, the permutability of particle indices, the ability to
predict trajectories recursively, the conservation of particles, the model’s
handling of boundary conditions, and its scalability. Each network type is
systematically examined to determine its strengths and weaknesses in
adhering to these criteria. While, predictably, none of the networks fully meets
all criteria, this study extends beyond the simple conclusion that only by
integrating physics-based models into ANNs is it possible to fully replicate
complex particle trajectories. Instead, it probes and delineates the extent to
which various neural networks can “understand” and interpret aspects of the
underlying physics, with each criterion targeting a distinct aspect of this
understanding.

KEYWORDS

physics-informed machine learning, molecular dynamics simulation, data-driven
modeling, mathematical modeling, particle methods

Introduction

Today, there is a growing emphasis on the integration of machine learning (ML) and
physics-based models, often referred to as “physics-informed machine learning” (PIML),
“physics-based machine learning,” or “physics–AI integration.” This approach offers
significant advantages. It leads to improved predictive accuracy (Karniadakis et al.,
2021), enhances our understanding of complex systems (Alexiadis et al., 2020), and

OPEN ACCESS

EDITED BY

Konstantinos Ritos,
University of Thessaly, Greece

REVIEWED BY

Nicholas Christakis,
University of Crete, Greece
Harvey Zambrano,
Federico Santa María Technical University, Chile

*CORRESPONDENCE

Alessio Alexiadis,
a.alexiadis@bham.ac.uk

RECEIVED 19 January 2024
ACCEPTED 04 March 2024
PUBLISHED 10 April 2024

CITATION

Alexiadis A (2024), Designing a set of criteria for
evaluating artificial neural networks trained with
physics-based data to replicate molecular
dynamics and other particle
method trajectories.
Front. Nanotechnol. 6:1373316.
doi: 10.3389/fnano.2024.1373316

COPYRIGHT

© 2024 Alexiadis. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Nanotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 10 April 2024
DOI 10.3389/fnano.2024.1373316

https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2024.1373316&domain=pdf&date_stamp=2024-04-10
mailto:a.alexiadis@bham.ac.uk
mailto:a.alexiadis@bham.ac.uk
https://doi.org/10.3389/fnano.2024.1373316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2024.1373316

optimizes data efficiency (Alexiadis, 2023) even in challenging
scenarios with limited or noisy data (Alhajeri et al., 2022). On
the other hand, many studies in the literature successfully employ a
combination of standard, off-the-shelf ML models to produce data-
driven solutions for engineering applications (Jenis et al., 2023; Thai,
2022). This naturally leads to the question of when to rely on these
off-the-shelf models and when to integrate them with physics-based
models. While accuracy is an important metric, should it be the sole
criterion for assessing ML models as proxies for physics-based
simulations? Are there additional criteria we should consider?

This study addresses these questions within the context of
particle-based simulations, where discrete entities such as
molecules, particles, or boids (Reynolds, 1987) operate within a
defined space. These entities adhere to specific “rules of motion”
(similar to Newton’s laws for molecules or behavioral rules for
boids) and are influenced by various “driving factors” (such as
intermolecular forces or behavioral dynamics in boids). In this
context, “rules of motion” are fundamental principles uniformly
applicable to all discrete entities such as Newton’s equation of
motion. In contrast, the “driving factors” can comprehend
diverse forces acting on each particle. These forces often vary
based on the particle’s interactions with other particles nearby.
For instance, charged molecules might experience attraction or
repulsion depending on their charges and proximity.

By integrating the rules of motion with these driving factors, we
can determine the positions of all particles, denoted as x(t), at any
given timestep t, knowing their positions x(t−1) at the previous
timestep t−1. This integration, which combines the rules of motion
and the driving factors, effectively encapsulates the physics (ϕ) of the
system and determines how particles move and interact within the
simulation.

Now, imagine we have data showing the positions of particles at
each timestep obtained from numerical simulations. However, the
specific rules of motion and driving forces that were used to generate
these positions remain unknown to us. The primary objective of this
study is to evaluate and compare how effectively various machine
learning algorithms, and in particular, artificial neural networks
(ANNs), can discern and extract the underlying physics
from these data.

Before we compare the different methods, it is crucial to
establish a shared definition of “understanding the physics.” This
concept can have different interpretations across various fields. For
example, in mechanics, understanding might be seen as the
capability to predict particle trajectories accurately under new
conditions. On the other hand, in data science, it often relates to
the discovery and interpretation of hidden patterns within the data.
Consequently, it becomes necessary to establish criteria that help us
discern whether an ML model truly “understands” the physics to
some extent or merely replicates the data. In this paper, we develop
and present a set of specific criteria aimed at evaluating the
effectiveness of various ML algorithms in achieving this
understanding.

In each section of this study, we systematically evaluate the
effectiveness of a different network type in accurately replicating the
outcomes of molecular dynamics (MD) simulations. Starting with
simpler models such as feedforward neural networks (FNNs) and
gradually advancing to more complex structures such as
convolutional neural networks (CNNs), recurrent neural

networks (RNNs), time convolutions (TCs), self-attention (SA),
graph neural networks (GNNs), neural ordinary differential
equation (ODENets), and an example of physics-informed
machine learning (PIML) model. After each section, we
introduce a new criterion aimed at measuring not only the
algorithm’s ability to replicate the simulation’s results but also its
capacity to broadly infer the underlying physical laws governing
particle behavior. By the end of this study, we established a
comprehensive set of criteria providing a layered assessment of
how closely an algorithm can be said to “understand” the physics of a
specific system.

Although research in physics-enhanced ML often employs
complex, multi-layered network architectures, this study
intentionally narrows its focus to foundational layers such as the
FNN, CNN, RNN, or GNN. We aim to critically evaluate how
effectively these basic layers can extract and interpret the physics
embedded within the data. While advanced architectures
comprising multiple layers typically offer improved accuracy and
can mitigate the shortcomings of individual layers, it is only through
a comprehensive understanding of each layer’s specific limitations
that we can make informed decisions about selecting and integrating
different layers optimally. Furthermore, as we demonstrate in this
paper, certain limitations are common across several types of layers,
indicating that merely increasing the complexity by adding more
layers may not always address some inherent challenges. Therefore,
the principal aim of this study is to probe and delineate the depth of
“understanding” various neural network architectures could attain
in the context of molecular dynamics. In particular, it aims to answer
the following questions:

• To what extent can each type of neural network architecture
decode the underlying physics from raw data that only include
particle positions?

• Which aspects are these networks adept at capturing, and
which remain elusive?

The learning data

MD simulations were conducted to generate data for training
and validating the MLmodels. The simulations were carried out in a
two-dimensional domain with periodic boundary conditions, with
each dimension measuring five reduced units. Particle interactions
were modeled using the Lennard-Jones potential using reduced
units, i.e., ε = 1 and σ = 1. For simplicity, only N = 12 molecules
were simulated over 1,000 timesteps. Since it is a 2D simulation, the
system has 24 physical degrees of freedom (2N = 24), which are used
as features in the ML models. Initially, particles are uniformly
distributed across the domain, while velocities are randomly
assigned and periodically rescaled to maintain the simulation in
the NVT ensemble with temperature in reduced units equal to 1.

Throughout the simulation, properties such as kinetic energy,
potential energy, and pressure were calculated at each step. In MD,
these properties, which provide insights into the system’s
thermodynamic behavior, are normally more useful than atomic
trajectories. However, for comparison with the ML models, we
focused on comparing all instantaneous positions obtained by the
ML model and the MD simulation. This approach was chosen to

Frontiers in Nanotechnology frontiersin.org02

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

assess accuracy in predicting complex variables such as particle
positions, which exhibit chaotic behavior and easily diverge. This
serves as a stringent test, more demanding than merely evaluating
global properties such as pressure or kinetic energy. Furthermore,
the methodology presented here is intended to be applied not only to
MD but also to other particle methods, such as the smoothed particle
hydrodynamics (SPH) or the discrete element method (DEM),
where particle positions are of greater importance than global
properties. The trajectories of particle positions, velocities, and
accelerations were all recorded during the simulation, but only
the positions constitute the dataset for subsequent analysis
and training.

Preliminary considerations

In this study, we did not conduct a systematic analysis of
various network architectures and hyperparameters but simply
identified an effective configuration by trial and error. This
approach was considered satisfactory here, as the primary focus
is on assessing the model’s capability to comprehend the
underlying physics rather than optimizing for the best possible
accuracy through hyperparameter tuning. Unless specified
otherwise (e.g., in the CNN section), a ReLU activation
function was applied to each layer, except for the final one, due
to the regression nature of the task. For weight optimization, the
Adam optimizer was utilized, and the mean squared error (MSE)
loss function measured the network’s performance. Our dataset
consists of 1,000 data points, representing each timestep in the
simulation. We allocated 80% of this data for training and reserved
the remaining 20% for testing. The learning rate was set at 0.005,
and the training process spanned between 200 and 1,000 epochs,
continuing until it was evident that the loss had reached a plateau.
Dropout, batch normalization, and momentum terms were not
employed in this study. K-fold or other forms of cross-validation
were not carried out.

A fundamental criterion for assessing the performance of an ML
model is the minimization of loss for both the training and test
datasets. While small losses are essential, it alone does not guarantee
that the ML model has effectively learned the underlying physics of
the system. However, it is a necessary initial step in the evaluation
process. Therefore, we can establish a preliminary minimal loss
criterion that ML models must satisfy.

Criterion 0: losses in training and test data
must be minimized

This criterion is somewhat trivial or granted and is listed here for
the sake of completeness.

In the subsequent sections, to avoid overburdening the text, only
the crucial information regarding the architecture and training
hyperparameters for each network is presented. However, all
computations were performed in Jupyter notebooks, which are
available (see “Code Availability” section). Interested readers can
access all details and replicate the calculations using
these notebooks.

Feedforward neural networks

We utilize an FNN with 10 layers, each configured to handle
24 input and output features corresponding to the x and y
coordinates of each of the 12 particles. The network is designed
to take the positions of particles at time t−1 as the input and predict
their positions at time t.

Training rapidly leads to a significant decrease in loss, as
depicted in Figure 1A. Figure 1B illustrates the comparison
between actual and predicted particle positions at the end of
the simulation; Supplementary Video S1 extends the comparison
to the entire simulation. As observed, the predicted positions are
relatively accurate. However, this raises a critical question: does
the model genuinely replicate the underlying physics, or is it
merely mimicking a specific trajectory? To address this, we
conduct two tests and introduce two criteria that an effective
ML model must meet.

The first test is the permutability test. In our dataset, particles are
given an arbitrary index. However, the dynamics should not be
influenced by the index used to order the input data. If we shuffle the
indices, the trajectory should remain the same. In the permutability
test, we again trained the network, augmenting the training data by
randomly shuffling particle indices during training. When particle
indices are permuted during training, the model struggles to achieve
a low loss, suggesting that the FNN model has not learned the
underlying physics but is merely replicating a specific trajectory. The
error is approximately 50 times larger than in the non-permuted
scenario. Detailed calculations and further information can be found
in the notebooks provided in Supplementary Material (refer to the
“Code Availability” section for access).

This observation aligns with the physical principles at play.
The model is only aware of particle positions, not their velocities.
In the non-permuted dataset, it can learn a sequence that
corresponds to the evolution of the particles. However, when
the particle order is shuffled, this learned sequence becomes
disrupted, and without an understanding of the physics, the
model cannot infer the correct velocities. Essentially, given the
same particle positions at time t−1, the FNN always predicts the
same positions at time t. However, identical particle positions can
potentially correspond to different velocities. Since the model
lacks information about these velocities, it cannot differentiate
between these scenarios. In theory, adding velocity data as an
input could enhance the model’s performance. However, this
would essentially transform the ANN into a complex version of a
basic time integrator. While it might improve accuracy, it would
not represent a step forward, as the model would be merely
replicating a process that can be achieved through simpler
computational methods. Based on these considerations, we can
establish a permutability criterion that ML models must satisfy.

Criterion 1: theMLmodel should be invariant
under permutation

The second test evaluates the predictive capabilities of the
network in two distinct ways. The first is the one-step prediction
where the model predicts the state x (t)ANN based on the real state x

Frontiers in Nanotechnology frontiersin.org03

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

(t−1)MD. This approach tests the model’s ability to accurately predict
the immediate next state of the system, i.e.,

x(t)ANN � ϕANN(x t-1()MD). (1)

The second is the recursive prediction. In this case, the model’s
output for a given timestep is used as the input for the next timestep
prediction, i.e.,

x(t)ANN � ϕANN(x t-1()ANN). (2)

This iterative process tests the model’s ability to understand and
replicate the system’s dynamics over multiple timesteps without
relying on real, observed data other than the initial configuration x
(0). In the case of the FNN, while the results from the one-step
prediction method show a reasonable degree of accuracy, the
recursive prediction revealed significant deviations from the
observed data over time.

The model’s performance deteriorates as the predictions are
based on its own previous outputs rather than real observations

FIGURE 1
Loss of the FNN model (A) and comparison between the actual and predicted particle positions at the end of the simulation (B).

FIGURE 2
One-step versus recursive predictions of the FNN model.

Frontiers in Nanotechnology frontiersin.org04

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

(Figure 2). This degradation suggests that while the model is capable
of mimicking short-term behavior, it lacks a deeper understanding
of the underlying physical principles governing the system. This
allows us to formulate a recursability criterion for assessing
the network.

Criterion 2: trajectories must be predicted
recursively, not only from observed data but
also from prior predictions

Figure 2 displays sudden jumps in the trajectory’s quadratic
error, which can be attributed to the periodic boundary conditions.
When a particle crosses the boundary and is repositioned on the
opposite side, the predicted position lags in crossing the boundary,
resulting in a higher error. A jump of approximately one unit means
that one particle is displaced by one boundary length.

Convolutional neural networks

In this section, we explore the process of transforming
particle trajectory data into a format suitable for analysis by a
CNN. Unlike traditional neural networks, CNNs excel in
processing data with a spatial or grid-like structure, such as
images. Therefore, the initial task involves converting
sequences of particle positions into an image-like
representation. The particle trajectory data consist of
sequences of x and y coordinates, representing the positions of
particles moving over time within the computational domain. To
use CNNs, we convert these coordinates into a binary image
format representing the presence or absence of particles in
different regions of space.

The space is divided into a grid of cells or “pixels,” with each cell
representing a specific area of the domain. The size of the grid (e.g., 50 ×
50 cells) determines the resolution of our image-like representation. For
each timestep, we create an image tensor that will represent the positions
of particles as pixels in an image. For each timestep and each particle, we
determine the cell in the grid it occupies based on its position. The
corresponding cell/pixel in the image tensor is then set to one, indicating
the presence of a particle, or zero, indicating the absence of particles.
Given that particles do not overlap, dividing the domain into sufficiently
small cells ensures that each cell contains at most one particle.

This approach only allows us to establish that a particle is within
a cell but not its exact location within that cell. Therefore, the size of
these cells is directly proportional to the precision of our spatial data;
smaller cells lead to a more accurate representation of particle
positions. However, smaller cells result in a larger overall image
size, which in turn demands more computational resources and
potentially more complex CNN architectures.

The network processes image-like configurations at timestep
t−1 as the input and generates the particle configuration image for
the subsequent timestep t as the output. A single convolutional layer
is employed, demonstrating sufficient accuracy for this task. This
layer features an 11 × 11 kernel size, mirroring the cut-off distance
used inMD simulation. The model utilizes “circular”mode padding,
effectively replicating the periodic boundary conditions
characteristic of the MD simulations. The chosen activation

function is the sigmoid function as the output is binary,
identifying the presence or absence of particles in each image cell.

For optimization, the Adam algorithm is selected with a learning
rate of 0.005. The binary cross-entropy (BCE) loss function is used,
aligning with the model’s binary classification task. The training and
validation losses are shown in Figure 3.

The CNN demonstrates high accuracy. Supplementary Video S2
compares the MD trajectories with those calculated by the CNN.
Furthermore, given the methodology employed in transforming
particle positions into images, the sequential order of the
particles becomes irrelevant in the image representation.
Consequently, by its very design, the model inherently adheres to
the permutability criterion.

Despite this, the CNN falls short in fulfilling the recursability
criterion. Not only do the predicted trajectories rapidly diverge from
actual data but there is also an issue of particle disappearance in the
output images. This phenomenon was not observed with the FNN,
where each output entry corresponded to a particle’s coordinates.While
the FNN’s predictions might place a particle inaccurately, it always
represented a particle. In contrast, a CNN’s erroneous output can lead
to incorrect images, potentially altering the number of active pixels and,
thus, the particle count. This suggests a conservation criterion for
assessing a network’s capability in capturing physical dynamics.

Criterion 3: the number of atoms should be
strictly preserved

While the conservation criterion can also be applied to other
physical properties such as energy or momentum, it is important to
note that unlike these properties, which are calculated from the
trajectory and, therefore, depend on the accuracy of the model, the
preservation of the number of particles is an absolute requirement
irrespective of the simulation’s accuracy.

Recurrent neural network

RNNs are a type of artificial neural network designed for processing
sequences of data. Unlike FNNs, RNNs have a hidden state that
captures information from previous timesteps, making them
particularly well suited for tasks involving sequential data such as
the time series analysis. In the FNN, we use x (t−1) to predict x (t).
Here, we use a sequence-to-sequence RNN that takes three timesteps of
the simulation x (t−3), x (t−2), and x (t−1) to predict x (t). The input to
the RNN layer corresponds to the system’s degrees of freedom, which is
2N = 24. Its output size, representing the hidden layer of the RNN, was
deliberately set to match this value of 24. The RNN is followed by a
single linear layer responsible for computing x (t). The loss function and
optimization parameters are the same as those used in the FNN.

Supported by an RNN layer, a single linear layer can achieve
what required 10 layers in the FNN (Figure 4); Supplementary Video
S3 compares MD trajectories with those calculated by the RNN.
However, the overall accuracy is lower than that of the FNN
(compare the one-step prediction, blue lines, in Figures 2 and 5).
Alternative configurations incorporating more previous timesteps as
input to the RNN, larger hidden layers, or additional FNN layers
yield only marginal improvements.

Frontiers in Nanotechnology frontiersin.org05

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

The RNN, utilizing information from previous timesteps, can
learn particle velocities, a capability absent in the FNN and CNN.
While this presents an advantage, it becomes problematic when
particles cross a boundary and are “teleported” to the opposite
side of the computational box due to periodic boundary
conditions. This leads to an apparent velocity jump, which is
inconsistent with the velocity the RNN has learned from the
previous data. This can also be seen in Supplementary Video S3,
where the RNN struggles to adapt when the particles cross
boundaries. This observation suggests a boundary
condition criterion.

Criterion 4: the model should also capture
changes occurring at the boundaries

In this study, we exclusively consider “vanilla” RNNs. Gated
recurrent unit (GRU) and long short-term memory (LSTM) have
the potential to enhance results. However, this is not relevant here
since our primary goal is to understand the fundamental characteristics
of recurrent networks in their application to MD data rather than
maximizing performance. It is this broader perspective that enables us
to establish a comprehensive set of criteria for evaluating MLmodels in
the context of particle-based simulations.

FIGURE 3
Loss for the CNNmodel (A) and comparison between the actual and predicted particle positions at the end of the simulation (B). The white squares
are the real particle positions converted into pixels of a binary image-like data structure, and the orange stars are the predicted positions.

FIGURE 4
Loss for the RNN model (A) and comparison between actual and predicted particle positions at the end of the simulation (B).

Frontiers in Nanotechnology frontiersin.org06

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

Something similar occurs when we look at the recursability criterion
(Figure 5). While the RNN does not pass the criterion, the recursive
trajectory does not steadily diverge, as occurs in the case of the
FNN (Figure 2).

Time convolution

Unlike traditional CNNs, which are predominantly used for spatial
data processing, TCs extend this concept to temporal sequences,
enabling the analysis of changes in particle positions over time.

Convolutional filters are applied across the sequence x (t−3), x (t−2),
and x (t−1), mixing information across these timesteps to predict the state
x (t); longer input sequences did not result in substantial improvement.
Each particle’s degree of freedom is treated as a separate channel in the
input tensor. The kernel size is 3,which is equal to the number of timesteps
considered for predicting the next position; no padding is applied.

Overall, the TCmodel has a good performance, as shown in Figure 6;
Supplementary Video S4. It achieves accuracy comparable to the FNN
while utilizing a simpler architecture, which consists of only a single TC
layer followed by one linear layer. The FNN model required 10 layers to
achieve similar results. The TC model is conceptually simpler than the
RNN, yet it offers comparable, if not better, outcomes (Figure 7).

Based on this comparison, we can introduce a simplicity criterion
inspired by Ockham’s razor.

Criterion 5: all other things being equal,
simpler models should be preferred to more
complex ones

Simpler models are beneficial not only in terms of reducing the
computational load and memory requirements but also in

producing models that are easier to interpret. Based on this
criterion, the TC model should be preferred to both the FNN
and the RNN models.

Self-attention

Self-attention has recently gained popularity due to its
fundamental role in transformers (Vaswani et al., 2017) since
it offers a more nuanced approach to sequence data analysis.
Unlike traditional convolutional or RRNs, SA allows the model
to focus on the most relevant parts of the input sequence
regardless of their position within the sequence. Here, the SA
model is designed with simplicity in mind, mirroring the
input–output structure of the TC model. The sequence of
particle positions x (t−3), x (t−2), and x (t−1) goes into an
attention layer configured to process the input sequence with a
single head and an embedding dimension equal to the number
of features (2N = 24). Following the attention layer, the model
utilizes a linear layer to refine the context vectors into
predictions for the next timestep t.

The performance of the SAmodel aligns with that of the TCmodel
(Figures 8, 9; Supplementary Figure S10; Supplementary Video S5).

The SA mechanism gives the model the capability to
dynamically prioritize the most informative features within the
input sequence. This functionality is beneficial in domains such
as natural language processing (NLP), where elements spaced far
apart within a text may, nonetheless, share profound connections. In
these contexts, the correlation function among sequence elements is
complex and must be inferred from the data. However, the temporal
correlation in MD simulations is more predictable. Due to the
chaotic nature of these systems, beyond a certain threshold
known as the Lyapunov time, the system forgets its prior states,

FIGURE 5
One-step versus recursive predictions of the RNN model.

Frontiers in Nanotechnology frontiersin.org07

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

rendering the two configurations uncorrelated. Time convolutions
naturally deal with this aspect of physical systems, while self-
attention is made to identify more unpredictable correlation
patterns, which do not usually occur in MD systems. Therefore,
apart from the simplicity criterion, TC seems to be a better choice
over SA because it results in a model that works more like the
physics of the system. This leads us to suggest a new
naturality criterion.

Criterion 6: models that naturally match our
understanding of the system should
be preferred

This criterion explains why using a kernel size that matches the
MD simulation’s cut-off distance and “circular” mode padding to
mimic periodic boundary conditions was especially effective in the
CNN model.

FIGURE 6
Loss for the TC model (A) and comparison between actual and predicted particle positions at the end of the simulation (B).

FIGURE 7
One-step versus recursive predictions of the TC model.

Frontiers in Nanotechnology frontiersin.org08

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

Graph neural networks

GNNs are a class of neural networks optimized for processing
data within graph structures. In the context of MD or similar particle
methods, particles can be seen as nodes in a graph, and the
interaction forces between neighboring particles can be seen as
edges. Thus, GNNs can appear as a natural choice for such
applications, particularly because they inherently meet the
permutability criterion due to their design.

However, GNNs demand more input data than other networks;
they require not only the input features but also details about the

graph’s structure, which is typically provided through matrices such
as the adjacency matrix or the edge index matrix (employed here).
This requirement poses no issue as long as the graph’s structure
remains static. In MD simulations, though, particles and their
interacting neighbors change positions during the simulation,
leading to non-static edges in the resultant graph.

This leads to two significant challenges: First, the edge index
matrix must be recalculated and updated at every timestep to reflect
the changing graph structure. Second, the accuracy of the recurrent
predictions can be significantly compromised as inaccuracies in
particle positions can also lead to errors in the edge index matrix and

FIGURE 8
Loss for the SA model (A) and comparison between actual and predicted particle positions at the end of the simulation (B).

FIGURE 9
One-step versus recursive predictions of the SA model.

Frontiers in Nanotechnology frontiersin.org09

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

vice versa. These compounded errors interact and magnify one
another, potentially leading the model to increasingly diverge
from the actual behavior over time. While GNNs have been
applied to model particle trajectories, these applications often
necessitate auxiliary routines for updating the neighbor list and,
occasionally, additional mechanisms for adjusting positions
according to the motion equations (Pfaff et al., 2020). Given the
goal of this article to assess GNNs comparably with other models
discussed, we restrict the “extra support” for GNNs to merely
updating the adjacency matrix at each timestep.

We focus here on one of the simplest GNN architectures, the graph
convolutional network (GCN), that aggregates information from
neighboring nodes, thereby updating each node’s representation.

Themodel has five GCN layers, each with 48 hidden neurons, which
achieves the best results among the models evaluated. A limitation with
GNNs is the potential for excessive layers to induce an unwanted
smoothing effect on the nodes, making the addition of more layers
not always beneficial. The model’s overall accuracy is noticeably lower
compared to the previous section (see Figure 10, Supplementary Video
S6), with recursive predictions diverging after a few timesteps (Figure 11).

While GNNs ensure permutability, their simplest and most
direct application proves less accurate in this case. Furthermore,
the computation of the adjacency matrix for GNNs operates at an
O(N2) complexity, contrasting with the O(N1.5) complexity for
calculating the neighbor lists in MD simulations. This
discrepancy leads to a scalability criterion.

Criterion 7: the ML model should ideally
scale in complexity comparably to the
physical model it simulates

Although with only N = 12 particles, scalability is not an
immediate concern here. The less efficient scaling of GNNs could
become problematic in larger systems.

Physics-informed machine learning

The goal of PIML is to integrate physical laws and principles directly
into the structure and training of machine learning models, ensuring that
themodels not only learn from data but also adhere to the known laws of
physics (Cuomo et al., 2022). A standard PIML approach integrates the
system’s differential equations into the loss function to enforce adherence
to physical laws by penalizing deviations from both observed data and
equation-based predictions (Lagaris et al., 1998).

In this study, thiswould entail incorporating the equations ofmotion
or conservation laws into the loss function. For example, given the
simulation’s constant temperature condition, we could adjust the loss
function to ensure the particles’ kinetic energy remains constant.
However, implementing these solutions necessitates knowledge of time
derivatives, such as velocities. Since our prior tests were conducted using
only particle positions as input, for consistency, we should maintain the
same approachhere. In theory, velocities can be inferred fromconsecutive
timesteps. However, when the interval between simulation frames is too
large, this method can yield imprecise results. Thus, instead of adjusting
the loss function, we chose to embed physics constraints directly into the
model’s architecture (Figure 12).

The model inputs include both the previous and current timesteps.
The current timestep is processed by a layer that calculates all pairwise
distances among atoms, aligning with the physics of MD simulations
where potentials depend on the atoms’ relative distances. This
preprocessing layer, which requires no training, also accounts for
periodic boundary conditions. Incorporating periodic boundary
conditions directly into the PIML model is justified because they are
easily observable from the simulation. The previous timestep is the other
input, enabling the model to capture the temporal dynamics of the
sequence. These inputs are fed into an FNNwith five hidden layers, each
consisting of 576 neurons. Instead of directly outputting the resulting
positions, the network predicts step increments. The next timestep is
computed by adding these increments to the current timestep. This
solution avoids the abrupt trajectory jumps seen in the previous models

FIGURE 10
Loss for the GNN model (A) and comparison between actual and predicted particle positions at the end of the simulation (B).

Frontiers in Nanotechnology frontiersin.org10

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

and also allows the implementation of periodic boundary conditions in
the output.

This method diverges from the conventional PIML, which integrates
physics directly into the loss function. The goal here is to construct a
model that inherently meets specific constraints (such as periodic
boundary conditions) or processes the data to mirror the real system’s
behavior (for example, pairwise interactions). This strategy resembles the
“minimalistic”method (Alexiadis, 2023; Amato et al., 2024). However, the
minimalistic method employs the network only for designated aspects of
physics, such as modeling the pair potential from data. Instead of
incorporating all computations within the network, it utilizes external
solvers for tasks such as calculating the Verlet list or enforcing periodic
boundary conditions. These external solvers provide support to the
network without being an integral part of it. As a result, the network
remains simpler and smaller, focusing only on specific physics
components, while external solvers handle the remaining calculations.
Therefore, the approach employed here also diverges from the
minimalistic method since; rather than delegating physics constraints
to external solvers, it integrates them directly into the network as
additional non-trainable layers. Consequently, the method cannot be
classified as “minimalistic” because the network is neither simplified
nor minimized.

Training hyperparameters are the same as in the previous sections;
the results are shown in Figure 13; Supplementary Video S7. At first
glance, the model appears to overfit. However, the final difference
between the training and validation losses is similar to that occurring
in Figures 4, 6, 8. It is only the scale of the figure that is different.
Moreover, since the model generates incremental outputs, a particle may
stay on the incorrect side of the periodic boundary formultiple timesteps.
This can lead to substantial numerical errors in relation to the actual
position, even though the predicted and real positions are nearly identical
when considering periodic wrapping. Further evidence against overfitting
is provided in Figure 14; Supplementary Video S8, showing the model’s

recursive behavior. During recursive predictions, the model relies solely
on the first two timesteps of the real sequence, generating all subsequent
steps anew without using data from either the training or validation
datasets. The recursive trajectories closely resemble the actual ones,
making this the only model investigated that satisfies, at least to a
certain extent, the recursability criterion (the permutability criterion,
however, is not met).

We can make the recursability criterion more stringent. A “real
understanding” of the physics should enable not just the prediction of
current trajectories but also the extension of these trajectories to longer
simulation times not originally computed by the MD simulation. This
observation leads to an extrapolation criterion.

Criterion 8: the model should correctly
extend the simulation to longer
computational times

To test this criterion, we retrained the PIMLmodel only with the
first half of the MD simulation (500 timesteps), and we extended the
prediction (both one-step on recursive) to the next 500 timesteps,
which the model has never seen (Figure 15).

As expected, the model performed well in the first half of the
simulation. However, in the next 100 timesteps, the accuracy
gradually deteriorated. Therefore, we can assess the extrapolation
ability of the model to be around 100 timesteps.

Neural ordinary differential equations

ODENets are a class of deep learning models that integrate neural
networks with ordinary differential equations (ODEs). Unlike
conventional network architectures that process inputs through

FIGURE 11
One-step versus recursive predictions of the GNN model.

Frontiers in Nanotechnology frontiersin.org11

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

discrete layers, ODENets model the transformation of data as a
continuous, dynamic process governed by ODEs. This approach
allows for a natural handling of temporal data such as those
generated from MD simulations. ODENets model the evolution of a
system using a set of ODEs.

dx
dt

� f x, t; θ(), (3)

where x denotes the state of the system, t is the time, and θ is a set of
unknown parameters governing the system’s dynamics. The function f
captures the system’s rate of change and is approximated by an FNN
consisting of five layers, each with 24 neurons. This network,
parameterized by θ, is trained to learn the transitions from x (t−1) to
x (t) through Eq. 3. However, unlike traditional models where the ML
model directlyfinds x (t) from x (t-1), here, the neural network specifically
approximates the function f in this equation.

FIGURE 12
The model’s design embeds information of the system’s physics directly into its architecture.

FIGURE 13
Loss for the PIML model (A) and comparison between actual and predicted particle positions at the end of the simulation (B).

Frontiers in Nanotechnology frontiersin.org12

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

The ODENet is extremely accurate because Eq. 3 reflects the
actual structure of the MD simulation (Figure 16; Supplementary
Video S9). However, it does not perform well on the recursability
criterion (Figure 17) for t > 600.

Moreover, the ODENet model is continuous in time. While
the other models in this study are limited to predicting x (t) at

predetermined time intervals, the ODENet’s use of a
continuous ODE in Eq. 3 means its outputs are not confined
to specific intervals, offering greater flexibility in timestep
selection. This flexibility is particularly beneficial, as it
enables us to adjust the “granularity” of the simulation,
allowing for coarse-graining by using larger timesteps than

FIGURE 14
One-step versus recursive predictions of the PIML model.

FIGURE 15
One-step versus recursive predictions of the PIML model trained with only the first half of the MD simulation.

Frontiers in Nanotechnology frontiersin.org13

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

those in the original time series or for fine-graining to capture
more detailed dynamics.

In the one-step prediction, the ODENet model integrates the ODE
outlined in Eq. 3 from one sequence element at time t to the next at time
t+1.Unlike other networks,ODENets are not confined to single timesteps;
the ODE can be integrated over t+α, where α = 2 corresponds to a two-
step prediction, α = 3 to a three-step prediction, and so forth. Notably, α is
not limited to integer values. Figure 18 compares the error across different
α values, demonstrating that even with a timestep 10 times larger than the
original, the error remainsmodest, at approximately 2%. This observation
introduces the granularity criterion.

Criterion 9: the ML model should enable
granularity adjustments, enabling both
coarse-graining and fine-graining of the
predictions

The primary challenge with theODENetmodel lies in the potentially
higher computational cost compared to the original physics-basedmodel.
While both approaches involve solving the series of ODEs in Eq. 3, the f
function of the ODENet has more parameters and is numerically more
complex than its physics-based counterpart. This observation leads to the
formulation of an economy criterion.

FIGURE 16
Loss for the ODENet model (A) and comparison between the actual and predicted particle positions at the end of the simulation (B).

FIGURE 17
One-step versus recursive predictions of the ODENet model.

Frontiers in Nanotechnology frontiersin.org14

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

Criterion 10: ideally, the ML model should
not surpass the physics-based model in
computational demands

We must also consider that our analysis involves only a limited
number of particles. In particle simulations with millions of
particles, if the network’s goal is to replicate trajectories, its size
will grow with the increase in the degrees of freedom. A
straightforward approach, similar to the one applied in this
study, could result in extremely large and computationally
demanding networks.

Additional criteria

Based on our previous work on integrating physics-based solvers
with ML models (Alexiadis, 2023; Lagaris et al., 1998; Alexiadis,
2019b; Alexiadis and Ghiassi, 2024), we can propose two additional
evaluation criteria to account for features that could not be tested in
the neural networks examined in this article.

A good indication of a model’s grasp of the systems’ physics
would be its ability to predict MD trajectories under the conditions,
such as pressure or temperature, that are beyond the range of the
initial training dataset. This introduces an extensibility criterion.

Criterion 11: the model should reproduce
conditions besides the training dataset

In principle, expecting a model to perform accurately beyond
its training data seems too optimistic. However, while this
criterion may not generally be met, there are scenarios where,
to a certain degree, this has been achieved (Alexiadis, 2023;
Amato et al., 2024).

Finally, we did not compare the training times of the models in
this study, primarily because such comparisons are challenging to
conduct on equal footing. To make a meaningful comparison, it
would be necessary to optimize all models, a step we did not
undertake as it falls outside the scope of this paper. Despite this,
we acknowledge the importance of efficiency during training,
leading us to propose a somewhat obvious training-time criterion.

Criterion 11: the model’s training time should not be excessively
long, especially when compared to the duration required for the
physical simulations it aims to replicate.

Generally, a network requires only one training phase, allowing for
the allocation of additional time to this process if it results in an accurate
ML model. However, this criterion highlights that there are practical
limits to the amount of time that can be reasonably allocated to training.

Conclusion

This article establishes a set of criteria for assessing ANNs
trained to replicate trajectories derived from MD simulations. We
individually examined the several fundamental network
architectures in machine learning: FNN, CNN, RNN, TC, SA,
GNN, ODENet, and an example of PIML. As expected, none of
these networks meet all the criteria. The FNN falls short of the
permutability criterion, the CNN does not satisfy the conservation
criterion, and the RNN does not meet the boundary condition
criterion. TC and SA have a similar performance, but TC is
preferable according to the naturality criterion. The GNN meets
the permutability criterion but fails the scalability one. All networks,
except, perhaps, the PIML (which fails the permutability and
extrapolation criteria), do not meet the recursability criterion.
Moreover, while the ODENet is extremely accurate, it also
requires more computational time for solving the ODEs, which
goes against the economy criterion. These conclusions focus on

FIGURE 18
Comparative analysis of prediction errors across multiple timesteps for the ODENet model.

Frontiers in Nanotechnology frontiersin.org15

Alexiadis 10.3389/fnano.2024.1373316

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

atomic trajectories, not macroscopic properties that can be
statistically derived from trajectories, such as temperature,
pressure, or transport properties such as thermal diffusivity or
viscosity (Papastamatiou et al., 2022; Stavrogiannis et al., 2023;
Sahputra et al., 2020).

While it is possible that combining these networks as layers within
more complex networks may enhance the performance in specific
cases, our primary objective in this paper is to independently assess
the advantages and disadvantages of each network type. The rationale
behind this focused examination is to lay a groundwork upon which
future research can build more effective and nuanced combinations of
neural network layers. By identifying the specific strengths and
weaknesses of individual architectures, researchers and
practitioners can make more informed decisions when designing
advanced models that integrate multiple layers or architectures.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found at: github.com/alexiada/criterias-for-data-
based-MD.

Author contributions

AA: writing–original draft and writing–review and editing.

Funding

The authors declares that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/
full#supplementary-material

References

Alexiadis, A. (2019a). Deep multiphysics and particle–neuron duality: a
computational framework coupling (discrete) multiphysics and deep learning. Appl.
Sci. Basel, Switz. 9 (24), 5369. doi:10.3390/app9245369

Alexiadis, A. (2019b). Deep multiphysics: coupling discrete multiphysics with
machine learning to attain self-learning in-silico models replicating human
physiology. Artif. Intell. Med. 98, 27–34. doi:10.1016/j.artmed.2019.06.005

Alexiadis, A. (2023). A minimalistic approach to physics-informed machine learning
using neighbour lists as physics-optimized convolutions for inverse problems involving
particle systems. J. Comput. Phys. 473 (111750), 111750. doi:10.1016/j.jcp.2022.111750

Alexiadis, A., and Ghiassi, B. (2024). From text to tech: shaping the future of physics-
based simulations with AI-driven generative models. Results Eng. 21, 101721. doi:10.
1016/j.rineng.2023.101721

Alexiadis, A., Simmons, M. J. H., Stamatopoulos, K., Batchelor, H. K., and Moulitsas,
I. (2020). The duality between particle methods and artificial neural networks. Sci. Rep.
10 (1), 16247–7. doi:10.1038/s41598-020-73329-0

Alhajeri, M. S., Abdullah, F., Wu, Z., and Christofides, P. D. (2022). Physics-informed
machine learning modeling for predictive control using noisy data. Chem. Eng. Res. Des.
Trans. Institution Chem. Eng. 186, 34–49. doi:10.1016/j.cherd.2022.07.035

Amato, E., Zago,V., andDelNegro,C. (2024).Aphysically consistentAI-based SPHemulator
for computational fluid dynamics. Nonlinear Eng. 13 (1). doi:10.1515/nleng-2022-0359

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F. (2022).
Scientific machine learning through physics–informed neural networks: where we are
and what’s next. J. Sci. Comput. 92 (3), 88. doi:10.1007/s10915-022-01939-z

Jenis, J., Ondriga, J., Hrcek, S., Brumercik, F., Cuchor, M., and Sadovsky, E. (2023).
Engineering applications of artificial intelligence in mechanical design and
optimization. Machines 11 (6), 577. doi:10.3390/machines11060577

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.
(2021). Physics-informed machine learning.Nat. Rev. Phys. 3 (6), 422–440. doi:10.1038/
s42254-021-00314-5

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial neural networks for solving
ordinary and partial differential equations. IEEE Trans. neural Netw. 9 (5), 987–1000.
doi:10.1109/72.712178

Papastamatiou, K., Sofos, F., and Karakasidis, T. E. (2022). Machine learning symbolic
equations for diffusion with physics-based descriptions. AIP Adv. 12 (2), 025004. doi:10.
1063/5.0082147

Pfaff, T., et al. (2020). Learning mesh-based simulation with graph networks,
international conference on learning representations. Available at: http://arxiv.org/
abs/2010.03409 (Accessed February 3, 2024).

Reynolds, C. W. (1987). “Flocks, herds and schools: a distributed behavioral model,”
in Proceedings of the 14th annual conference on Computer graphics and interactive
techniques (New York, NY, USA: ACM).

Sahputra, I. H., Alexiadis, A., and Adams, M. J. (2020). A coarse grained model for
viscoelastic solids in Discrete Multiphysics simulations. ChemEngineering 4 (2), 30.
doi:10.3390/chemengineering4020030

Stavrogiannis, C., Sofos, F., Sagri, M., Vavougios, D., and Karakasidis, T. E. (2023).
Twofold machine-learning and molecular dynamics: a computational framework.
Computers 13 (1), 2. doi:10.3390/computers13010002

Thai, H.-T. (2022). Machine learning for structural engineering: a state-of-the-art
review. Structures 38, 448–491. doi:10.1016/j.istruc.2022.02.003

Vaswani, A., et al. (2017). Attention is all you need. Available at: http://arxiv.org/abs/
1706.03762 (Accessed February 13, 2024).

Frontiers in Nanotechnology frontiersin.org16

Alexiadis 10.3389/fnano.2024.1373316

http://github.com/alexiada/criterias-for-data-based-MD
http://github.com/alexiada/criterias-for-data-based-MD
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnano.2024.1373316/full#supplementary-material
https://doi.org/10.3390/app9245369
https://doi.org/10.1016/j.artmed.2019.06.005
https://doi.org/10.1016/j.jcp.2022.111750
https://doi.org/10.1016/j.rineng.2023.101721
https://doi.org/10.1016/j.rineng.2023.101721
https://doi.org/10.1038/s41598-020-73329-0
https://doi.org/10.1016/j.cherd.2022.07.035
https://doi.org/10.1515/nleng-2022-0359
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.3390/machines11060577
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1109/72.712178
https://doi.org/10.1063/5.0082147
https://doi.org/10.1063/5.0082147
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2010.03409
https://doi.org/10.3390/chemengineering4020030
https://doi.org/10.3390/computers13010002
https://doi.org/10.1016/j.istruc.2022.02.003
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1373316

	Designing a set of criteria for evaluating artificial neural networks trained with physics-based data to replicate molecula ...
	Introduction
	The learning data
	Preliminary considerations
	Criterion 0: losses in training and test data must be minimized

	Feedforward neural networks
	Criterion 1: the ML model should be invariant under permutation
	Criterion 2: trajectories must be predicted recursively, not only from observed data but also from prior predictions

	Convolutional neural networks
	Criterion 3: the number of atoms should be strictly preserved

	Recurrent neural network
	Criterion 4: the model should also capture changes occurring at the boundaries

	Time convolution
	Criterion 5: all other things being equal, simpler models should be preferred to more complex ones

	Self-attention
	Criterion 6: models that naturally match our understanding of the system should be preferred

	Graph neural networks
	Criterion 7: the ML model should ideally scale in complexity comparably to the physical model it simulates

	Physics-informed machine learning
	Criterion 8: the model should correctly extend the simulation to longer computational times

	Neural ordinary differential equations
	Criterion 9: the ML model should enable granularity adjustments, enabling both coarse-graining and fine-graining of the pre ...
	Criterion 10: ideally, the ML model should not surpass the physics-based model in computational demands

	Additional criteria
	Criterion 11: the model should reproduce conditions besides the training dataset

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

