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The formation of laser-induced periodic surface structures (LIPSSs) on the atomic
layer-deposited (ALD) molybdenum disulfide (MoS2) upon femtosecond laser
processing is studied experimentally. Laser-processing parameters such as
average laser power and the scan speed at which the formation of the
periodic nanostructures takes place are identified. Optical and scanning
electron microscopy are applied to identify the parameter regions for the
different LIPSS formations and transitions between them. High- and low-spatial
frequency LIPSS (HSFL and LSFL) with two distinct periods λLSFL ≈ 1.1 μm and
λHSFL ≈ 83 nm can be observed. The HSFL are dominating at higher and the LSFL
at lower laser average powers. Formation of LIPSS is found to inhibit laser
ablation at lower scan speeds.
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1 Introduction

Recent growing interest in 2D transition metal dichalcogenide (TMDC) materials such
as molybdenum disulfide (MoS2) is driven by a large number of applications such as photo-
catalysis, sensing and disinfection (Wang and Mi, 2017), semiconductor electronics (Butler
et al., 2013), and energy storage (Acerce et al., 2015). The possibility to modify such thin
layers with lasers enables their application for electronic devices (Radisavljevic et al., 2011).
Two important types of the MoS2 layer modifications required for all-MoS2 electronic and
sensing devices are crystallization (Zhang et al., 2020) and patterning. Structuring of thin
MoS2 layers can be conducted by direct laser ablation (Pan et al., 2020), which can be used,
e.g., to write periodic stripes with the resolution down to approximately 250 nm (Kim et al.,
2016). Such a deterministic way of patterning has certain disadvantages, like slow processing
velocity and high requirements for the positioning precision and temperature stability. An
alternative way for MoS2 nanopatterning could be self-organization, i.e., appropriate choice
of the processing parameters at which the homogeneously deposited layer undergoes some
instability, manifesting itself as a periodic pattern. Using this method, self-organized
hexagonal patterns were recently observed in MoS2 upon fs laser processing (Becher
et al., 2023).
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LIPSSs are self-organized structures with periods usually
comparable to the wavelength of laser radiation (LSFL — low-
spatial frequency LIPSS) or approximately one order of magnitude
smaller than the wavelength (HSFL— high-spatial frequency LIPSS)
(Bonse et al., 2012). The physical mechanism of the LIPSS formation
is still under debate. Most probably the LSFL formation is a multi-
step process (Gurevich et al., 2020), starting with the incident wave
interfering with the wave scattered by surface roughness (Emmony
et al., 1973; Sipe et al., 1983) and periodically modulating the
temperature of the electrons in a thin surface layer. Then, the
electrons heat up the lattice, whereupon the amplitude of the
relative temperature modulation increases (Gurevich et al., 2017).
This periodic lattice temperature modulation forms the LIPSS either
by selective ablation or by hydrodynamic flow in the melt. The
formation mechanisms of the HSFL are less clear and can involve
either near-field amplification of the field on the LSFL structure
(Geng et al., 2023) or de-wetting of the grooves formed by the LSFL
ribbons (Khare et al., 2007). Such patterns were first discovered in
germanium (Birnbaum, 1965) and were recently observed in 2D
materials, such as graphene (Beltaos et al., 2014; Kasischke et al.,
2018). However, to the best of our knowledge, no high- and low-
spatial frequency LIPSS have been observed inMoS2 simultaneously,
and the corresponding laser processing parameters have not been
studied systematically. Recently, formation of HSFL-like structures
inMoS2 referred to as nanoribbonswas reported by Zuo et al. (2019).
Zuo et al. (2019) fabricated large arrays of regularly arranged MoS2
nanowires using the femtosecond laser technique on exfoliated
flakes. Based on these nanoribbons, they produced macroscopic
FET structures that exhibit rectifying behavior. Salimon et al. (2023)
were able to demonstrate significantly improved photo-conductivity
and photo-current on 200-nm ribbons fabricated via LIPSS.
Furthermore, the nanopatterning of 2D materials improves the
performance of switches and sensors (Rahman and Lu, 2022). In
addition to the electrotechnical applications, MoS2 is widely used as
a lubricant. For example, MoS2 nanocoatings are used in space
applications as a solid-based lubricating material (Mukhtar et al.,
2023). Nanostructuring using LIPSS could further improve the
tribological properties of these coatings (Bonse et al., 2018). In
this paper, we demonstrate direct formation of LSFL and HSFL in
ALD-deposited MoS2 layers irradiated with femtosecond laser
pulses and investigate the parameters at which the LIPSS
formation occurs.

2 Materials and methods

2.1 Atomic layer deposition of MoS2

A plasma-enhanced ALD (PE-ALD) process (Sharma et al.,
2018; Jagosz et al., 2022) was used to deposit a MoS2 film on a
silicon dioxide (d = 200 nm)/silicon substrate. The substrate
temperature was Tsub ≈ 230 °C due to limited thermal contact
between the substrate and table (T = 300 °C). The MoS2 film
was deposited using a SENTECH Instruments GmbH SI ALD
reactor equipped with a remote capacitive coupled plasma
source (f = 13.56 MHz). The precursor Bis(t-butylimido)
bis(dimethylamino)molybdenum (Strem, 98%) was heated in a
stainless-steel canister to T = 50 °C. A 100-sccm nitrogen

bubbling flow rate was applied to facilitate precursor delivery
into the reactor. A plasma mixture of 5 sccm hydrogen sulfide
(99.5%) and 45 sccm argon was used as the co-reactant. The plasma
was operated at a power of 200 W at a pressure of 10 Pa. After
400 cycles, a 34-nm-thick polycrystalline MoS2 film (verified by
ellipsometric measurements) was deposited.

2.2 Generation of LIPSS

A femtosecond laser system from Jenoptik (JenLas D2.fs, λ =
1025 nm ± 10 nm, and τP = 400 fs) with a repetition rate of frep =
200 kHz was used for the processing of the MoS2 samples. The laser
power was adjusted by a half—wave plate and a polarization beam
splitter. The laser beam is led to a galvanometer scanner and focused
on the sample surface with an F-Θ lens, with a spot size of d ≥ 27 μm.
Rectangular areas (250 μm × 250 μm) were processed by scanning
the spot with a line distance of 5 μm.

2.3 Characterization

Optical micrograph images were captured with a camera
[mvBlueFOX-ML/IGC, (Matrix Vision GmbH)] in combination
with a ×100 NA 0.85 objective. Scanning electron microscope
(SEM) images were captured with a Schottky field emission
electron microscope Leo Gemini 982 at 2 kV.

3 Results and discussion

For the generation of LIPSS, square areas of 250 μm × 250 μm
were processed on the MoS2 film. Depending on the chosen
parameters, seven different topographies could be determined in
the processed areas. Starting at PL = 20 mW and vscan = 0.1 mm/s, an
unstable generation of LIPSS appears. With the increasing laser
power (PL < 50 mW) and scan speed (vscan < 100 mm/s) stable, areal
LIPSS starts to form. Further increase of the laser power results in
modification of the film without formation of LSFL, while further
increase of the scan speed still results in a formation of LSFL, but
MoS2 starts to get ablated. A possible explanation of the latter effect
will be given at the end of this section. Figure 1 gives an overview
about the different regions, depending on the laser power and scan
speed.

A more detailed view of the MoS2 LIPSS is shown in Figure 2.
Here, a processed area (PL = 40 mW and vscan = 0.5 mm/s) is
displayed, with different magnifications. Figure 2A shows a
continuous pattern of LSFL with a period of Λ ≈ 1.1 μm, which
is close to the laser wavelength of λ = 1.03 μm. Upon closer
examination at higher magnifications (Figure 2B,C), it becomes
apparent that the HSFL also forms in an orthogonal pattern to the
LSFL. The period of the HSFL is around Λ = 83nm. These
“nanoribbons” were described by Zuo et al. (2019) in the past
but without the appearance of LSFL. Figure 3 demonstrates the
transition between the appearance of LSFL and HSFL, by adjusting
the laser power at a constant scan speed (PL = 30–90 mW and
vscan = 0.5 mm/s). Processing the MoS2 film with low laser powers
(PL = 30 mW), an LSFL pattern forms, whose stripes consist of
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the HSFL pattern (seen in Figures 2, 3A). With the rise of the
laser power above PL = 50 mW, the LSFL pattern fades away and
only the HSFL patterns are formed. Figures 3B,C show that the
degree of ablation and a resulting covering of the MoS2 HSFL can be
adjusted, based on the laser power. More SEM images of the laser
power-depending generation of HSFL and LSFL can be found in
Supplementary Figure S1.

The reason why the HSFL dominates at higher laser power is not
fully understood but can be linked to the theory of LIPSS formation.
The commonly used theory suggests that the periodic pattern appears
due to interference between the incident and the surface-scattered
waves (Emmony et al., 1973; Sipe et al., 1983). In the later steps of this

multi-step formation process (Gurevich et al., 2020), the interference
between these waves modulates first the electron and then the lattice
temperatures, and causes surface modification. This is shown in
Figure 3A, in which two perpendicular periodic patterns can be
seen: a modified (as HSFL) MoS2 film in the nodes and an
unmodified MoS2 film in the anti-nodes of the temperature profile.
Why the modifiedMoS2 layer transforms toHSFL is not clear and out
of scope of this paper. However, as the laser power and the pulse
energy increase, the amplitude of the field in the anti-nodes grows and
the area at which the HSFL formation is reduced grows too. This leads
to an increased area with thinner HSFL and a decreased area with
thicker HSFL-patterned MoS2 (see Figure 3B). As the pulse energy

FIGURE 1
Overview of the generated MoS2 surface, depending on the laser power and the scan speed. The first appearance of unstable LIPSS (green
rectangles) is visible at PL = 20 mW and vscan = 0.1 mm/s. With higher laser powers and scan speeds, a region is formed, where stable and areal LIPSS are
generated (red stars). By increasing only the scan speed, partial ablation of the MoS2 film and the LIPSS is induced (blue crosses). At lower scan speeds but
higher laser powers, the formation of LIPSS disappears in the optical micrograph and a different modification of the MoS2 film appears (orange
triangles).

FIGURE 2
SEM images of LIPSS generated with PL = 40 mW and vscan = 0.5 mm/s with (A) 10.000x, (B) 50.000x, and (C) 100.000x magnification. In (A) and (B),
the LSFL are seen, with a period of approximated Λ ≈ 1.1 μm. Images (B) and (C) show that the LSFL consists of HSFL with a period of approximate Λ ≈
83 nm.
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and the field in the anti-nodes grow and reach the ablation threshold
in the crests, the HSFL can be still formed between these crests, where
the field of the interference pattern is between the ablation and the
HSFL-formation thresholds. This makes the HSFL structure less
regular and the LSFL can hardly be observed (see Figure 3C).

The influence of the scan speed at a constant laser power
(PL = 50 mW) on the formation of LSFL and HSFL is displayed in
Figure 4. The SEM image in Figure 4A shows that a scan speed of
vscan = 0.5 mm/s produces an almost homogeneous MoS2 film
consisting of HSFL with a superimposed LSFL pattern. Increased
scan speeds of vscan = 10 mm/s lead to a more pronounced LSFL
pattern and a partial separation of the HSFL stripes in the MoS2 film.
Even higher scan speeds (up to vscan = 500 mm/s) still produce both
HSFL and LSFL patterns but with partial ablation of the MoS2
film, resulting in the formation of islands of the LIPSS pattern (see
Figure 4C; Supplementary Figure S2). Interestingly, for fixed average
laser power, ablation occurs at higher scan speeds (i.e., at lower energy
deposition per length), whereas at lower scan speeds (i.e., higher
energy deposition), the layer tends to form LIPSS without or with
less ablation. The accumulation effect is well known in laser material

processing, but it usually facilitates the ablation when the number of
pulses per cite grows (Mannion et al., 2004). The explanation of the
negative accumulation effect (i.e., the incubation coefficient S > 1
(Mannion et al., 2004)) observed in our experiments is not
completely clear to us. The distance between the consequent laser
pulses on the sample surface upon scanning can be calculated as
Δx = vscan/frep; thus, Δx corresponding to the critical scan speed
separating the ablation (vscan ≳ 100 mm/s) and the LIPSS formation
(vscan ≲ 50 mm/s) is comparable to the period on the LSFL observed in
our experiments. However, this might be a coincidence since we
cannot suggest any physical mechanism for such a negative
accumulation effect. Another possible explanation may be partial re-
crystallization of theMoS2 layer (Sládek et al., 2022; Becher et al., 2023)
near to the center of the laser spot, which increases either the ablation
threshold or the reflectance of the surface. For low scan speeds, the
following pulse interacts with a partly recrystallized area and remains
below the ablation threshold, whereas at higher speeds, the following
pulse meets a pristine surface. Due to fluctuations either in the pulse
energy or in the layer properties, the ablation threshold may be
overcome so that randomly distributed ablation spots or completely

FIGURE 3
SEM images of the evolution of HSFL and LSFL depending on the average laser power with a constant scan velocity vscan = 0.5 mm/s. (A)With a laser
power of PL = 30 mW, both HSFL and LSFL start to build up. The inset image (50.000x magnification) shows that the LSFL consists of HSFL with different
thicknesses. (B)When the laser power is risen to PL = 60 mW, no LSFL is built and only the HSFL is formed in the MoS2 film. (C) An even further rise of the
laser power to PL = 90 mW leads to partial ablation of the MoS2 HSFL, resulting in a more island-like HSFL appearance.

FIGURE 4
SEM images of the evolution of HSFL and LSFL depending on scan speed with a constant average laser power PL = 50 mW. (A) A slow scan speed
(vscan = 0.5 mm/s) forms a continuous LSFL pattern with an almost closed MoS2 film consisting of HSFL. (B) An increase in the scan speed to vscan =
10 mm/s, and the LSFL and HSFL are still formed. The increase in the scan speed starts to separate the HSFL region from each other through ablation of
material along the LSFL. (C) Even higher scanning speeds (vscan = 125 mm/s) leads to more ablation of the LSFL and HSFL patterns in the MoS2 film,
leading to partial MoS2 free space in the film.
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ablated areas appear; see Figure 1. A similar explanation has been given
by Geng et al. (2022), who observed a competition between laser
ablation and the chemical reaction (oxidation) in thin Si layers. The
formation of silicon oxide protects the surface from ablation if the
oxide layer is strong enough, i.e., at a lower scanning speed.

4 Conclusion

This work shows the formation of LSFL and HSFL in ALD-
deposited MoS2. We determine the parameters for the laser power
and the scan speed of the galvo scanner for the LIPSS formation and
observe different modes of LIPSS formation. Depending on the laser
power, it is possible to choose between the formation of only HSFL
or a combination of HSFL and LSFL. With the selection of the
scanning speed, a degree of ablation/separation of the HSFL through
the LSFL can be set. Previously, simultaneous formation of HSFL
and LSFL in 2D materials was observed in laser-reduced graphene
oxide (Kasischke et al., 2018). Further research has to be conducted
to characterize the electrical and optical properties (Calvani et al.,
2014; Maragkaki et al., 2020; Skoulas et al., 2021) of the LSFL and
HSFL for integration in highly sensitive photo-detectors, innovative
rectifier structures, complementary inverters, or thin-film
transistors and the tribological properties for applications in
nanostructured thin film coatings.
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