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The non-Abelian state has garnered considerable interest in the field of
fundamental physics and future applications in quantum computing. In this
review, we introduce the basic ideas of constructing the non-Abelian states in
various systems from 1D to 3D and discuss the possible approaches to detect
these states, including the Majorana bound states in a hybrid device and the v = 5/
2 state in a fractional quantum Hall system.
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1 Introduction

Topological quantum computing aims to utilize non-Abelian anyons and their
manipulation to realize qubit operations with the ultimate goal of fault-tolerant
quantum computing. However, it has been shown that such states can be formed,
detected, and manipulated theoretically. However, the experimental progress has been
impeded by complications in the real materials, such as unwanted doping, random
disorders, and inhomogeneous potential profiles Therefore, besides the existing
semiconductor material-based platforms, topological materials have also been vastly
investigated. The goal of this mini-review is to introduce various topological material
systems as novel platforms for hosting non-Abelian states.

We will start with the one-dimensional platform as a basic model for realizing the
topological states in combination with superconductivity. Then, we will extend the concepts
to higher dimensions and various material platforms. It is useful to first introduce several
theoretical concepts related to topological materials.

1.1 Quantum topology: a brief introduction

Different symmetries give rise to different types of topological materials. A practical way
to identify the possible topological phases is to calculate the topological invariants. For the
topological states concerning the T , P, and C symmetries, the commonly used quantity is
the Berry curvature and related Chern number (C). For example, for a Z-type topological
material, C = 0, ±1, ±2 . . . A typical system is the integer quantum Hall states. The
topological insulator belongs to the Z2 type, which has C = 0 or 1.
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In general, one starts with an understanding of the Chern
number, whose definition stems from the Berry phase in the
momentum space. The Berry phase can, in general, be calculated
on a parameter R(t) that changes very slowly along a closed path in
the parameter space, where the quantum state of the system should
be described by the time-dependent Schrödinger equation:

iZ∂t|Φ t( )〉 � H R t( )( )|Φ t( )〉. (1)
The wave function is then |Φ(t)〉 = eiθ(t)|un(R(t))〉. The phase θ(t)

is expressed as follows (see also Shen (2012)):

θ t( ) � 1
Z
∫t

0
dtEn R t′( )( ) − i∫

C
dR · 〈n,R| d

dR
|n,R〉. (2)

The first term on the right-hand side is the dynamic phase, and
the second term is the so-called Berry phase γc. The vector An(R) =
i〈n, R|∇R|n, R〉 is called Berry connection or Berry vector potential
because it is an analog to a vector potential in an electromagnetic
field. If the change along a closed path is adiabatic, the wave function
should have a gauge transformation |n, R〉 = eiχ(R)|n, R〉 and a phase
difference γc = 2mπ, and the integer number m is the so-called Chern
number. It is a topological invariant, i.e., independent of the details of
the Hamiltonian.

Using Stoke’s theorem,

γc � ∮
C
dR · An R( ) � ∫

S
dS ·Ω R( ), (3)

the Berry curvature from the Berry connection is defined as

Ωn R( ) � ∇R × An R( ). (4)
Reverting to the momentum space in which we will define these

quantities, based on Bloch’s theorem, a Bloch wave is the wave
function of an electron in a periodic potentialH(r) � H(r + R). The
eigenfunction should be in the form

|ψn,k r( )〉 � eik·r|un,k r( )〉, (5)
where |un,k(r)〉 is the cell-periodic eigenstate of
H(k) � e−ik·rH(r)eik·r. Therefore,

H k( )|un,k r( )〉 � En,k|un,k r( )〉. (6)
In the Brillouin zone, points k and k + K are the same, whereK is

the reciprocal lattice vector. So, the Berry phase across the Brillouin
zone becomes

γc � ∫
BZ
dk · 〈n, k|i∇k|n, k〉. (7)

The aforementioned equation is easy to manipulate in a 1D
system and is referred to as the Zak phase. One considers a typical
two-band Hamiltonian written in the Dirac form as Ĥ � d̂(k).σ̂,
where σ̂ are the Pauli matrices, whose eigenstates (Bloch states)
are generalized spinors. One can then invoke the concept of a
winding number in such cases to rewrite the aforementioned
equation as

γc �
1
2π

∫
BZ
dkω k( ), (8)

where ω(k) � dw(k)
dk is the winding number density, where w(k) is the

momentum-dependent azimuth angle of the cell-periodic Bloch

function |nk〉, represented as a spinor, such that

|n, k〉 � 1�
2

√ e∓ iw(k)

∓ 1( ). The explicit form of the azimuth

functions w(k) can be derived from the details of the two-band
Hamiltonian.

One can further extend the concept of the winding number to
more than one dimension, via the skyrmion number, and use the
concept of Berry curvature to derive the expression for the Berry
phase, intricately connected to the Hall conductivity via the Chern
number. One can recast the expression for the Chern number and
hence the Hall conductance in terms of the unit vector d̂(k). This in
turn maps the torus onto a unit sphere, and hence over a surface of a
unit sphere

C � 1
2π

∫B.dS � 1
4π

∫ dkd̂.
∂d̂ k( )
∂kx

×
∂d̂ k( )
∂ky

( ). (9)

The quantity inside the integrand is often referred to as a
skyrmion number and is indeed a winding number that indicates
the number of winding onto a sphere. In fact, quantum Hall
conductivity is related to the Chern number C via TKNN
relation (Thouless et al., 1982)

σxy � −e
2

h
∑
x

Cx. (10)

Here, Cx ∈ Z holds integer values. Thus, each filled band
contributes to an integer part of Cx and thus Hall conductivity
σxy form plateaux. Chern number description neglects the
electron–electron interactions. The Chern number description
of chiral edge modes in the presence of Majorana edge modes is
beyond the scope of this review. The detailed description of the
Chern number for the 16-fold way for a ] = 5/2 non-Abelian state
is described by Kitaev (2006).

1.2 Anyons

The quantum statistics of identical particles are intrinsic to their
mutual exchange. For example, with the exchange of two
indistinguishable particles, the phase factor eiαπ is added to their
composite wave functions.

ψ r1, r2( ) � eiαπψ r2, r1( ). (11)
Here, α is a statistical parameter. Furthermore, with the double
exchange, both particles return to their initial states, i.e.,

ψ r1, r2( ) � e2iαπψ r1, r2( ). (12)
Then, this implies that e2iαπ = 1 and the phase factor gain after a

single exchange eiαπ = ±1. In general, this equation holds for the
three-dimensional (3D) world, where +1 is for bosons and −1 is for
fermions. More specifically in statistical parameter terms, α = 1 for
fermions and α = 0 for bosons 1. However, this is not true for the
two-dimensional (2D) world, where α ∈ [0, 1], and thus the
fractional value of α gives rise to fractional statistics different
from fermions and bosons (Leinaas and Myrheim, 1977; Wilczek,
1982) (Figure 1). These particles are called anyons (Wilczek, 1990).
Similar to fermions, with the exchange of two anyons, the exchange
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phase απ is subsequently added, and with n exchange, the composite
states wave function is

ψ r1, r2( ) � e2inαπψ r1, r2( ). (13)
Thus, with the double exchange unlike fermions, anyons with

fractional values for statistical parameters will never return to the
initial state. The number of times particles will exchange without
crossing each other in a 2D plane defines the topological number of
that particle. Thus, fractional statistics is the topological property of
particles in the 2D plane. These are Abelian anyons.

The excitations in anyons are separated from the ground states
by an energy gap. However, if the ground state carries the
degeneracy, then it does not obey simpler Abelian braid statistics
but rather non-Abelian braid statistics (Moore and Seiberg, 1988;
Frölich and Gabbiani, 1990). The difference between the two braid
statistics is found from the fusion rule they obey. Anyons are
identified with the exchange statistics which depends on their
topological order. For Abelian anyons, the fusion product is
unique and defined as

a × b � ∑
c

Nc
abc, (14)

whereNc
abc is a non-negative number that defines the number of

ways one could create anyons with topological order ‘c′ (or simply
particle c) by combining anyons with the topological charge ‘a′ and ‘b′.
For Nc

abc � 0, the particle c is not created, while for Nc
abc � 1, the

outcome of fusion results in the creation of the particle c, and there is
only one way to create it. However, for non-Abelian anyonsNc

abc> 1,
then the particle c is created in Nc

abc different ways. Here, the
minimum condition is Nc

abc � 2, i.e., two different ways to create
the particle c. Hence, for such anyons, under exchange, the phrase
simply does not add up but rather transforms to entirely non-trivial
ground states. The ground state lies at the quantum superposition of all
topological exchange operations. This makes the non-Abelian anyons
very attractive to quantum operation (Nayak et al., 2008). One well-
known system to obey these quantum statistics is fractional quantum
Hall (FQH) states ] = 5/2 and Majorana zero modes (MZMs) in the
one-dimensional topological system.

1.3 FQHE anyons

The classical example of quantum particles in the three-
dimensional world is electrons and photons belonging to the
fermionic and bosonic groups. However, this is not true when they
are confined in the 2D plane, and they may create emergent
quasiparticle excitations upon perturbation. These quasiparticles may
have anyonic quantum statistics. The FQH states are one such system
where anyonic excitations with fractional electronic charge can be
created. Halperin and subsequently by Arovas, Schrieffer, and
Wilczek for the first time propose the existence of anyonic
topological order in FQH states (Arovas et al., 1984; Halperin, 1984).

For the simpler Laughlin FQH states with the filling fraction ] =
1/m with the quantum of charge q = e/m, it will carry the phase π/m
or simply π].

The origin of the fractional statistics comes from the topological
part of the Berry phase, which is proportional to the phase
accumulated by the quasiparticle trajectory enclosing magnetic

flux. When a quasihole moves in a closed loop, every
quasiparticle it encircles will contribute a phase of 2π]. If it
encircles only one quasiparticle, then the total phase will be 2π].
Here, since ] < 1, the gain in phase is an intermediate between 0 and
π, thus making quasihole as anyons. The fractional charge and
fractional statistics form two important constituents of anyonic
excitations in FQH states. The fractional charge has been
measured in several experiments (Goldman and Su, 1995;
Saminadayar et al., 1997). However, fractional statistics remained
elusive. The experimental approach to probe the fractional statistics
was chosen to be interferometry, but so far results were always
debated. However, Bartolomei et al. (2020) demonstrated fractional
statistics in two-particle collider geometry. Simultaneously, in
Fabry–Pérot interferometry, Nakamura et al. (2020) showed the
anyonic phase in the interferometric signal. Both experiments were
performed on the filling factor of ] = 1/3 having Abelian anyonic
statistics. The non-Abelian quantum statistics are still abetting the
experimental demonstration (Feldman and Halperin, 2021).

1.4 Majorana zero modes

A special group of non-Abelian anyons of great interest
worldwide is the Majorana bound states, which inherently are
tied to topological superconductivity. Unlike the free Majorana
fermion, originally proposed by Ettore Majorana in 1937, the
Majorana bound state (MBS), or the Majorana zero mode
(MZM), is not a free fermion. The bound nature of such a state
arises from being “connected” to the bulk as an edge mode of
topological nature. Such modes can be exchanged using non-
Abelian statistics and hence can potentially be braided as
required in topological quantum computation. The edge modes
are a simple consequence of the quantum topology of the band
structure of topological superconductors. The basic minimal model
for this was developed in the groundbreaking paper of Kitaev, in
which a prototypical 1D p-wave superconductor serves a physical
realization of the p-wave model (Kitaev, 2001).

The topological characterization of this model is quite
straightforward (Leumer et al., 2020). We start with the
calculation of the winding number from the energy–momentum
(dispersion) relationship. The real space description of this
“spinless” model typically seems like a linear chain with the
p-wave pairing potential between nearest neighbors, as shown in
Figure 2A. The special point t = Δ, where t is the hopping energy and
Δ is the pairing potential, marks a special condition called the Kitaev
point (Leumer et al., 2020). This gives rise to the disjointedMajorana
modes at the ends of the chain, and when written based onMajorana
modes, one can think of these end modes as a single fermion. A
description of various critical cases in real space is depicted in
Figure 2A.

However, the topological phase space is more complex and
includes a parametric regime involving the chemical potential μ,
the hopping t, and the pairing parameter Δ. This regime is
depicted in Figure 2B, in which the area enclosed within |μ| = |2t|
represents the topological phase space. It is important to note that this
region gives a finite winding number when integrated over the
Brillouin zone, as shown in the enclosed w(k) plots. Within this
phase space, one is expected to observe the Majorana edge modes or
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the Majorana zero modes at zero energy, as shown in the energy
spectrum of the Kitaev point in Figure 2C. The plot also shows the
color variation in |u| − |v|, which gives the difference between the
electronic and the hole contribution of the excitation spectrum. Note
that the zero energy mode has a precisely zero value for this quantity,
indicating a neutral excitation. This summarizes the appearance of
MZMs within this simple model.

Of course, this model can be realized on a realistic s-wave system
by introducing two important ingredients: the Rashba spin–orbit
coupling and a Zeeman field (Lutchyn et al., 2010). As explained in
many excellent overviews, this combination introduces the helical
states and mimics a “spinless” model above a critical Zeeman field.
This model, as it turns out, can be realized in superconducting
hybrid systems featuring a Rashba nanowire with proximatized
superconductivity and an externally applied Zeeman field. Here,
the detection of the MZMs in this setup will involve transport
experiments in the form of conductance spectroscopy which will be
discussed in the following section.

2 Hybrid quantum platforms for
anyonic states

In order to construct, detect, and manipulate the desired non-
Abelian states, we need to combine the properties from different
materials and enable electronic transport. Therefore, it is efficient to
design and realize hybrid quantum devices. Here, we will first
discuss the one-dimensional semiconductor nanowire-based
hybrid devices based on Andreev reflection.

2.1 1D Rashba nanowire-superconducting
hybrid systems

The Kitaev model provides a basic backbone for the understanding
of topological superconductivity and how MZMs occur at the edges of
such a chain. An early proposal for the realization of the same featured
the material combination of Rashba spin–orbit coupling in a 1D wire
coupled with an axial Zeeman field (Lutchyn et al., 2010) over which
s-wave superconductivity is induced. Hence, these quasi 1D Rashba
nanowire-superconductor hybrids (Alicea, 2010; Lutchyn et al., 2010)
are currently leading candidates for the detection and manipulation of
MZMs (Kitaev, 2001). The past few years have witnessed tremendous
experimental advancements (Mourik et al., 2012; Deng et al., 2016;
Nichele et al., 2017; Gül et al., 2018; Zhang et al., 2021) aimed at the
ascertained detection of MZMs. Before graduating toward the actual
manipulation or harnessing of MZMs (Zhang et al., 2019; Prada et al.,
2020), many unresolved aspects exist that include the possibility of a
non-topological origin of the zero-bias conductance as well as
understanding the role of interactions within the topological
superconductor channel (Stanescu and Tewari, 2013; Liu et al.,
2017a; Moore et al., 2018a; Moore et al., 2018b; Deng et al., 2018;
Liu et al., 2018; Chiu and Das Sarma, 2019; Vuik et al., 2019; Pan and
Sarma, 2020). Before we discuss the Rashba nanowire model and how
this emulates the Kitaev chain, let us review the basic ingredients of how
conductance measurements are currently used to detect the MZMs.

The primary method for detecting MZMs is via conductance
measurements, with the zero-bias conductance quantization as a
possible telltale signature. The zero-bias conductance peak (ZBCP)
of measure 2e2/h arising out of a coherent and perfect Andreev

FIGURE 1
Braiding of two indistinguishable particles. The exchange of two particles is equivalent to braiding, i.e., circling one particle around another. As long
as the path is continuous, all paths encircling another particle are equivalent. In a three-dimensional world, the paths can be continuously deformed to a
point. This is equivalent to remaining stationary in time. All these paths result in the double exchange of the particles (see text for explanation a). However,
in a two-dimensional plane, the continuous deformation of the path could not be employed. For a certain path, two particles will interact. In the case
of fermions, the Pauli exclusion principle forbids such hard wall interactions, and thus braiding in 3D and 2D is not equivalent, giving birth to the third kind
of particle, i.e., anyons. Adapted with permission from Najjar (2020).
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reflection (Prada et al., 2020) is regarded as a strong signature of the
MZM. This signature is expected from a local conductance
measurement in a normal–topological superconductor (N–TS) link
(Zhang et al., 2018; Zhang et al., 2019; Prada et al., 2020; Zhang et al.,
2021). The so-called telltale signature was that the local conductance
measured at one end of the device would equal the conductance
quantum that arises from a perfect Andreev reflection. Before moving
on to describe the hybrid system, we will now review the bare
minimum theoretical concepts related to the current experimental
scenario.

2.1.1 Andreev processes
We need to clarify the meaning of “proximity inducing” clearly

here. There are many subtleties involved in the process of “induced
superconductivity,” many of which have been discussed in detail in

the classic works of de Gennes. It is possible that the induced
superconductivity that is measured via spectroscopy is basically
an induced gap inside the normal region, which, for practical
purposes, acts as the gap that we concern ourselves with for the
rest of the discussion. This implies that Δ = Δind, which is different
from the gap of the parent superconductor. A detailed
understanding of the induced gap in these systems is still lacking
but can be microscopically understood via local Andreev reflection
processes.

Let us make a quick understanding of the Andreev phenomena.
There are excellent references for this including classic textbooks (de
Gennes, 1999), but here we provide a brief synopsis.

Quasiparticles in systems comprising of inhomogeneous
superconductors and related hybrid junctions like the ones we
consider here with other kinds of conductors are described by

FIGURE 2
Edge modes and the topological phase space. (A) Simple description of the site basis of the Kitaev model for topological superconductivity. The
special Kitaev point when t = Δ, for μ =0 corresponds to the case of disjoint Majorana edge modes at the ends of the chain. (B) Topological phase space
with insets showing the azimuth functionw(k). (C) Energy spectrum of the Kitaev point clearly showing the topological transition at μ =±2t. The plot also
shows the color variation in |u|−|v|, which gives the difference between the electronic and the hole contribution of the excitation spectrum. Note
that the zero energymode has a precisely zero value for this quantity, indicating a neutral excitation. (B) Reproduced under CC-BY-4.0 from Leumer et al.
(2020). (C) Reproduced with permission from Leumer et al. (2021).
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the stationary states of the Bogoliubov–de Gennes (BdG) equation
(Datta and Bagwell, 1999; de Gennes, 1999) given by

E
u
v

{ } � H + U − μ Δ
Δ* − H* + U − μ( )( ) u

v
{ }, (15)

where H is the one-electron Hamiltonian, which represents the
channel without superconducting interactions, with the
electrochemical potential μ, with the electrostatic potential U and
the pairing potential Δ evaluated via a mean-field technique such as
the self-consistent field method. Figures 3A,B pictorially depict the
transformation in momentum space. We are normally used to
looking at two bands for up-spin and down-spin that are filled
up to the Fermi energy or electrochemical potential μ in a metallic
system. In order to explain the pairing, one performs a clever trick,
i.e., flips the down-spin band to effectively make it a “hole” band and
retains the electronic status for the up-spins. Under this
transformation, in the absence of the superconducting pairing Δ,
the bands of the up-spin electrons and flipped down-spin holes
pictorially look like the depiction in Figure 3B.

One often represents this using the so-called “excitation picture”
taking only one-half of the spectrum given that the (15) possesses
electron–hole symmetry. In this picture, in the absence of pairing,
the ungapped metallic spectrum looks like what is shown in
Figure 3B. When pairing is introduced via superconducting
interactions via the term Δ, a gap opens here and the excitation
spectrum now can be broadly schematized as shown in Figure 3 (d).
With the introduction of the superconducting pairing Δ, the
eigenstates of the BdG Hamiltonian in (15) can be represented as
a superposition of electron-like states and hole-like states with

coefficients u and v from (15). In other words, quasiparticle
excitations that are eigenstates of (15) can be represented as, for
instance, γk↑ � uc†k↑ + vc−k↓. This admixture of electron-like and
hole-like states creates the necessary situation for the Andreev
reflection processes that we qualitatively introduce now.

Two kinds of potentials are evident from the BdG equation in
(15). First is the regular electrostatic potential, which, in real space,
would translate to barriers and inhomogeneities within the material
stack, as schematically shown in Figure 3E. These barriers give rise to
what we term the direct reflection processes and refer to the standard
reflection and transmission in heterostructures or tunnel barriers
that one encounters in standard quantum mechanics. The position
dependence U(x) is often referred to as the “band diagram” in device
physics and refers to the spatial variation at the bottom (top) of the
conduction (valence) band, within the structure. Since we also have
the hole block in the lower block of the Hamiltonian in (15),
Figure 3E also depicts the mirror reflection of the potential and
the reflection process schematic.

The second type of potential is the pairing term Δ, whose spatial
dependence comes as an off-diagonal component in (15), and this
gives rise to the Andreev processes. This off-diagonal contribution is
a bit non-trivial to plot in real space, but one can, just like how we
describe the band-diagram U, use the minimum of the excitation
spectrum shown in Figure 3D, to map out a spatial variation of Δ, a
simple schematic of which is shown in Figure 3F. This term
mathematically couples the electron and hole blocks, and,
consequently, any reflection process that involves the spatial
variation of Δ will mix electrons and holes. This is roughly
speaking the Andreev process. Let us now turn our attention to

FIGURE 3
Understanding of the superconductor–semiconductor hybrid systems. (A) Schematic of typical metallic bands represented by the up-spin and
down-spin states filled up to the electrochemical potential μ. (B) Same under the BdG transformation, where the down-spin band is flipped to form a
hole-like band. (C) BdG spectrum in the excitation picture of a normal metal state. (D) Excitation picture of a superconducting state where the pairing
potential introduces the gap Δ. (E) Example of the spatial variation of the electrostatic potential U. This accounts for the direct reflection/
transmission processes. (F) Schematic of a spatial variation in the pairing potential Δ. This variation is responsible for Andreev processes which include the
local Andreev reflection and the crossed Andreev reflection. In (C) and (D), we assume incidence from the left side.
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Figure 3F, in which we schematize a typical spatial profile where a
superconducting region of finite Δ is sandwiched between two
normal regions with Δ = 0. Here, an incident electron from the
normal region gets partially reflected as an electron and partially as a
hole. Not only this, but as the particles exit the superconductor on
the other side, a similar process happens where a partial
transmission happens as a hole. The latter process is called the
crossed Andreev reflection (CAR) and will prove to be a crucial
ingredient in the topological gap protocol (Pikulin et al., 2021;
Aghaee et al., 2022), which will be used to detect the non-locality
of true MZMs. One can also use these processes to microscopically
understand induced superconductivity. Due to the presence of
Andreev reflection, the semiconducting section achieves a gap
that resembles a superconducting gap. However, this gap is not
the standard “forbidden energy” gap associated with a periodic
system but simply the fact that Andreev reflection “depletes” the
semiconductor of its states that lie within the parent
superconductor’s gap.

It is worth remarking at this stage that all this has led to a side-
by-side strong theoretical push (Stanescu and Tewari, 2013; Liu
et al., 2017a; Moore et al., 2018a; Moore et al., 2018b; Deng et al.,
2018; Liu et al., 2018; Chiu and Das Sarma, 2019; Vuik et al., 2019;
Pan and Sarma, 2020), where a lot of focus has been on resolving the
issue of the origins of the observed ZBCP. In parallel, there is also a

strong need to push for theoretical works that go beyond minimal
1Dmodels in order to include multi-mode effects (Lahiri et al., 2018;
Sriram et al., 2019; Prada et al., 2020), realistic potentials (Vuik et al.,
2016; Domínguez et al., 2017; Antipov et al., 2018; Mikkelsen et al.,
2018; Pan et al., 2019; Winkler et al., 2019), the inclusion of disorder
(Moore et al., 2018b; Deng et al., 2018; Chiu and Das Sarma, 2019;
Pan and Sarma, 2020), and also scattering and relaxation effects (Liu
et al., 2017b).

2.1.2 Conductance spectroscopy in Rashba
nanowire hybrid setups: the topological gap
protocol

Let us now discuss conductance spectroscopy in detail. The
MZMs form edge states as dictated by the bulk boundary
correspondence of a one-dimensional (1D) topological
superconductor phase. This phase is realizable using a quasi-1D
system, the semiconducting Rashba nanowire, in which a
topological phase transition could be introduced via the
application of a magnetic field on a Rashba nanowire coupled to
a “proximity-inducing” superconductor (Lutchyn et al., 2010).

The Rashba nanowire with Zeeman splitting is a prerequisite for
achieving topological superconductivity and hence the presence of
MZMs. This is well explained in several references (Lutchyn et al.,
2010), which we succinctly detail now. As detailed in many reviews

FIGURE 4
Rashba hybrid system and transport spectroscopy setup for MZM detection. (A) Schematic band structures of the Rashba nanowire with a Zeeman
energy VZ. This combination creates the desired spin texture to induce a p-wave-like pairing using the s-wave-induced superconductivity. Above a
critical field, one can achieve a topological phase transition. (B) A typical MZM appears as localized edge states as a result of proximity-induced
superconductivity on a Rashba nanowire. A topological transition is induced via an axial magnetic field. These edge states can be detected via
transport spectroscopy in which a set of conductance measurements can ascertain the MZM presence. (C) Schematic of a current setup that probes the
conductance matrix, which includes the local conductance and non-local conductance (upper panel) The local conductance and non-local
conductance depend on three processes: direct transmission, the local Andreev reflection, and the crossed Andreev reflection. (D) Typical schematic plot
showing the topological gap protocol that uses the local and non-local spectra to gauge the presence of MZMs.
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(Cayao, 2017), in order to mimic the Kitaev-style p-wave
superconductivity using induced s-wave superconductivity and
hence an existing spin-texture, one has to first obtain an effective
p-wave interaction. This can be performed by exploiting the spin
texture that comes via the combination of Rashba interaction and
the Zeeman field, as succinctly depicted in Figure 4A. The bands
shown here are a result of the displaced up-spin and down-spin
bands due to the Rashba interaction followed by the Zeeman
interaction. Following a critical field VZ > Vc, one has a single
effective spin-band at the Fermi energy and an odd number of pairs
of points crossing the Fermi energy (Cayao, 2017). This also
corresponds to the Majorana number index being equal to unity.
A schematic depiction of a ground-state setup with an impression of
the fermionic mode corresponding to the two Majoranas at the
edges is shown in Figure 4 (b).

Until recently, the primary method for detecting MZMs was
via a local conductance measurement, with the zero-bias
conductance quantization as a possible telltale signature. The
zero-bias conductance peak (ZBCP) of measure 2e2/h arising
out of a coherent and perfect Andreev reflection (Prada et al.,
2020) is expected from a local conductance measurement in a
normal–topological superconductor (N–TS) link (Zhang et al.,
2018; Zhang et al., 2019; Prada et al., 2020; Zhang et al., 2021).
The so-called telltale signature so far was that the local
conductance measured at one end of the device would equal the
conductance quantum that arises from a perfect Andreev
reflection. However, as we shall briefly detail, such signatures
may be easily reproduced as false positives via close to zero
sub-gap states arising from disorder. Probing true Majoranas
will therefore require exploiting their non-local features (see the
schematic in Figure 4A).

Following a theoretical proposal (Rosdahl et al., 2018), in recent
times, there has also been a keen interest in pursuing transport
measurements across a three-terminal normal–topological
superconductor–normal (N–TS–N) configuration (Ménard et al.,
2020; Puglia et al., 2021), where non-local conductance signatures
(Rosdahl et al., 2018) could augment the certainty of MZM
detection. These ideas have further been recently cemented via
the proposal for the topological gap protocol (Pikulin et al.,
2021), which has recently been quantified experimentally in
InAs–Al hybrid setups (Aghaee et al., 2022). A typical transport
spectroscopy setup that is used to realize this is schematized in
Figure 4B. The Rashba nanowire is depicted in dark blue and is
coated with a parent superconductor shown in red, which induces a
superconducting gap inside the nanowire. This setup has three gates,
one plunger gate VP and two tunnel gates VT1 and VT2, on the two
sides. The plunger gate controls the overall chemical potential μ of
the setup, and the tunnel gates modulate the coupling to the two
normal contacts L and R. A sample of the electrostatic potential
profile is schematized in the lower panel of Figure 4B. Using
operational amplifiers (not shown here), voltages VL and VR can
be applied to either terminal and currents IL or IR which can be
separately measured. With this setup, it is possible to define the
conductance matrix as follows:

G � GLL GLR

GRL GRR
( ) �

∂IL
∂VL

∣∣∣∣∣ VR�0
∂IL
∂VR

∣∣∣∣∣ VL�0

∂IR
∂VL

∣∣∣∣∣ VR�0
∂IR
∂VR

∣∣∣∣∣ VL�0.
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (16)

A theoretical understanding of the aforementioned necessitates
an evaluation of the terminal currents. We can derive the terminal
currents using the Keldysh current operator (Datta, 1997). For
instance, the terminal electronic current at the left contact can be
derived in the Landauer–Büttiker form as

I e( )
L � −e

h
∫ dET e( )

A E( ) f E − eVL( ) − f E + eVL( )[ ]{
+∫ dET e( )

CAR E( ) f E − eVL( ) − f E + eVR( )[ ]
+∫ dET e( )

D E( ) f E − eVL( ) − f E − eVR( )[ ]},
(17)

where T(e)
D (E), T(e)

A (E), and T(e)
CAR(E) represent the energy-resolved

transmission probabilities for the direct, Andreev, and crossed-
Andreev processes involving the left and right contacts for the
electronic sector of the Nambu space, respectively. The term f(E)
represents the Fermi–Dirac distribution at either contact with an
applied voltage VL(R). The transmission probabilities may be
evaluated using the S-matrix technique (Rosdahl et al., 2018) or
the Keldysh non-equilibrium Green’s function (NEGF) technique
(Mélin et al., 2009; Duse et al., 2021; Leumer et al., 2021; Kejriwal
and Muralidharan, 2022), as detailed in respective references. The
aforementioned current expression can be rationalized via the
schematic in Figure 4C. Each contact L(R) can be further divided
into two sectors: the electronic and the hole component. A voltage of
VL(R) applied to the electronic sector translates to its negative for the
hole sector. With two “contacts” effectively required to describe
the left or the right end, we have three possible transmission
routes for the contact, say Le: one is the direct route to Re, the
other is the transmission to Lh, and finally the crossed
transmission to Rh. These processes represent the direct, the
local Andreev, and the crossed-Andreev processes, respectively.
The local conductance and non-local conductance at the left
contact are evaluated by taking a partial derivative of the left
terminal current (IL) as given in (17), under the respective bias
conditions. The local conductance, in the Landauer–Büttiker
form at low temperatures is given by

GLL V( )|T→0 ≡
e2

h
TA E � eV( ) + TA E � −eV( )[ +

TCAR E � eV( ) + TD E � eV( )] + GGnd
LL V( ),

(18)

where the last term GGnd
LL (V) comes as an additional factor due to

currents flowing into the grounded terminal, which can be evaluated
as described in recent works (Rosdahl et al., 2018; Kejriwal and
Muralidharan, 2022). This term typically accounts for the
quasiparticle flow at energies beyond the gap of the parent
superconductor and will be of minimal consequence to our
analysis, which only concerns sub-gap transport (Rosdahl et al.,
2018). The local conductance and non-local conductance are
given by

GLR V( )|T→0 ≡
e2

h
TD E � eV( ) − TCAR E � −eV( )[ ], (19)

from which we note that the non-local conductance can also be
negative (Rosdahl et al., 2018). This is an important aspect of the
topological gap protocol.

The topological gap protocol is summarized via sample plots
taken from Pikulin et al. (2021) and Aghaee et al. (2022) in
Figure 4D. The latest consensus is that a combination of the
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local and the non-local conductance traces will form the
experimental test for the presence of MZMs. We may recall, as
shown in Figure 4B, that local potential variations, both the smooth
part that is induced via gates VP, VT1, and VT2, and the irregular
variations induced via impurities, can induce close to zero energy
sub-gap states. These can indeed mimic the local measurements, and
hence one must measure both GLL and GRR at the two ends. A
conductance gap closure in both GLL and GRR as shown in the upper
panel of Figure 4D sets the first stage. This at least implies the
presence of edge states. However, the edge states may also be
uncorrelated.

For this, we turn to the non-local conductance spectra, which
can be measured by applying a voltage across a terminal and
measuring currents across the other. We note from (19) that the
expression for the non-local conductance indeed has an attached
relative negative sign between the direct and the crossed-Andreev
components. Most importantly, it does not have the local
Andreev component, implying that at zero bias, in the
presence of a true MZM, the non-local conductance vanishes.
This also implies that the non-local conductance changes its sign
at this crossing point. By comparing the upper and lower panel of
Figure 4D, we notice that the gap closure of the non-local
spectrum is quite different from the local conductance
spectrum. The gap of the local conductance spectrum typically
closes when the zero energy modes form, due to either the
presence of localized impurities or the actual topological
transition. The zero-bias conductance line then appears
through the extent of the topological phase. However, the
non-local conductance, on the other hand, must show a gap
closing and re-opening. This is because the non-local
conductance does not have the local Andreev component and
remains identically zero around where zero-bias conductance
manifests. However, there may be other effects near zero bias for
finite lengths due to the parity crossings as discussed in recent
theoretical works.

It is worth mentioning that the requirement on strong Rashba
interaction and the well-aligned Zeeman field places many
restrictions on the setup given the necessity for scalable
architecture in the future. In this regard, recent proposals include
new geometries with the addition of a magnetic insulator, which can,
in effect, minimize the Zeeman field requirement. Recent works in
this direction have proposed several structural optimizations
(Khindanov et al., 2021; Liu et al., 2021; Maiani et al., 2021;
Escribano et al., 2022) and quantum transport calculations (Singh
and Muralidharan, 2023) along with the experimental ascertaining
(Liu et al., 2020; Vaitiekėnas et al., 2021) of achieving topological
superconductivity at minuscule Zeeman fields.

Having discussed the aforementioned works, we summarize this
section with the following quick takeaway message. The evolving
search for MZMs in quasi-1D systems has indeed currently
culminated with a systematic protocol based on a thorough
investigation of the local and non-local conductance, thereby
leading to a possible sighting of true MZMs via this method. It
must be remarked that other methods should indeed be devised in
addition to the regular conductance spectroscopy to augment these
protocol-based examinations. In a later part of this review, we will
also cover the Josephson effect-based detection of MZMs, which are
also being investigated in this platform.

2.2 Non-abelian anyons in fractional
quantum Hall states and designer 2D
platform

The excitation in FQH states carries fractional quantum
statistics, either with Abelian or non-Abelian topological order.
The wave function of Abelian anyons may acquire an arbitrary
phase after moving one quasiparticle around another on the plane.
Evenmore remarkable, the exchange of non-Abelian anyons will not
only alter the phase of their wave functions but also change the
ground state of the whole system. This unique property of non-
Abelian anyons might offer a possible route for designing quantum
devices with topological protection against decoherence (Nayak
et al., 2008). There are quite a few material platforms hosting
non-Abelian states. Here, we will limit the discussion to the
quantum Hall platform.

2.2.1 Majorana edge modes
Like other quantum Hall and fractional states, the charges in ] =

5/2 are carried by the edge modes. Here, the two chiral edge modes
carrying one electron each contribute to a quantum conductance of
σxy = 2e2/h, and co-propagating bosonic charge modes contribute to
σxy = e2/2h. However, the presence of the Majorana modes
complicates the edge structure, resulting in several possible
degenerate ground states (Kitaev, 2006; Ma and Feldman, 2019).
These chiral Majorana edge modes are charge-neutral and thus do
not contribute to the total quantum of conductance. However, they
carry half quanta of heat (Kane and Fisher, 1997). The three well-
studied topological states of ] = 5/2 are shown in Figure 5. Pfaffian
states have a single co-propagating Majorana neutral mode, while
the anti-Pfaffian mode has three counter-propagating chiral modes.
The chirality and number of Majorana modes are shown in Table 1.

2.2.2 Brief introduction to the filling factor = 5/2
The even-denominator FQH state, observed in several high-

quality 2-DEG may host non-Abelian anyons (Lin et al., 2008). The
half-filled states (] = 1/2) in the N = 0 Landau level are quasiparticle
excitations called composite fermions. These are quasiparticles of
electrons bounded with an even number of flux quanta. At ] = 1/2,
they behave like weakly interacting particles, almost like electrons at
the zero magnetic fields (Jain, 2015; Laitinen et al., 2018). Unlike ] =
1/2, the even-denominator FQH states formed at higher Landau
levels (N > 0) are topologically distinct. Among these even-
denominator FQH states, the ] = 5/2 FQH state is the most
acknowledged state. Since its first observation by Willett et al.
(1987), the identity ] = 5/2 has been under intense theoretical
and experimental debate.

The most viable explanation of ] = 5/2 is Moore–Read states, a
Px + iPy spin-triplet superconducting state of the composite
fermions (Willett et al., 1991; Read and Green, 2000). The
Moore–Read states have Pfaffian wave function. Other competing
descriptions of the ground state of ] = 5/2 include hole conjugate
anti-Pfaffian (Lee et al., 2007), particle–hole symmetric Pfaffian
(Levin et al., 2007), the alternating stripe of Pfaffian and anti-Pfaffian
(Mross et al., 2018), and Abelian 331 (Yang and Feldman, 2013),
summing up a total topological order state to 16. Thus, the ] = 5/2
state belongs to topological states of 16-fold way (Ma and Feldman,
2019). Based on Kitaev’s classification, the order states with even
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Chern numbers will have Abelian topological order and states with
odd Chern numbers will have non-Abelian topological order
(Kitaev, 2006). Thus, there are eight non-Abelian and eight
Abelian topological states. The seven lowest Chern number
topological states of ] = 5/2 are listed in Table 1:

The key experimental approaches include the spin-polarization
measurement in the tilted magnetic field (Eisenstein et al., 1988;
Stern et al., 2010), tunneling experiment for interaction parameters
“g” (Radu et al., 2008; Fu et al., 2016), scattering (Dolev et al., 2008;
Venkatachalam et al., 2011), and interferometry experiment (Willett
et al., 2009;Willett et al., 2010;Willett et al., 2013;Willett et al., 2019)
for the charge and quantum statistics detection of the quasiparticles.
All the experimental results confide more to the non-Abelian nature
of ] = 5/2, but the results are still inconclusive. The thermal quantum
Hall measurement is another probe that measures the quanta of heat
carried by the topological edges (Banerjee et al., 2018; Dutta et al.,
2022). Each chiral edge carries a single quantum of heat, while a
Majorana chiral edge carries half quanta of heat; thus, the signature
of fractional thermal quanta indicates the presence of Majorana
states. In the thermal quantum Hall experiment (Banerjee et al.,
2018), the observation of the fractional thermal conductance quanta
kxy ≈ 5/2 is intriguing, not fully consistent with either the Pfaffian or

anti-Pfaffian order, and may indicate the role of disorder in the
stabilization of the ] = 5/2 state (Mross et al., 2018; Wang et al.,
2018). The experimental determination of the ] = 5/2 ground state
requires more effort (Dutta et al., 2022). Until now, the smoking gun
signature for non-Abelian states is missing.

In this review, we will limit the discussion to electronic
charge transport. The device schematics of three key
experimental approaches for detecting quantum statistics and
the charge of quasiparticles covered in this review are shown in
Figure 6.

Tunneling experiment: The random partitioning of the current
is related to the charge of the quasiparticle excitations and
interaction parameter “gT.” The tunneling experiment provides
excellent settings to probe them in the FQH environment. This
could be set up in the single QPC geometry, shown in Figure 6 (a). At
the QPC, two counter-propagating edges are close enough to
interact. In the weak backscattering limit, FQH edges interact
weakly, leading to the tunneling of a small fraction of edge
current from one edge to other. Based on Wen’s model, the
interaction between weakly coupled fractional quantum Hall
liquids leads to power law-dependent tunneling conductance with
respect to. temperature: Gt ∝T(2gT−2) (Shytov et al., 1998; Wen,

FIGURE 5
Edge structure for proposed ]=5/2 states—electron edgemodewith charge q=1 (white), chargemode carrying charge of q=1/2 (black), and charge
neutral Majorana modes (red dash line). The Pfaffian and anti-Pfaffian are non-Abelian states differing in the number of Majorana modes, and 331 is an
Abelian state with no Majorana modes present. Adapted with permission from Mross et al. (2018).

TABLE 1 Most interesting topological ground states of ν =5/2. The second row shows the Chern number of the edge. The negative Chern number (C) is due to the
presence of upstream neutral modes. The third row depicts the unpaired Chiral Majorana edge modes. Note that a pair of Majorana could combine to form the
Bose mode. In the absence of unpaired Majorana modes, the topological order of spin-polarized ν =5/2 is Abelian. The third row shows the expected scaling
dimension Δ for the fundamental quasiparticle of charge q = e/4. The scaling dimension is related to the tunneling coefficient by gT =2Δ. The fourth row shows the
expected results of the even–odd effect in Fabry–Pérot interferometry. All non-Abelian topological orders are expected to show odd–even effects. However, apart
from K =8, both 331 and 113 may show similar odd–even effects if they possess flavor symmetry.

Topological order K = 8 Pfaffian PH-Pfaffian 331 113 SU(2)2 Anti-Pfaffian

Chern number (C) 0 1 −1 2 −2 3 −3

Majorana modes 0 1 −1 0 0 1 −1

Δ 1/16 1/8 1/8 3/16 3/16 1/4 1/4

Even–odd effect No Yes Yes Maybe Maybe Yes Yes

Non-Abelian anyon No Yes Yes No No Yes Yes

Frontiers in Nanotechnology frontiersin.org10

Muralidharan et al. 10.3389/fnano.2023.1219975

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1219975


2007). The interaction parameter gT depends on the scaling
dimension Δ of the quasiparticle and thus their topological order.

However, due to dissipation at the edges, inter-edge long-
range interaction and edge reconstruction lead to
renormalization of gT (Chang, 2003). Thus, so far, the
identification of the topological order via interaction
parameter lacks an experimental basis. It has been proposed to
probe the scaling dimension via shot noise (Snizhko and
Cheianov, 2015). The noise generated at the QPC carries the
signature of the charge of the quasiparticle and the scaling
dimension. For a typical experimental relevant regime of T ≫
kBT, F � q/e + 2kBT/eV(1 − 4Δ) + O[(kBT/eV)2], where F is the
Fano factor defined as the ratio of the shot noise with respect to
the tunneling current at QPC, i.e., F = SI/2eIT (Schiller et al.,
2022a). The scaling dimension appears as a constant offset in shot
noise and turns out to be a lesser significant factor.

In the shot noise experiments, the quasiparticle charge was found
to be e/4 but is not sufficient proof for ] = 5/2 being non-Abelian
(Dolev et al., 2008; Dolev et al., 2010). Resolving the scaling dimension
in such measurements requires high-quality experimental accuracy.
However, the recent proposal highlights the significance of the scaling
dimension in shot noise measurement, where the temperature instead
of biasing voltage is a control knob. The case of the two counter-
propagating edges at different temperaturesmay give rise to intriguing
phenomena of negative excess noise, also dubbed as negative delta-T
noise (Rech et al., 2020). Here, the scaling dimension alone determines
the negative Fano factor. However, the scaling dimension is not
universal as it is thought to be. It is easily perturbed via a non-
equilibrium process, like the presence of counter-propagating neutral
edge modes in FQH states with complex edge structures, which will
lead to the renormalization of the scaling dimension. Nevertheless, the
Fano factor in the tunneling experiment could be pivotal in identifying
the topological order of the FQH states.

Fabry–Pérot interferometer: The quantum statistics of the
particle are defined in terms of a phase factor accumulated by
the particle when they have looped around another or the
position of the two particles is exchanged (Figure 6B). The

simplest and ideal experimental platform for probing quantum
statistics would be a confined geometry where one could employ
the chiral edge property of edge states to encircle the particles in the
bulk. Furthermore, the Fabry–Pérot interferometer is such geometry
where at quantum point contacts (QPCs), the counter-propagating
edge states interact.

In the weak interaction regime, tunneling processes are
dominated by quasiparticles (Dolev et al., 2010). In the phase-
coherent limit, the interaction between the two paths, the back-
reflected signal and loop path, across the interferometer will give
an interference signal which is sensitive to the Aharonov–Bohm (AB)
phase and the statistical phase (Halperin et al., 2011; Rosenow and
Stern, 2020). θ ~θAB + ϕs, where θAB = qAB/eϕ0 is the
Aharonov–Bohm phase which is sensitive to the charge q of
quasiparticle (Goldman and Su, 1995; Willett et al., 2009). ϕs is the
statistical phase gained by the quasiparticle looping around the
quasiparticle in the bulk of the interferometer of area A. The
change in magnetic flux through the interferometer by a single
flux quantum ϕ0 = h/e leads to the addition or removal of a single
quasiparticle from the bulk. This results in a jump in phase defined by
ϕs. The experimental signature of this phase shift is the key signature
of the statistical phase of the anyons (Rosenow and Stern, 2020).

Furthermore, in the non-Abelian case, the Aharonov–Bohm
phase is influenced by the “even–odd effect” (Das Sarma et al., 2005;
Bonderson et al., 2006a; Stern and Halperin, 2006). The even–odd
effect is related to the parity of the number of quasiparticles in the
interferometer. Specifically for ] = 5/2, an odd number of the
quasiparticles in the interferometer will give 2ϕ0 periodicity in
the magnetic field contrary to the 4ϕ0 periodicity for an even
number of particles. In addition, the statistical phase of the
quasiparticle will depend on the topological order of the
quasiparticle; for example, for the Pfaffian state (particle–hole
symmetric anti-Pfaffian state) with fixed fermion parity, ϕs =
1ϕ0(ϕs = 1.5ϕ0) and for the state without fixed fermion parity,
ϕs = 2ϕ0(ϕs = 3ϕ0) (von Keyserlingk et al., 2015).

The Fabry–Pérot interferometer could probe the charge of the
quasiparticle excitations and their quantum statistics. It looks

FIGURE 6
Tunneling probes for non-Abelian anyons. (A) Single QPC geometry where tunneling between the two counter-propagating edge states is initiated
at the QPC (q1). Themeasure of the tunneling resistance with respect to DC bias current and temperature gives themeasure of the interaction parameter
gT. Note that the same geometry could be used to measure the fractional charge of the quasiparticle via shot noise in a weak backscattering current limit.
(B) Interferometer device with a Fabry–Pérot cavity is defined by two QPCs. The phase-coherent transport across the Fabry–Pérot cavity is
measured with respect to the change in the number of quasiparticles in the cavity. This is achieved via sweeping themagnetic field. The closed loop path
defined by the two QPCs enclosed the Aharonov–Bohm fluxes which carry the signature of both quasiparticle charge and braiding statistics. (C) Two
particle interferometer geometry with three quantum point contacts: q1, q2, and q3. The input QPCs q1 and q2 create quasiparticles at the two counter-
propagating edges. At the QPC q3, they collide, and collision output is measured via the cross-correlation technique at ohmic contacts 2 and 4. The two-
particle interference at the QPC q3 carries the signature of the quantum statistics.
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simpler, but device fabrication is more complicated due to its
conflicting design constraint of weak Coulomb blockade and
phase coherency. In the recent design, the GaAs/AlGaAs 2-DEG
is epitaxially grown in between two auxiliary metallic layers. The
screening layers drastically reduced the Coulomb charging energy
and suppressed the bulk–edge interaction, allowing for an
Aharonov–Bohm physics-dominated interference pattern in gate
vs. magnetic field sweep. The jumps in the interference pattern are
seen at Δθ ~ 0.3 × 2π, which is closer to the theoretical value of π/3
for fractional quantum Hall states ] = 1/3 (Nakamura et al., 2020).

Similar phase jumps may result due to the interaction of
quasiparticles localized at the impurity sites close to the physical
edge of the interferometer. However, these random interactions will
unlikely give phase jumps closer to the expected value of statistical
phase jumps. More experimental signatures are needed to exclude
these effects, and, above all, the probe for the quantum statistics of
other fractional states (] = 1/5, 2/5) will provide a better
understanding of the quantum statistics of anyons. A similar
geometry designed for non-Abelian anyons of ] = 5/2 might
resolve the odd–even effect.

Two-particle interferometer: The quantum statistics of the
particle can also be determined in the two-particle
interferometer. In analogy to quantum optics, if the two-
quantum particle collides at a beam splitter, the outcome of the
collision depends on the exclusion statistics of the colliding particles.
For example, in the case of bosonic particle-like photons, the
photons will bunch together, while in the case of electrons that
obey Fermi statistics, the electrons tend to be anti-bunch. This
behavior could be observed in fluctuation measurement. In the case
of electronic excitations, the Pauli exclusion principle enforces the
single occupancy of quantum states in the outgoing beam, resulting
in negligible fluctuations in cross-correlation measurement due to
sequential tunneling of the electrons in output beams.

On the other hand, fractional excitations, which obey
intermediary statistics to fermions and bosons, will obey lesser
exclusion and thus cause randomness in the occupancy of
quantum states in outgoing beams. This results in finite
fluctuations in correlation measurement. The statistical signature in
the cross-correlation is revealed by the power law decay of the wave
function at the edges, which, in fact, measures the spatial correlation at
the beam splitter. Although the measurement of exclusion statistics is
an indirect measurement of quantum statistics, it is also related to the
braiding of quantum particles in the bulk (Rosenow et al., 2016). This
scheme was successfully implemented for the identification of Abelian
anyonic statistics of fractional excitations carrying charge q = e/3
(Bartolomei et al., 2020).

However, the presence of more than one edge channel
complicates the physics involved in the collision experiment.
The ] = 2/5 states have two edge states with inner and outer
edges carrying fractional charges of q = 1/3 and q = e/5,
respectively. The collision experiment performed on the inner
edge channel of ] = 2/5 carrying q = e/3 charge shows similar
evolution in the exclusion statistics to that in ] = 1/3. On the other
hand, partitioning of the outer edge channel, which carries the
fractional charge of q = e/5, has shown a reduction of spatial
exclusion as expected for anyons but with a lesser agreement with
the theory. This deviation may arise due to interactions between
co-propagating edges (Ruelle et al., 2023).

Recently, the Andreev correlation between the transmitted
quasiparticle and quasihole at the QPC has been proposed
(Glidic et al., 2023). For example, in the string backscattering
regime, the impinging of quasiparticle of charge q = e/3 at QPC
will create the reflected hole of q = −2e/3. This Andreev-like process
involving both transmitted quasiparticle and quasihole could result
in the double exchange at the QPC and thus reveal the exchange
statistics. In a recent experiment with two-QPC geometry, the
exchange statistics for ] = 1/3 are probed (Hong et al., 2022).
However, a time-domain experiment on anyons where the time
delay between the anyons impinging at the QPC could be varied will
give a better picture of the double-exchange processes (Jonckheere
et al., 2022). Furthermore, a similar experimental setup can be used
for revealing non-topological order states of ] = 5/2 (Lee and Sim,
2022).

Moreover, there is a more involved geometry with a hole in bulk
is the Mach–Zehnder interferometer. In this type of device, the
presence of the metallic contact (drain) in the bulk of the FQH liquid
usually suppresses the Coulomb-dominated physics. Here, the
Aharonov–Bohm physics is independent of the number of
quasiparticles in the bulk, making it an attractive alternative to
the Fabry–Pérot interferometer. However, the larger size of the
interferometer, the equilibration process due to the presence of non-
topological neutral modes, and inferior interior drain contacts make
the interference of the fractional charges less visible. In the recent
experiment, the flux periodicity of ϕs = ϕ0 for both integer and
fractional states is observed. This is also consistent with Kundu et al.
(2022). However, the true significance of the quantum statistics
should be seen from the power law behavior of flux-dependent
tunneling current which has a topological origin. However, this has
not been reported yet.

There are other fractional states with non-Abelian topological
order. For example, ] = 7/2 is expected to have hole-conjugate non-
Abelian topological order of ] = 5/2. Additionally, FQH states ] =
12/5 and 19/8 are predicted to have non-Abelian topological order
and only observed in very high-quality samples (Eisenstein et al.,
2002; Bonderson et al., 2006b; Pan et al., 2008). In higher Landau
levels, the charge density waves in the form of stripe and bubble
phases compete with FQH states. In the GaAs/AlGaAs
heterostructure, the Landau level and the fractional quantum
Hall states are no longer favored (Gervais et al., 2004).
However, in graphene due to the spinor nature of Landau
levels, the formation of the FQH state is more favorable. In the
recent experiment, the even denominator fractional states are
observed (Kim et al., 2019). Still, a detailed study on the
ground state of these states is missing. Moreover, a study of
these states in QPC-confined geometry will be required for
further controlled manipulation of these states.

2.2.3 Designer non-Abelian states: parafermions
The non-Abelian excitation’s topological degeneracy of their

ground state makes them stand out from other conventional abelian
excitations. These degenerate ground states could also be engineered
within conventional systems by fabricating defects with fractional
topological-ordered phases. The non-Abelian defects are zero energy
modes arising from two different gapping processes at the edges. These
defects are called parafermions (Alicea and Fendley, 2016). There are
multiple ways to create parafermions, for example, via the gapping in
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edge states: In quantumHall bilayer, the edge states are gapped by inter-
layer electron tunneling processes (Vaezi and Barkeshli, 2014), and in
abelian fractional quantum Hall states, edges are gapped by coupling
them with the superconducting order parameter (Clarke et al., 2014).
Here, we described the following two approaches:

a. Quantum Hall bilayer

The two layers will have either FQH filling factors with the same
charge polarity (]1 = ]2) or with opposite polarity (]1 = −]2); the two
layers are coupled by tunneling at the edges, while the bulk of the
two layers remains pristine. A trench cut through the two layers will
create a unique system where two types of tunneling processes will
dominate: inter-layer tunneling (top–top layers) and intra-layer
tunneling (between the top and bottom layers). The electronic
tunneling in these processes will create a gap at the boundary of
the trench and thus coherently connect two layers via a tunneling
plane. The endpoints of this plane host a pair of topological defects.
In the Hall bilayer with an opposite filling factor, the inter-layer
tunneling between two counter-propagating edge modes will create
a gap at the boundary of the same side of the trench and thus form
the (vacuum) hole in quantum Hall planes in both layers. In this
construction, for creating the topological defects, two layers needed
to be coupled via a superconductor (Barkeshli, 2016). However, if
two layers have the same polarity of filling factors, then the tunneling
plane forms the cross geometry. The inter-layer tunneling process
leads to the creation of the parafermions with the topological
dimension of

��
m

√
(Barkeshli and Qi, 2014).

The 2DEGs in GaAs/AlGaAs, graphene families, and other
quantum materials with an internal degree of freedom of spins
and layers form the interesting platform quantum Hall bilayer. In
the experiment, the total filling factor of ]T = 1, ]T = 1/2, and ]T = 2/3
are studied in double-quantum-well structures fabricated in the
GaAs/AlGaAs (Lay et al., 1997; Spielman et al., 2000; Shabani et al.,
2013; Mueed et al., 2015; Mueed et al., 2016). ]T = 1 supports the
excitonic condensation with inter-layer phase coherence (Eisenstein,
2014), and ground states of ]T = 1/2 are still under debate (Zhao
et al., 2021). It is expected that in the absence of inter-layer
tunneling, ]T = 1/2 stabilizes to Halperin 331 states via tuning
inter-layer and intra-layer Coulomb interactions (He et al., 1993).

However, when in the presence of inter-layer tunneling, the
ground states can be tuned continuously from Abelian Halperin
331 toMoore–Read Pfaffian, a non-Abelian state (Papić et al., 2009a;
Papić et al., 2009b; Zhu et al., 2016). This phase transition depends
on two parameters: the d, the separation between the two layers, and
lB � ����

h/eB
√

, the magnetic length. In a wider quantum Hall well of
the GaAs/AlGaAs heterostructure, the electron–electron repulsion
between the two layers leads to the split of electron density into sub-
bands. The electrons occupy the lowest bands having symmetric and
antisymmetric wave functions with gap energy ΔSAS, which defines
the measure of inter-layer tunneling. Thus, in a wider quantum-well
structure, d/lB can be continuously tuned and thus their ground state
(Zhu et al., 2016). The experiment on such a sample has shown the
presence of an incompressible state for ] = 1/2. In single-layer
construction, the ] = 1/2 forms the compressible Fermi gas of
composite fermions. The presence of a gap at ] = 1/2 shows its
similarity to ] = 5/2. Nevertheless, this is not an unambiguous
signature of the non-Abelian.

The tunneling parameter could measure the topological order;
g = 3/8(1/4) is the Halperin 331 (Moore Read Pfaffian) state (Radu
et al., 2008; Baer et al., 2014). The tunneling experiment requires a
combination of local and global gates to tune the density of electrons
locally and globally (Figure 7). Most of the experiments are limited
to tunneling in a single-layer system, andmeasured “g” shows a wide
range of values, strongly depending on the device geometry (Fu et al.,
2016). In the recent experiment, inter-layer tunneling is locally
induced via a QPC for the excitonic ]T = 1 quantum Hall bilayer
(Zhang et al., 2020). A similar tunneling experiment is to be reported
for ]T = 1/2 yet.

In a separate experiment, the inter-layer tunneling between two
graphene layers separated byWSe2 has been studied via current–voltage
characteristics (Fu et al., 2016). The enhanced inter-layer coherence and
band alignment of WSe2 with graphene facilitate inter-layer tunneling
(Burg et al., 2018). Such geometrical construction with local QPC could
provide a platform for probing “g.” Another experimental probe for the
non-Abelian MR Pfaffian state could be seen in the quantum Hall drag
conductance measurement where the non-quantized value will be the
starring signature against quantized Hall drag conductance for the
Halperin 331 states (Zhu et al., 2016; Regan et al., 2022). ]T = 2/3 is
more interesting than ]T = 1/2. Here, spin-charge separation leads to
many different non-Abelian phases (Vaezi and Barkeshli, 2014). In this
type of system, the non-Abelian ground states could be distinctly studied
in tunnel-coupled quantum dot geometry via temperature-dependence
tunneling processes (Fiete et al., 2008). The novel non-Abelian phases in
the quantum Hall bilayer make them an attractive playground. With the
advent of sample quality and nanofabrication techniques, it would be
interesting to experimentally realize the topological defects in such a
system.

b. Quantum Hall/superconductor hybrids

The two different gapping mechanisms, namely, the tunneling of
electrons and superconducting proximity-induced pairing of an
electron across counter-propagating edge states are key to the
fabrication of topological defects in quantum Hall/superconducting
hybrids. The physical realization of this hybrid platform can be
implemented by creating a trench in the quantum Hall fluid and
filling the trench with the superconductor (Alicea and Fendley, 2016).

The trench in the quantum Hall fluid will enforce the
propagation of the chiral edge states along the trench, and only
electron tunneling across the trench will be feasible (see Figure 8).
Even for the fractional filling, only electron tunneling across the
trench will be allowed. Furthermore, in the second process, the
pairing of the quasiparticle via copper pair condensate will lead to
the conversion of the quasiparticle to a quasihole via perfect crossed-
Andreev reflections (CARs). In addition, to open the gap, the
condition for the spin symmetry of the edge states must be
broken, and thus a strong spin–orbit interaction is needed. This
may be achieved either by the spin–orbit interaction of the
superconductor or by local ferromagnetic interaction within the
edge states (Clarke et al., 2013). Recently, it has also been
demonstrated that magnetic field bending at the edges of the
superconductor with wedge geometry could lead to the counter
in-plane magnetic field components at the two edges of the trench.
The in-plane magnetic field provides the necessary Zeeman energy
to open the gap in the chiral edge states (Galambos et al., 2022).
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Though for parafermions, one needs to have fractional
excitations. However, even Laughlin filling ] = 1 could set the
platform for p-wave symmetric topological states due to CAR
processes at the edges of the superconductor, a necessary
ingredient for the Majorana modes. In the non-local tunneling
experiment, the negative signature in conductance demonstrates
these superconducting correlations. However, this is not the unique
signature for the formation of MZMs.

The formation of quantumHall states requires a high magnetic field
and usually, the superconductors, for example, molybdenum–rhenium
alloys and niobium nitrate with high upper critical fieldsHC2. This leads
to the formation ofAbrikosov vortices in the superconductor (deGennes,
1999; Tinkham, 2004). The hybridization of these vortices with the sub-
gap Caroli–de Gennes–Matricon states could also mimic the negative
signature in non-local conductance measurement (Caroli et al., 1964),
similar to the one due to the presence of MZMs (Galambos et al., 2022).

Recently, the quantum transport probe in graphene (Lee et al.,
2017; Gül et al., 2022) and InAs (Hatefipour et al., 2022) coupled with a
superconductor showed negative conductance in such a quantumHall/
superconductor hybrid. However, the role of vortices in this quantum
transport could not be negated. This is observed in the suppression of
the CAR signature (lower negative conductance than the theoretically
predicted value). Despite this, the experiment by Gül et al. (2022)
shows the increase in the CAR signature with the decrease in
temperature for fractional excitations. In contrast, for the
quantum Hall CAR signal is largely temperature-independent.
This distinction between the two may arise due to the different
dissipation processes of fractional excitations from that of
electronic excitations (Schiller et al., 2022b). This may indicate
condensation of parafermions in the fractional quantum Hall/
superconductor hybrid system. Nevertheless, probing the non-
Abelian nature of these topological defects requires a different

FIGURE 7
Tunneling process in the quantum Hall bilayer. Inter-layer T12 tunneling induced by the local top and bottom gates. The electronic wave function
extends in the vertical direction tunneling the electrons across the two layers in the vertical direction. The inter-layer tunneling process T11, T22 across the
gates dominates transport within the same layer. The interplay between these two processes is controlled by the inter-layer distance d and magnetic
length lb, leading to the formation of non-Abelian topological defects. Adapted from Barkeshli and Qi (2014), licensed under CC BY 3.0. b. Quantum
Hall/superconductor hybrids

FIGURE 8
Quantum Hall/superconductor hybrid construction for engineering parafermions at the domain defined by trench, superconductor, and fractional
quantum Hall fluid (shown in dark gray) (A). The experimental setup was studied to probe the parafermions (refs Lee et al., 2017; Gül et al., 2022) in non-
local measurement. This measurement scheme suffers from vortex-induced dissipative processes, giving similar negative conductance signatures in
non-local transport measurement (B). See the text for the details. Adapted with permission from Alicea and Fendley (2016).
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approach, for example, finite frequency noise (Smirnov, 2019;
Smirnov, 2022), current correlation (Bignon et al., 2005), and
entropy measurements (Sela et al., 2019).

The experimental realization of the parafermions in the designer
quantum Hall hybrid platform may seem to be challenging. They
will support topological quantum computation. Compared to ] = 5/
2, Moore–Read state, and MZMs, parafermions will provide a much
richer platform for universal quantum computation with careful
engineering.

2.3 3D higher-order topological insulator
systems

2.3.1 Symmetry-protected topological states
In the past decay, the concept of the topological state has been

established and widely extended. To identify such a state, one needs
to define a topological invariant based on the wave function of the
state. For a topological state, its topological invariant is quantized
and remains unchanged upon certain perturbations. Quantum Hall
system and superfluid helium 3 have been recognized as the first
experimental realizations of topological states. In the 2000s, the
discovery of topological insulators deepened the understanding of
the topological phases in condensed matter.

All topological states eventually originate from certain symmetries.
The presence of the symmetries in the system “protects” the corresponding
states from adiabatic changes. For example, the typical Z2 topological
insulators (TIs) are protected by time-reversal symmetry. Up to date, all
the experimentally confirmed TIs are with the inverted band. Importantly,
these band inversions occur at an odd number of momenta. Usually, this
happens at the center of the Brillouin zone, i.e., the Γ point. For example,
the Bi-based binary compounds: Bi2Se3 and Bi2Te3 (Hsieh et al., 2009;
Zhang et al., 2009). However, these TIs usually have a large portion of bulk
carrier contribution, or a Dirac point (DP) buried in the bulk band, and
substitutions or doping with other elements became necessary to suppress
the bulk state. In this regard, ternary compounds Bi2Te2Se (Zhang et al.,
2011) and Bi2−xSbxTe3−ySey (Taskin et al., 2011; Arakane et al., 2012) were
realized with significantly reduced bulk contribution.

a. Topological invariant

Different symmetries give rise to different types of topological
materials. As introduced in the beginning, the topological invariants
are useful indicators for identifying the topology in the materials.
These topological invariants are numbers that do not change under
an adiabatic deformation of the Hamiltonian of the system. For the
topological states concerning the T , P and C symmetries, the
commonly used invariant quantity is the Berry curvature and
related Chern number Q. For example, for a Z-type TI, the Q =
0, ±1,± 2. . ..A typical system is the integer quantum Hall states. The
topological insulator belongs to the Z2 type, which has Q = 0 or 1.

b. Tenfold symmetry classification

A useful tool to identify the TIs is the tenfold symmetry
classification (Ryu et al., 2010). It considers three essential
symmetries: time-reversal symmetry (T ), particle–hole symmetry
(P), and chiral symmetry (C). As we can see in the table, the

Majorana wire and the p-wave superconductor are in class D, the
Chern insulators in class A, and the time-reversal invariant
topological insulators in class AII.

2.3.2 Topological crystalline insulator
Recent progress in theory and experiment shows that it is

possible to go beyond these three symmetries. For instance, if we
consider the spatial/crystalline symmetries, we will be able to define
a new type of topological state, namely, the topological crystalline
insulator (TCI) (Ando and Fu, 2015). The full classification of TCI
has not been attained yet and is an active area of current research. An
example is the class of materials whose topological properties are
protected by mirror symmetry. The mirror symmetry M can be
expressed as a product of spatial inversionP and twofold rotation C2

around the axis perpendicular to the plane of reflection:
M � P C2. The Bloch eigenstates of a system with mirror
symmetry can be divided into two classes with eigenvalues
η = ±i. Each of these states results in a Chern number N±i. Two
topological invariants can be defined: 1) total Chern numberN ≡N+i

+N−i, determining the quantized Hall conductance; 2) mirror Chern
number NM ≡ (N+i − N−i)/2, indicating the presence of a TCI phase.

The first predicated real material of TCI is SnTe (Hsieh et al.,
2012). At room temperature, SnTe has a simple rock salt
structure, and its band gaps are located at four equivalent L
points in the face-centered-cubic (FCC) Brillouin zone. These
gaps are inverted relative to PbTe, while the alloy Pb1−xSnxTe
gradually closes and re-opens the gap as a function of the doping
percentage x Figure 9. The intrinsic distinction between PbTe
and SnTe is that the cation/anion character of the conduction/
valence bands is switched. This corresponds to a sign change in
the mass term in the k · p theory Hamiltonian (Mitchell and
Wallis, 1966). Eventually, SnTe is determined to be topological
(PbTe is not) with microscopic band structures analysis. The
main evidence is that the band gap of the SnTe changes non-
monotonically as a function of the lattice constant: the gap closes
and re-opens, indicating a topological phase transition
(Shchennikov and Ovsyannikov, 2003).

FIGURE 9
Phase transition between SnTe and PbTe. By changing the
compound ratio between the Pb and Sn atoms, the material transit
between a TCI and a non-topological semiconductor is shown.
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More specified classification based on the crystalline point
group symmetry has been proposed (Cornfeld and Chapman,
2019), which can help find and identify the topological
crystalline insulators.

2.3.3 Higher-order topological states
In the previous cases, when the systems are in d-dimension, the

d-1-dimensional boundary can host gapless topological states.
These states belong to the first-order topological states,
according to the classification that is introduced by Schindler
et al. (2018a). If the d-1-dimensional states are generically
gapped, the second-order topological states will emerge as d-2-
dimensional states, e.g., corners for a 2D system or hinge states in a
3D system. This can be achieved by spontaneously breaking certain
symmetries in the system, for example, SnTe with strain (Schindler
et al., 2018a) or in an electric field. These topological materials are
therefore referred to as higher-order topological insulators
(HOTIs). In some sense, the HOTIs can be considered an
extension of the concept of TCI.

The first evidence of HOTIs was observed in bismuth crystals
(Drozdov et al., 2014; Li et al., 2014; Murani et al., 2017; Jäck et al.,
2019) even before the theory was established (Schindler et al., 2018a;
Schindler et al., 2018b). The 1D hinge states were protected locally
by the time-reversal symmetry and globally by the crystalline
structure’s threefold rotation symmetry and inversion symmetry.
A more systematic study on the HOTI is performed (Benalcazar
et al., 2017a; Benalcazar et al., 2017b).

2.3.4 Topological 3D Weyl/Dirac semimetal
Furthermore, since the realization of graphene and its 1D states

along the zigzag edges, identifying bulk-gapless systems with topological
boundary modes has attracted attention. For example, for a Weyl
semimetal in which the time-reversal symmetry or inversion
symmetry is broken, the bulk hosts one or more pairs of gapless
Weyl points. At the momenta away from these points, the system is
generically gapped. Therefore, it is possible to define the topological
invariants at the closed Brillouin zone surfaces. It is shown that the
topological invariants in Weyl semimetals are non-trivial and result in
the topological surface Fermi arcs. The disconnected surface Fermi-arc

contours connect two Weyl points with opposite chirality and then
reconnect through the bulk at the Weyl points (Figure 10).

A Dirac semimetal, in contrast, has both time-reversal and
inversion symmetries. It can be understood as two degenerate
Weyl fermions with opposite chirality. The crystal symmetries
protect the two Weyl cones from hybridizing. Although similar
Fermi arcs were observed in Dirac semimetals (Wang et al., 2013; Xu
et al., 2015; Moll et al., 2016), it was not clear whether they are
topologically protected (Kargarian et al., 2016) because the surface
Fermi arcs can be removed without breaking symmetry or closing an
energy gap. It remained an open question whether there is
topologically protected bulk-boundary correspondence in the 3D
Dirac semimetals.

Recently, a sophisticated study on the bulk-boundary
correspondence using topological quantum chemistry (Elcoro
et al., 2021) clarified this question: the topological Dirac
semimetals exhibit one-dimensional higher-order hinge Fermi
arcs (HOFAs) as a universal and direct consequence of their bulk
3D Dirac points. A spinful quadruple insulator model was
introduced to verify and predict the properties of the HOFA
states (Wieder et al., 2020). The predicted material candidates are
Cd3As2 and PtO2. More recently, this method is proven to be an
efficient way of searching non-trivial materials in a generic base. An
open website has been built by the relevant theory groups, providing
an extremely large database for the topological materials (Mois et al.,
2023).

2.3.5 Experimental observations of higher-order
topological states

In this section, we will focus on the experimental progress of the
higher-order topological states in various systems and the possible
detection of Majorana states in such systems.

Several 3D materials have been identified with their higher-
order topological hinge states. A direct manner to observe the hinge
states is by STM measurement, for example, in bismuth (Drozdov
et al., 2014; Schindler et al., 2018a). Nevertheless, because of the
spin–momentum locking property of the hinge states, the
backscattering processes are forbidden. Therefore, the induced
superconducting states in Josephson-type devices have much
longer coherence lengths, and larger supercurrent densities can
flow in the hinge states. Such particular current density
distribution is illustrated in Figure 11A. Furthermore, the
corresponding field dependence of the critical current is shown
in the following section. The experimental results of Cd3As2 and Bi-
based Josephson junctions are shown in Figures 11B, C.

The presence of the hinge states in Josephson devices results in
higher current density at the edges of the junction. Therefore, the
magnetic field dependence of the critical current changes from a
conventional Fraunhofer pattern to a SQUID-like pattern. Such
critical current oscillation was first observed in bismuth single-crystal
nanowires (Li et al., 2014; Murani et al., 2017) and then recently in
Cd3As2 (Li et al., 2020) and WTe2 (Choi et al., 2020) nanoplates.

2.3.6Higher-order topological states andMajorana
bound states
2.3.6.1 a.c. Josephson effect and fractional Shapiro steps

Originally, the topological insulators were predicted to be the
suitable platform for realizing braiding in combination with an

FIGURE 10
Illustration of the surface Fermi arcs in Weyl semimetal.
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s-wave superconductor using the proximity effect (Fu and Kane,
2008). The Hamiltonian of the proximitized material is similar to the
p-wave superconductor. Because the spin of the charge is locked to
its momentum, backscattering is suppressed in such systems, known
as spin–momentum locking. The topologically protected Andreev
bound states prevent the relaxation of the quasiparticle; therefore,
the corresponding energy spectrum is 4π-periodic instead of 2π, and
the Majorana state is present at the zero energy. Due to the inverse
a.c. Josephson effect, the IV characteristic of the junction becomes
quantized under radio-frequency irradiation. These are the so-called

Shapiro steps. The step height is given by hf/2e, where f is the
frequency of the irradiation signal. When the Majorana zero energy
state is present, the spectrum becomes 4π-periodic, and the step
height is doubled (hf/e), namely, fractional Shapiro steps (San-Jose
et al., 2012; Badiane et al., 2013) (Figure 12). In most 3D systems,
supercurrent is carried by multiple modes on the surface or in the
bulk. Most of these channels have a finite incident angle to the NS
interface, except one mode which is perpendicular to the interface.
This mode hosts the Majorana state and enables a 4π-periodic
supercurrent to flow. Therefore, there are two types of

FIGURE 11
Detecting the hinge states with Josephson devices. (A) Magnetic field dependence of the critical current with different density distributions. (B, C)
SQUID-like oscillations observed in the Cd3As2 nanoplate [adapted with permission from Li et al. (2020). Copyrighted by the American Physical Society.]
and Bi-nanowire [adapted with permission from Li et al. (2014). Copyrighted by the American Physical Society.].

FIGURE 12
Andreev bound state and Majorana bound state in a Josephson device.
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supercurrent that coexist in the junction device—2pi- and 4pi-
periodic states. The first signature of the fractional Shapiro steps
was observed in 2D TI HgTe (Wiedenmann et al., 2016; Bocquillon
et al., 2017), followed by many works in 3D TIs (Le Calvez et al.,
2019; Schüffelgen et al., 2019; de Ronde et al., 2020), including an
emission measurement of a.c. Josephson effect (Deacon et al., 2016)
and 3D Dirac semimetals (Li et al., 2018; Wang et al., 2018).

Particularly, in 3D topological nanowires, the surface states
forming a conducting cylinder in the state are quantized due to
the confinement. The lowest level has a finite gap at the zero energy
because of the Berry phase π. It is necessary to apply a parallel field
that shifts the degenerate states and forms a gapless Dirac state as the
lowest level (Cook and Franz, 2011; Jauregui et al., 2016).

To note that, due to finite quasiparticle relaxation time (Badiane
et al., 2013), joule heating (Le Calvez et al., 2019), and capacitive
coupling to the environment (Houzet et al., 2013), sometimes the higher
level steps become hf/2e, except the lowest n = 1 level. This could
sometimes be confused with a high re-trapping current, which hides the
lowest level of the Shapiro steps. However, most recent research shows
that despite all types of perturbations, similar signatures of the 4π-
periodic supercurrent and the fractional Shapiro steps can also be
observed in trivial Josephson junctions with extremely high
transparency (Dartiailh et al., 2021). Such findings suggest the
importance of cross-checking the results with different measurement
methods for searching Majorana bound states.

2.3.6.2 e–e interaction and Majorana Kramer pairs
The higher-order topological states in the TCI and Dirac

semimetals are time-reversal invariant, which is similar to the 2D
quantum spin Hall states. The formed Majorana states are also
degenerate. This is, however, detrimental for the Majorana braiding
since the two states cancel each other’s phase changes exactly. To lift
this degeneracy, one option is to break the time-reversal symmetry by
applying an external magnetic field or making the material magnetic
(Qi et al., 2010). Another possibility is by taking into account the
electron–electron interaction in Rashba nanowires (Klinovaja and
Loss, 2014; Thakurathi et al., 2018), time-reversal invariant
topological superconductors (Zhang et al., 2013), or higher-order
topological insulators (Hsu et al., 2018), forming Majorana Kramer
pairs (MKPs) or parafermions (PFs). The key point of this approach is
to realize an enhanced cross-Andreev pairing in two nanowires or
hinge states. This enhancement is predicted to be sufficiently large
when a modest e–e interaction is present. The feasibility of using
MKPs or PFs for braiding and computing has been studied (Gao et al.,
2016; Wölms et al., 2016; Schrade and Fu, 2022).

3 Conclusion and outlook

We have introduced several material systems from one-
dimensional to three-dimensional, which can be employed for
exploring Majorana physics. Furthermore, we explained the basic
principles for forming and detecting the non-Abelian states in the
designed hybrid devices based on these materials. Instead of
detecting MZMs directly, it requires sometimes more effort in
understanding the intrinsic topological properties of the material
itself. Nevertheless, these novel systems and states open the door to a
fascinating field in condensed matter and provide rich resources for

finding different approaches to realizing the non-Abelian states.
Similarly, for detecting the non-Abelian states, the experimental
measurement methods have been adapted and developed in various
regimes, including tunneling spectroscopy, Coulomb blockade
spectroscopy, Shapiro steps, and spectroscopy in the RF regime.
Particularly, the interferometer techniques can be applied to the
FQH systems.

As has been already mentioned, trivial states can generate “false-
positive” signals in different ways. For instance, in the case of the
Rashba nanowire hybrid setup, while the topological gap protocol
establishes some guidelines, it is still completely based on linear-
response transport spectroscopy. Particularly, the disorders can play
an unexpectedly important role in suppressing the non-local signals
and potentially make false-positive signals with the combination of
trivial ABS ((Hess et al., 2023a) and the discussions (Hess et al., 2023b;
Sarma and Pan, 2023)). Going beyond conductance spectroscopy
might settle for more stringent conditions that could bypass some of
the issues caused by local defects and the resulting false positives.
Many measurements also invoke the use of Coulomb blockade
spectroscopy (Lai et al., 2021) via adjacent quantum dot that is
coupled as well as using shot noise signatures. These ideas strongly
connect with recent theoretical explorations on the possibility of more
robust theoretical constructs that include entanglement spectra
(Smirnov, 2021a; Smirnov, 2021b; Kejriwal and Muralidharan,
2022) and parity fluctuations (Pöyhönen et al., 2022). Therefore, it
is very important to “cross-check” the same states with different
measurement methods (in different regimes) and compare the output
of the same measurement method in different material systems. We
also believe that in the field, there is a strong drive to enhance the
quality of materials beyond their current state for the next phase.
Simultaneously, both theoretical and experimental aspects need to
evolve in tandem, ultimately working toward achieving the objective
of braiding and demonstrating non-Abelian statistics.

The 2D platform, particularly the 2-DEG systems, boasts a
considerable advantage due to its gate tunability in defining the
device configuration. This advantage not only facilitates the
amalgamation of various measurement techniques into one single
device but also provides better control over the system. Recent
development in such systems (Hell et al., 2017; Pientka et al., 2017)
has demonstrated the possibility of using the 2D systems as the
platform for Majorana physics. Nevertheless, the issues like
disorders and metallization can still persist in these material
platforms, potentially leading to similar challenges that have
hindered the conclusive validation of MBS.
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