
Energy-efficient and
noise-tolerant neuromorphic
computing based on memristors
and domino logic

Hagar Hendy and Cory Merkel*

Brain Lab, Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY,
United States

The growing scale and complexity of artificial intelligence (AI) models has
prompted several new research efforts in the area of neuromorphic
computing. A key aim of neuromorphic computing is to enable advanced AI
algorithms to run on energy-constrained hardware. In this work, we propose a
novel energy-efficient neuromorphic architecture based on memristors and
domino logic. The design uses the delay of memristor RC circuits to represent
synaptic computations and a simple binary neuron activation function.
Synchronization schemes are proposed for communicating information
between neural network layers, and a simple linear power model is developed
to estimate the design’s energy efficiency for a particular network size. Results
indicate that the proposed architecture can achieve 1.26 fJ per classification per
synapse and achieves high accuracy on image classification even in the presence
of large noise.

KEYWORDS

neuromorphic, memristor, neural network, domino logic, artificial intelligence

1 Introduction

During the last decade, significant advancements have been made in the accuracy of neural
network models for many artificial intelligence (AI) tasks such as object classification (Rueckauer
et al., 2017), voice recognition (Dahl et al., 2011), machine translation (Seide et al., 2011), andmore.
Three main factors are responsible for this progress: 1) vast amounts of data that are available to
train large neural network models, 2) continuous growth of processing power (i.e.,better/faster
graphics processing units (GPUs), memory,etc.), and 3) development and innovation in the neural
network architecture and training algorithms. However, these developments have come at the cost
of significant resource requirements (compute resources, energy, etc.) for both training and
inference (Hendy and Merkel, 2022), which has stymied AI solutions on edge devices. Edge
devices likemobile phones, implantablemedical devices, wireless sensors, and others, have stringent
size, weight, and power (SWaP), which calls for new approaches like neuromorphic computing to
implement intelligent processing on these platforms.

Custom neuromorphic hardware platforms are gaining popularity in this area, owing to
their ability to efficiently perform complex tasks that are analogous of the physical processes
underlying biological nervous systems (Douglas et al., 1995). A key feature of these systems is
that they overcome the limitations caused by the von Neumann bottleneck by collocating
computation and memory (Nandakumar et al., 2018). While modern digital
complementary-metal-oxide-semiconductor (CMOS) technology is used to replicate the

OPEN ACCESS

EDITED BY

Ying-Chen Chen,
Northern Arizona University,
United States

REVIEWED BY

Jiyong Woo,
Kyungpook National University, Republic
of Korea
Xumeng Zhang,
Fudan University, China

*CORRESPONDENCE

Cory Merkel,
cemeec@rit.edu

SPECIALTY SECTION

This article was submitted to
Computational Nanotechnology,
a section of the journal
Frontiers in Nanotechnology

RECEIVED 21 December 2022
ACCEPTED 16 February 2023
PUBLISHED 28 February 2023

CITATION

Hendy H and Merkel C (2023), Energy-
efficient and noise-tolerant
neuromorphic computing based on
memristors and domino logic.
Front. Nanotechnol. 5:1128667.
doi: 10.3389/fnano.2023.1128667

COPYRIGHT

© 2023 Hendy and Merkel. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Nanotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 28 February 2023
DOI 10.3389/fnano.2023.1128667

https://www.frontiersin.org/articles/10.3389/fnano.2023.1128667/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1128667/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1128667/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1128667/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2023.1128667&domain=pdf&date_stamp=2023-02-28
mailto:cemeec@rit.edu
mailto:cemeec@rit.edu
https://doi.org/10.3389/fnano.2023.1128667
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2023.1128667

behavior of the neurons, the absence of a device that can efficiently
perform synaptic operations stunted progress for several years.
However, recent advancements in nanoscale materials and
realization of devices such as memristors have opened
possibilities for developing compact memory device arrays that
are potentially transformative for the design of ultra energy-
efficient neuromorphic systems.

Previous work has studied several aspects of memristor-based
neuromorphic systems, including device properties, reliability,
crossbar implementation, on-chip training, quantization, and
much more (Schuman et al., 2017; Sung et al., 2018). One of the
most power-efficient design approaches is combining memristor
synapses with an integrate-and-fire (IF) neuron design. The energy
efficiency of the IF neuron comes from i.) all-or-nothing
representation of information and ii.) little-to-no short-circuit
current between the neuron’s input and the synapses driving it
(since they are just driving the membrane capacitor). In this work,
we explore a similar idea applied to networks of binary neurons
inspired by domino logic. Domino logic, a type of dynamic logic,
separates a circuit into pre-charge and evaluation phases to avoid
short circuit current and reduce power consumption. Here, we
propose a domino logic style neuron that uses memristor-based
RC delays for evaluation and offers good power efficiency. The
specific novel contributions of our work are:

• Design of a memristor-based domino logic circuit that
encodes information using delay

• Combination of multiple domino logic circuits with an arbiter
to create binary neurons

• Integration of dynamic pipelining techniques with domino
logic-based binary neurons

• Analysis and comparison of the proposed design for a
handwritten digit classification task

The rest of this paper is organized as follows: Section 2 provides
background and related work on memristor-based neuromorphic
computing, as well as quantized neural networks, including neural
networks with binary neurons. Section 3 details the design approach
employed in this work, from basic building blocks to multilayer
neural network synchronization strategy. In Section 4, we outline the
strategy used for analyzing the effects of metastability and noise,
particularly in the arbiter circuits, on the network-level
performance. Section 5 provides results and comparisons of our
design for handwritten digit classification. Finally Section 6
concludes this work.

2 Background and related work

2.1 Memristor-based neuromorphic
computing

Memristor is an umbrella term for describing a broad class of
memory technologies that follow a state-dependent Ohm’s law
(Chua, 2014). Physical realization of memristors comes in several
forms, including resistive random access memory (ReRAM), spin
transfer torque RAM, phase change memory, ferroelectric RAM,

and others (Chen, 2016). In essence, these devices store a non-
volatile conductance (or resistance), which can be modified by
providing a large write voltage and can be read using a smaller
read voltage. The conductance is bounded between 2 extreme values,
Gmin and Gmax. Memristors are particularly attractive for
neuromorphic computing because they exhibit behavioral
similarity to biological synapses, combining storage, adaptation,
and physical connectivity in one device. Moreover, combining
multiple memristors into high-density crossbars enables the
efficient computation of vector-matrix multiplication (VMM),
where the (voltage) input vector to the crossbar columns are
multiplied by the matrix of memristor conductances to produce
the (current) output vector.

Huge numbers of VMM operations are performed in neural
networks during training and inference. When implementing neural
network weights as memristor conductances in hardware, there will
be no need for sparse design off chip weight storage and data
movement as in most of digital based designs (Jouppi et al.,
2017; Davies et al., 2018). This yields high energy efficiency,
which is an important factor for AI on edge devices (Lee and
Wong, 2016). Computation on information based VMM can be
represented by currents, voltages (voltage mode), or a combination
of the two, each approach has its own set of strengths and
weaknesses (Merkel and Kudithipudi, 2017). Voltage-mode based
VMM circuits, are the most common approach, in which the inputs
are represented as voltages, and the outputs are represented as
currents. The current-mode VMM (Merkel, 2019) has some
advantages such as low supply voltage, current-mode design
techniques, etc., but current distribution can be challenging
(Marinella et al., 2018; Sinangil et al., 2020). Charge-based VMM
is another approach aiming to perform dot product operation, using
voltage inputs and to charge binary-weighted capacitors and
performing summations through charge redistribution among
capacitors via switched capacitor circuit principles (Lee and
Wong, 2016). The main advantage of this approach that there is
no static power in the circuit and there is no limitation in technology
node down scaling. However, multiple clock cycles are needed to
perform the multiplication operation. Time-based VMM approach
is another way to implement addition in the analog domain by using
a chain of buffers. The delay of each buffer in each stage can be
modified according to the weight input summation for each stage
(Everson et al., 2018). In time-domain computing, the values are
encoded as discrete arrival times of signal edges (Freye et al., 2022).
Another implementation of time-based VMM is discussed in
(Bavandpour et al., 2019; Sahay et al., 2020), in which
memristor-dependent currents are summed and integrated on a
capacitor and then the charge is converted back to the time-domain
representation.

2.2 Quantized neural networks

Quantization methods for deep learning are becoming
popular for accelerating training, reducing model size, and
mapping neural networks to specialized hardware. The
simplest quantization methods use rounding to reduce
activation and weight precision after training. This usually

Frontiers in Nanotechnology frontiersin.org02

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

results in large drops in accuracy between the full-precision and
quantized models. Other methods quantize weights, activations,
and sometimes gradients during training, resulting in better
performance (Hubara et al., 2017). In this work, we only
quantize weights and activations. The core idea is to use
quantized values during forward propagation and full-
precision gradient estimates during backward propagation. For
activations, we use a simple threshold model on the forward pass:

x � 1
2
sign s() + 1

2
(1)

where sign (·) is 1 if the argument is non-negative and −1 otherwise.
Since the sign has a gradient that is zero everywhere it will stall the
backpropagation algorithm and nothing will be learned. To fix this,
we approximate the gradient as

zx

zs
≈

1
1 + exp −ks() 1 − 1

1 + exp −ks()(), (2)

where k was empirically chosen as 2. In other words, on the
backward pass, the gradient is calculated as if the activation had
been a logistic sigmoid function. Of course, we note that the
threshold activation function is indeed a logistic sigmoid with a k
value of +∞.

For weights, we use the following quantization technique:

wq � 2 ×
round 2Q − 1() clip w,−1,1()+1

2()
2Q − 1

− 1 (3)

where Q is the desired number of bits for the weight, round (·)
rounds to the nearest integer and clip (w, a, b) = max (a, min (b, w)),
where a ≤ b. For backpropagation, we estimate the gradient as zJ/zw
≈ zJ/zwq

3 Design approach

3.1 Overview

The core of the design uses domino logic style neuron based on
memristor RC delays. In essence, memristors are used as a

configurable RC delay. The delay of the memristor RC circuit
represents synaptic weight computations and a simple binary
neuron activation function represented by an inverter, as shown
in Figure 1A. The operation of the synaptic weight matrix is divided
into two phases: pre-charge and evaluation. When the clock signal ϕ
is low, the dynamic node vd (input to the inverter) is pre-charged to
Vdd through a PMOS transistor. When the clock is high, evaluation
starts and the dynamic node discharges at a rate depending on the
pull-down network (RC time constant). Once the node reaches the
threshold value of the inverter, the neuron’s output will go high.
During the evaluation phase, the voltage on the dynamic node of
neuron i in layer l evolves as

vldi t() � Vdd × exp −∫ t

0

Gl
i ξ()
Cd

dξ() (4)

whereGl
i is the equivalent pull down conductance. Amemristor only

contributes to the pull-down conductance when its selector
transistor is on. Assuming that memristor conductance values are
constant during the evaluation phase and input voltages are binary
values, i.e., vl−1xj ∈ 0, Vdd{ }, then Gl

i is a piecewise constant function
written as:

Gl
i t() � 1

Vdd
∑Nl−1

j�1
vl−1xj t()Gl

ij (5)

where Nl−1 is the number of neurons in the previous layer, plus 1 to
account for the bias input.

We use a simple parasitic model for the capacitance in (Eq. 4),
where each 1T1R synapse contributes one unit of capacitance C to
the dynamic node from the NMOS drain. Assuming the PMOS
transistor has minimal sizing, and the inverter has 2:1 PMOS:NMOS
sizes ration, the total capacitance is estimated as

Cd � 4 +Nl−1()C � 4 +Nl−1()Amin
koxϵ0
tox

, (6)

where Amin is the minimum transistor area, kox is the relative
permittivity of SiO2, ϵ0 is the permittivity of free space, and tox is
the transistor gate oxide thickness. Bounds on the time that it takes
to discharge the dynamic node to the inverter threshold will be

FIGURE 1
(A) Domino logic-style neuron circuit schematic. (B) Two domino circuits (ex and in) enable both positive and negative weights. (C) Information is
encoded as the time difference between the excitatory and inhibitory rising edges.

Frontiers in Nanotechnology frontiersin.org03

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

important to set an appropriate clock frequency. From (Eqs. 4–6),
the minimum discharge time will be

tlmin � −ln θ

Vdd
() 4 +Nl−1()C

Nl−1Gmin
� β

Nl−1Gmin
(7)

where θ is the threhold voltage of the inverter.
Notice that this expression is approximately independent ofNl−1

as Nl−1 becomes large, meaning that these neurons are self-
normalizing. That is, the maximum excitability of a neuron from
the activity of one-presynptic neuron is constant regardless of fan-
in. In contrast to the minimum discharge time, the maximum time
will be infinite if we ignore leakage through selector transistors.
However, we need to ensure that the dynamic node does not take
longer to discharge than the evaluation period. Otherwise, there will
be information lost. Therefore, we set a bound on the bias, which
corresponds to a 1T1R cell that has a constant gate voltage of Vdd:

Gl
i0 ≥

β

T/2, (8)

where T is the clock period. This ensures that tlmax � T/2.
Figure 2 shows how the leakage current could affect the neuron

behavior with increasing numbers of synapses. Here, we assume all
of the synapse transistors are off, and each of the conductances is set
to the maximum value, which will maximize the leakage current.
The plot shows the final voltage on the dynamic node during a 50 ns
evaluation period. As the number of synaptic input increases, both
the capacitance on the dynamic node and the total leakage current
increase. This has the effect of maintaining a relatively large voltage
on the dynamic node, even with a large synaptic fan-in. In fact, as the
number of synapses becomes large, the increased capacitance
dominates, causing the effect of leakage to decrease. In all cases
tested, the leakage current was not enough to discharge the dynamic
node to the inverter’s threshold.

To represent positive and negative weights, two of domino logic
style neurons are used, inhibitory neuron to represent negative
weight components and excitatory neuron to represent positive

weight components as shown in Figure 1B. The time difference
between nodes (inhibitory and excitatory) to reach the threshold of
the inverter can be given as:

Δtli � tlexi − tlini � βVdd
1

vl−1x · Gl
exi

− 1

vl−1x · Gl
ini

⎛⎝ ⎞⎠ (9)

This time difference encodes the input to the neuron’s binary
activation function. Figure 1C shows an example where the
excitatory domino circuit discharges faster than the inhibitory,
leading to a positive value of Δt.

In this paper, we are interested in binary neurons, so it will be
sufficient to know if Δtli is negative or positive, which can be
calculated using an arbiter circuit, the details of which are
discussed later. First, though, it is important to point out how
(Eq. 9) corresponds to pre-synaptic neuron outputs, weights, and
the post-synaptic neuron inputs. The neuron input is Δtli, and we
define the unitless version of it as sli � Δtli/(T/2) ∈ [−1, 1]. The
vector of pre-synaptic neuron outputs are vl−1x , and the unitless
version is xl−1 � vl−1x /Vdd ∈ [0, 1]. Finally, the weights are related to
the conductances Gl

exi
and Gl

ini
. There are infinite ways to map a

weightwl
ij to two conductances G

l
exij

and Gl
inij

. In this work, we use a
power optimized scheme, where minimum conductance values are
used for the excitatory component and inhibitory component when
the weights are negative and positive, respectively. Then, a linear
function maps the opposite component:

Gl
exij

� Gmin + Gmax − Gmin()max 0, wl
ij() (10)

Gl
inij

� Gmin − Gmax − Gmin()min 0, wl
ij() (11)

Now, (Eq. 9) can be rewritten completely in terms of unitless
values as:

sli � β′ 1
xl−1 · wl

exi

− 1
xl−1 · wl

ini

() (12)

where wl
exi

� Gl
exi
/Gmax and wl

ini
� Gl

ini
/Gmax, and β′ = 2β/(TGmax).

Contrast this with the usual dot product input of a neural network:

FIGURE 2
Effect of leakage current on the dynamic node versus the number of synaptic inputs.

Frontiers in Nanotechnology frontiersin.org04

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

sli � xl−1 · wl
i (13)

In other words, the neuron input of our design has a non-linear
relationship with pre-synaptic neuron outputs and the weights,
whereas typical formulations of neural networks have a linear
relationship. This non-linearity stems from the natural non-
linearity of RC circuits, and to remove it would require an
additional evaluation phase, such as the method proposed in
Bavandpour et al. (2019). Instead, we opt to keep the hardware
as simple as possible and we note that the non-linearity could be
accounted for in two ways. On one hand, the behavior of (Eq. 12)
could be modeled directly in Tensorflow. While this would be the
simplest solution, we have found that this leads to several simulation
challenges. For example, it is easy for (Eq. 12) to have undefined
values when inputs or weights become small. In addition, we
observed unstable learning and, in some cases, inability to
converge when working directly with (Eq. 12).

Interestingly, though, because our neurons are binary, only the
sign of sli is important, and we can use (Eq. 13) for training. Figure 3
compares the values in (Eq. 9), (Eq. 12), and (Eq. 13). Here, we
performed 1000 Monte Carlo simulations with uniformly-
distributed weights between −1 and 1, and Bernoulli-distributed
inputs with probability value 0.5. From the plot, one can observe that
the normal dot product operation in (Eq. 13), which we refer to as
“software” maps non-linearly to the excitatory-inhibitory time
difference as well as the normalized version of the time
difference, referred to as “hardware”. The ranges of the hardware
values are inversely proportional to the ranges of the software values,
which is expected due to the inverse relationships in (Eq. 9) and (Eq.
12). Critically, all of the datapoints are in the lower-left and upper-
right quadrants, meaning that the sign of the software and hardware
data are always the same. In other words, the non-linear behavior of
the neuron’s input will not affect its output. The next section

discusses how this sign is captured using an arbiter to yield a
binary activation function.

3.2 Arbiter design and placement

We explored two possible designs for implementing the arbiter-
based activation function that converts the time difference between
the excitatory and inhibitory domino circuits into a binary value:

vlxi �
0, Δtli ≤ 0
Vdd, Δtli > 0

{ (14)

Initially, we designed the arbiter as shown in Figure 4A. Here, NOR
gates are used to disable the inhibitory (excitatory) circuit from
discharging once the excitatory (inhibitory) circuit crosses the
inverter threshold. An advantage of this approach is that only
one of the domino circuits will fully discharge. For example, if
the excitatory domino circuit discharges more quickly, it will cause
the inhibitory circuit to go back into the pre-charge phase before it
reaches the inverter threshold. This will reduce dynamic power
consumed during the pre-charge phase. However, we observed that
this approach has poor stability (seen in the waveform in Figure 4A
especially for small Δt, and often led to oscillations as well as
incorrect outputs.

The second design is shown in Figure 4B, which uses cross-
coupled NAND gates and includes a metastability filter to ensure the
output doesn’t remain long in an invalid logic state and
consequently, it is possible for that design to have that behaviour
and enter metastability. In addition, NOR gate two large PMOS
transistors in series, which means more capacitance and more delay
compared to the NAND gate. The main advantage of this design is
that the memristor domino circuits are not included in the feedback

FIGURE 3
Time difference between excitatory and inhibitory domino circuits (Eq. 9) and unitless neuron input (Eq. 12) vs. a normal dot product input (Eq. 13).

Frontiers in Nanotechnology frontiersin.org05

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

path, so the circuit’s stability is not dependent on the memristor
states. This is the design that we used for the rest of this paper.

3.3 Synchronization strategy

In order to implement large multi-layer neural networks
information from one layer needs to be transferred to the next
layer. Synchronizing the transfer of information between layers is
critical, and here we explore three techniques with various tradeoffs.
In this section, we use the XOR problem as a case study, where our

multi-layer perceptron (MLP) neural network consists of 2 inputs,
2 hidden neurons, and 1 output. The output should be ‘0’ when both
inputs are the same and ‘1’ when the inputs are different.

3.3.1 Method 1: Multiple clocks with different duty
cycles

The simplest synchronization strategy employs one clock
per layer as shown in Figure 5. Notice that the neuron and
synapse designs discussed earlier are easily integrated into a
crossbar-like circuit for efficient implementation. Here, three
clocks are used, corresponding to the input (Clk), hidden layer

FIGURE 4
(A) Domino logic style neuron with NOR gate as an arbiter, showing oscillatory behavior at the output node due to unstable feedback. (B)
Simplification of domino logic style neuron with NAND gate-based arbiter, which eliminates oscillatory behavior.

FIGURE 5
The MLP schematic and simulation for the XOR problem using multiple overlapping clocks with different duty cycles.

Frontiers in Nanotechnology frontiersin.org06

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

(Clk-1), and output layer (Clk-2). The inputs are Vxex1-1
and Vxex2-1 and the final output is output. For a given
input, first all clocks are ‘0’ to pre-charge all domino circuits.
Then, Clk becomes ‘1’ for input evaluation, enabling the input
to be forwarded to the hidden layer. Then, the clocks of each
layer transition to ‘1’ one-at-a-time and remain at ‘1’ until all
layers have been evaluated. This technique has no sequencing
overhead. However, the disadvantage of this technique is that
each layer has to wait for all of the previous layers to finish
before it performs any evaluation. Generally, the cycle time is
the sum of logic delay and sequencing over head. The logic delay
depends on the discharging rate of the pull down network which
mainly depends on the memristor state during the evaluation
phase.

3.3.2 Method 2: Flip-flop pipelining
The throughput of the design can be improved using

conventional pipelining with flip-flips, shown in Figure 6. Here,
a single clock Clk controls D flip-flops between layers, which hold
evaluation results from the previous layer until the subsequent
layer completes its evaluation. This is the classical clocking strategy

and has been widely used due to its robustness. In this method, the
entire network can be pipelined across layers and each neuron can
perform evaluations on every clock cycle. The disadvantage of this
approach is the sequencing overhead (time and area) of the
flip-flop.

3.3.3 Method 3: Dynamic pipelining
If clocks are overlapped, flip-flops could be eliminated and this is

the third approach that is called the skew tolerant domino (Harris
and Horowitz, 1997), shown in Figure 7. The idea is that the
overlapping clocks ensure that the evaluation of a neuron in the
subsequent layer has enough time to evaluate before the previous
layer neurons starts their pre-charging phase. Here, three
overlapped clocks, Clk-0, Clk-1, and Clk-2 are used for the
input, hidden, and output layers, repsectively. These clocks can be
generate using simple delay circuits based on, e.g. inverter chains.
When the previous layer neurons starts their pre-charging phase, the
dynamic gates will pre-charged to Vdd and therefore the static gates
will be discharged to ground. This means that the input to the
subsequent layer falls low, seemingly violating the monotonicity
rule. The monotonicity rule states that inputs to dynamic gates must

FIGURE 6
The MLP schematic and simulation for the XOR problem using multiple overlapping clocks with conventional pipelining based on D flip-flops.

FIGURE 7
The MLP schematic and simulation for the XOR problem using skew-tolerant dynamic pipelining.

Frontiers in Nanotechnology frontiersin.org07

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

make only low to high transitions while the gates are in the
evaluation phase. However, the domino logic in the subsequent
layer will remain at whatever value it evaluated based on the results
of the first layer when its inputs fall low because both the pull-down
transistors and the pre-charge transistor will be off (Harris and
Horowitz, 1997). Therefore, the neurons will keep their value even
when previous layer pre-charges. Hence, there is no need for a latch
or a flip-flop. This method has improved throughput over the
multiple duty cycle method, but does not have the flip-flop area
overhead associated with conventional pipelining. The rest of our
simulations are based on this technique.

4 Noise modeling

A key component of our design is the arbiter-based binary
activation function. Arbiters are essential parts of many digital
and mixed-signal designs such as memories and
microprocessors (Kim and Dutton, 1990). However, these
circuits could cause system failure due to metastability issues.
In the proposed circuit, there will be stochastic behaviour of the
neuron’s output for small differences in arrival times of the edge
of the excitatory and inhibitory signals at the arbiter’s inputs. In
particular, when the value of Δt is close to the arbiter’s aperture
time (measured to be approximately 2 ps), it may enter a
metastable state. Combined with noise, the metastable state
will stochastically resolve to either ‘0’ or ‘1.’ Figure 8A shows the
distribution of Δt for hidden layer neurons in an MLP network
that we trained to classify handwritten digits from the MNIST
dataset. The hidden is relatively small, with only 100 neurons, so
the network does not give good accuracy. However, the point
here is to show the distribution, which is approximately normal.
This is expected, since trained neural networks will tend to have
normally-distributed weights, so the dot product of pre-
synaptic neuron outputs with post-synaptic neuron weight
vectors will also be normally distributed. In this case, the
mean is around 100 ps, but for other datasets and network

sizes, the mean may be centered closer to 0 or at a negative value.
In fact, as the size of the layer increases, it is expected that the
mean will be closer to 0. This means, that arbiter inputs may
often be within the aperture window, potentially leading to
stochastic behavior. Figure 8B shows a Monte Carlo simulation
of the arbiter output for a small Δt in the presence of noise.
Here, the Δt is positive, and should result in an output of ‘1’ but
in many samples, the arbiter output is ‘0’. Figure 9 shows a box
plot of the mismatched neuron outputs between an ideal
software simulation, where noise is not considered, and a
hardware simulation with different levels of noise for the
MNIST dataset. In this case, to keep the simulation tractable,
the network only has 10 hidden neurons, and already there are
some mismatched neuron outputs.

FIGURE 8
(A) Distribution of Δt across 100 hidden neurons for 60,000 handwritten digit inputs. (B) Arbiter output for small Δt value in the presence of noise.

FIGURE 9
The mismatched bits with different levels of noise.

Frontiers in Nanotechnology frontiersin.org08

Hendy and Merkel 10.3389/fnano.2023.1128667

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

To capture this behavior, we developed a simple stochastic
model of the arbiter by simulating its behavior with different
levels of transient noise (low, moderate, and high). The inputs to
the arbiter are the time difference Δt between the excitatory and
inhibitory signals. These two signals are swept from −10 ps to 10 ps.
The simulations were performed 100 times for each run, and the
neuron’s output probability was calculated after. The results are
shown in Figure 10A. The data are fit to a sigmoid function:

a

1 + exp −bx() (15)

where a and b are the fitting parameters for sigmoid function. For
low noise: a = 99.93, b = 7.394. For moderate noise: a = 99.59, b =
2.681. For high noise: a = 98.77, b = 1.119. Note that other sources of
noise such as process variations will also contribute to changes in the
neuron probability for small differences in Δt. For example, consider
Figure 10B, which shows the simulation of the arbiter under
different process CMOS process corners. The overall effect of the
different corners is to modify the slope of the sigmoid curve.
Qualitatively similar behavior also results from variations in
voltage and temperature.

5 Results and analysis

5.1 Simulation approach

Simulation of large neural networks in electronic solvers like
SPICE is prohibitively slow. We use a combination of SPICE
(Synopsys HSPICE) and Tensorflow in order to have fast
simulations while still capturing key hardware behavior. Our
simulation strategy is shown in Figure 11. The key aspects of the
circuit behavior discussed in the previous sections have been
captured using HSPICE simulations with a predictive
technology 130 nm bulk CMOS transistor model (https://ptm.
asu.edu/) and memristor parameters based on the memristor
proposed in (Prezioso et al., 2015), which has ON and OFF
conductance values of Gmin = 5 × 10−7 and Gmax = 5 × 10−5 and
programming voltage magnitudes near 1 V. In this work, only a
subset of the device conductance range is used: Gmin = 1 × 10−6 S
and Gmax = 1 × 10−5 S. Since the device has approximately linear
behavior at low voltages that are below the programming
threshold, we have modeled it as a resistor. Tensorflow is
used to train the neural network to get the weights, which are

FIGURE 10
(A) The probability of a neuron’s output being equal to ‘1’ as a function of input time difference between excitatory and inhibitory domino circuits. (B)
The effect of process variations on the neuron’s output probability for the high noise case.

FIGURE 11
Simulation strategy used in this work, which combines SPICE-level simulation with Tensorflow neural network simulation.

Frontiers in Nanotechnology frontiersin.org09

Hendy and Merkel 10.3389/fnano.2023.1128667

https://ptm.asu.edu/
https://ptm.asu.edu/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

converted into conductances based on the weight mapping in
(Eq. 10) and (Eq. 11). Finally, another Tensorflow model with
identical neural network topology but more accurate hardware
behavior (e.g., stochastic behavior of neurons, conductance-
based weights, etc.) is used to estimate the hardware
performance on the dataset.

5.2 Performance on the MNIST dataset

We tested the proposed design approach for an MLP with
1000 hidden neurons on the MNIST handwritten digit dataset
(http://yann.lecun.com/exdb/mnist/). The results are shown in

Figure 12A. Without considering noise, the software and
hardware simulations produce almost identical results, with
accuracies in the high 90s. These accuracies hold approximately
constant across different levels of weight precision, from 3 to 10 bits.
Note that 1- and 2-bit precision results were much lower and are not
included in the plot. As noise effects are added to the simulation, the
accuracy generally decreases. Low and moderate noise results are
almost identical, while high noise gives a clear drop in accuracy.
However, even with high noise magnitude, the degradation is less
than 2%.We have also explored the effects of conductance variations
on the proposed hardware design. These variations may arise from
imprecise programming or drift of conductance values over time.
Small conductance variations (e.g., 10%) have negligible effects on
the test accuracy while larger variations (20% and more) can start to
have considerable effects. Note that the effects of conductance
variations are more pronounced at higher levels of weight
precisions, which may motivate employing lower-precision
devices or fewer of devices’ conductance levels.

5.3 Power analysis and comparison with
other works

The power consumption of the proposed design was modeled by
assuming that most of the power is consumed when a neuron pre-
charges. The justification for this is that, especially for neurons with
high fan-in the switching capacitance of the neuron’s dynamic node
will be much larger than the capacitance at other nodes in the circuit.
Therefore, the power can be formulated as

P ≈ 3 × 1 + η()∑L
l�2

αClV2
ddf (16)

where η is a fitting parameter that comes from the extra power
associated with the inverter, arbiter, etc., α is the switching activity
factor, L is the number of layers, and Cl is the total switching

FIGURE 12
(A) Test accuracy of the software and proposed hardware implementations of an MLP with 1000 hidden neurons on the MNIST varying levels of
noise. (B) Test accuracy of the hardware under varying levels of conductance variations.

FIGURE 13
Power consumption vs. total number of synapses for the
proposed design.

Frontiers in Nanotechnology frontiersin.org10

Hendy and Merkel 10.3389/fnano.2023.1128667

http://yann.lecun.com/exdb/mnist/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

capacitance of the layer. For the dynamic pipelining synchronization
scheme, α = 1, since each layer will pre-charge every clock cycle. In
addition, the value of Cl is 3C times twice the number of synapses in
a the layer (to account for both excitatory and inhibitory). The factor
of 3 comes from each synapse’s source, drain, and memristor
capacitance. We have empirically found η ≈ 0.19. In Figure 13,
we show the power consumption for 100 randomly-sized 3-layer
networks vs. the number of synapses and neurons in the network.
For each network, both the inputs and weights were generated
randomly. Furthermore, the network used a clock frequency of
10 MHz. From this data, we estimate the energy efficiency of our
design to be approximately 1.26 fJ per classification per synapse. A
comparison with similar works that designed MLPs for MNIST
classification is shown in Table 1. Our work has slightly better
energy efficiency than that reported in Yakopcic et al. (2015) while
giving much better accuracy. 2T2R are needed to represent positive
and negative weights. For our work, the number of transistors per
neuron is 20. For Yakopcic et al. (2015) we estimate the number of
transistors per neuron to be 4, and the number of transistors per
neuron in (Jiang et al., 2018) is 30 (15 for excitatory and 15 for
inhibitory).

6 Conclusion and future work

This paper presented a novel architecture for memristor-based
neuromorphic computing using domino logic. The key behavioral
elements of the hardware, including noise-induced stochasticity,
were captured in behavioral simulations using Tensorflow, and the
design was analyzed on an MNIST classification task. Results
indicate that the proposed design has slightly better energy
efficiency (1.26 fJ/synapse) than competing approaches while
providing much higher accuracy (97%). Possible avenues for
future work include design of on-chip training circuitry and
further energy reduction using additional low-power design
techniques.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

HH helped design all circuits, carried out all simulations,
analyzed the data, and wrote the manuscript. CM conceived the
domino logic design idea, helped design all circuits, wrote the
manuscript, and supervised the study.

Funding

Funding for this work was provided by the Rochester Institute of
Technology Computer Engineering Department.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bavandpour, M., Sahay, S., Mahmoodi, M. R., and Strukov, D. (2019). Efficient
mixed-signal neurocomputing via successive integration and rescaling. IEEE
Trans. Very Large Scale Integration Syst. 28, 823–827. doi:10.1109/tvlsi.2019.
2946516

Chen, A. (2016). A review of emerging non-volatile memory (nvm) technologies and
applications. Solid-State Electron. 125, 25–38. doi:10.1016/j.sse.2016.07.006

Chua, L. (2014). If it’s pinched it’sa memristor. Semicond. Sci. Technol. 29, 104001.
doi:10.1088/0268-1242/29/10/104001

Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2011). Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. IEEE Trans. audio,
speech, Lang. Process. 20, 30–42. doi:10.1109/tasl.2011.2134090

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. Ieee Micro 38,
82–99. doi:10.1109/mm.2018.112130359

Douglas, R., Mahowald, M., andMead, C. (1995). Neuromorphic analogue vlsi. Annu.
Rev. Neurosci. 18, 255–281. doi:10.1146/annurev.ne.18.030195.001351

TABLE 1 Comparison of memristor-based neuromorphic designs on MNIST classification.

References Tech.
Node

Accuracy
(%)

Power
(mW)

Latency
(ns)

Energy/%
accuracy

Energy/
Synapse (fJ)

Transistors/
Synapse

Transistors/
Neuron

Jiang et al. (2018) 130 nm 86 53 80 4.93 × 10−11 J/% 77.0 2T2R 30

Yakopcic et al.
(2015)

45 nm 92 1.79 40 7.78 × 10−13 J/% 1.30 2T2R 4

This work 130 nm 97 10 100 1.03 × 10−11 J/% 1.26 2T2R 20

Frontiers in Nanotechnology frontiersin.org11

Hendy and Merkel 10.3389/fnano.2023.1128667

https://doi.org/10.1109/tvlsi.2019.2946516
https://doi.org/10.1109/tvlsi.2019.2946516
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1088/0268-1242/29/10/104001
https://doi.org/10.1109/tasl.2011.2134090
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1146/annurev.ne.18.030195.001351
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

Everson, L. R., Liu, M., Pande, N., and Kim, C. H. (2018). “A 104.8 tops/w one-shot
time-based neuromorphic chip employing dynamic threshold error correction in
65nm,” in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (Tainan,
Taiwan: IEEE), 273–276. doi:10.1109/ASSCC.2018.8579302

Freye, F., Lou, J., Bengel, C., Menzel, S., Wiefels, S., and Gemmeke, T. (2022).
Memristive devices for time domain compute-in-memory. IEEE J. Explor. Solid-State
Comput. Devices Circuits 8, 119–127. doi:10.1109/jxcdc.2022.3217098

Harris, D., and Horowitz, M. A. (1997). Skew-tolerant domino circuits. IEEE J. Solid-
State Circuits 32, 1702–1711. doi:10.1109/4.641690

Hendy, H., and Merkel, C. (2022). Review of spike-based neuromorphic computing
for brain-inspired vision: Biology, algorithms, and hardware. J. Electron. Imaging 31,
010901. doi:10.1117/1.jei.31.1.010901

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).
Quantized neural networks: Training neural networks with low precision weights
and activations. J. Mach. Learn. Res. 18, 6869–6898.

Jiang, H., Yamada, K., Ren, Z., Kwok, T., Luo, F., Yang, Q., et al. (2018). “Pulse-width
modulation based dot-product engine for neuromorphic computing system using
memristor crossbar array,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS) (Florence, Italy: IEEE), 1–4. doi:10.1109/ISCAS.2018.8351276

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017).
“In-datacenter performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture (Toronto, ON, Canada:
IEEE), 1–12. doi:10.1145/3079856.3080246

Kim, L.-S., and Dutton, R. W. (1990). Metastability of cmos latch/flip-flop. IEEE
J. solid-state circuits 25, 942–951. doi:10.1109/4.58286

Lee, E. H., andWong, S. S. (2016). Analysis and design of a passive switched-capacitor
matrix multiplier for approximate computing. IEEE J. Solid-State Circuits 52, 261–271.
doi:10.1109/jssc.2016.2599536

Marinella, M. J., Agarwal, S., Hsia, A., Richter, I., Jacobs-Gedrim, R., Niroula, J., et al.
(2018). Multiscale co-design analysis of energy, latency, area, and accuracy of a reram
analog neural training accelerator. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, 86–101.
doi:10.1109/jetcas.2018.2796379

Merkel, C. (2019). “Current-mode memristor crossbars for neuromorphic
computing,” in Proceedings of the 7th Annual Neuro-inspired Computational
Elements Workshop, 1–6. doi:10.1145/3320288.3320298

Merkel, C., and Kudithipudi, D. (2017). “Neuromemristive systems: A circuit design
perspective,” in Advances in neuromorphic hardware exploiting emerging nanoscale
devices. Cognitive systems monographs. Editor M. Suri (New Delhi: Springer), Vol. 31,
45–64. doi:10.1007/978-81-322-3703-7_3

Nandakumar, S., Kulkarni, S. R., Babu, A. V., and Rajendran, B. (2018). Building
brain-inspired computing systems: Examining the role of nanoscale devices. IEEE
Nanotechnol. Mag. 12, 19–35. doi:10.1109/mnano.2018.2845078

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K. K., and
Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network
based on metal-oxide memristors. Nature 521, 61–64. doi:10.1038/nature14441

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017).
Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 11, 682. doi:10.3389/fnins.
2017.00682

Sahay, S., Bavandpour, M., Mahmoodi, M. R., and Strukov, D. (2020). Energy-
efficient moderate precision time-domain mixed-signal vector-by-matrix multiplier
exploiting 1t-1r arrays. IEEE J. Explor. Solid-State Comput. Devices Circuits 6, 18–26.
doi:10.1109/jxcdc.2020.2981048

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S.,
et al. (2017). A survey of neuromorphic computing and neural networks in hardware.
arXiv preprint arXiv:1705.06963.

Seide, F., Li, G., and Yu, D. (2011). “Conversational speech transcription using
context-dependent deep neural networks,” in Twelfth annual conference of the
international speech communication association. doi:10.5555/3042573.3042574

Sinangil, M. E., Erbagci, B., Naous, R., Akarvardar, K., Sun, D., Khwa, W.-S., et al.
(2020). A 7-nm compute-in-memory sram macro supporting multi-bit input, weight
and output and achieving 351 tops/w and 372.4 gops. IEEE J. Solid-State Circuits 56,
188–198. doi:10.1109/jssc.2020.3031290

Sung, C., Hwang, H., and Yoo, I. K. (2018). Perspective: A review on memristive
hardware for neuromorphic computation. J. Appl. Phys. 124, 151903. doi:10.1063/1.
5037835

Yakopcic, C., Hasan, R., and Taha, T. M. (2015). “Memristor based neuromorphic
circuit for ex-situ training of multi-layer neural network algorithms,” in
2015 International Joint Conference on Neural Networks (IJCNN) (Killarney,
Ireland: IEEE), 1–7. doi:10.1109/IJCNN.2015.7280813

Frontiers in Nanotechnology frontiersin.org12

Hendy and Merkel 10.3389/fnano.2023.1128667

https://doi.org/10.1109/ASSCC.2018.8579302
https://doi.org/10.1109/jxcdc.2022.3217098
https://doi.org/10.1109/4.641690
https://doi.org/10.1117/1.jei.31.1.010901
https://doi.org/10.1109/ISCAS.2018.8351276
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/4.58286
https://doi.org/10.1109/jssc.2016.2599536
https://doi.org/10.1109/jetcas.2018.2796379
https://doi.org/10.1145/3320288.3320298
https://doi.org/10.1007/978-81-322-3703-7_3
https://doi.org/10.1109/mnano.2018.2845078
https://doi.org/10.1038/nature14441
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/jxcdc.2020.2981048
https://doi.org/10.5555/3042573.3042574
https://doi.org/10.1109/jssc.2020.3031290
https://doi.org/10.1063/1.5037835
https://doi.org/10.1063/1.5037835
https://doi.org/10.1109/IJCNN.2015.7280813
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1128667

	Energy-efficient and noise-tolerant neuromorphic computing based on memristors and domino logic
	1 Introduction
	2 Background and related work
	2.1 Memristor-based neuromorphic computing
	2.2 Quantized neural networks

	3 Design approach
	3.1 Overview
	3.2 Arbiter design and placement
	3.3 Synchronization strategy
	3.3.1 Method 1: Multiple clocks with different duty cycles
	3.3.2 Method 2: Flip-flop pipelining
	3.3.3 Method 3: Dynamic pipelining

	4 Noise modeling
	5 Results and analysis
	5.1 Simulation approach
	5.2 Performance on the MNIST dataset
	5.3 Power analysis and comparison with other works

	6 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

