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Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived
from tropoelastin. These biomolecules can be soluble below critical temperatures, forming
aggregates at higher temperatures, which makes them an interesting source for the design
of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous
expression in several organisms such as bacteria, fungi, and plants. Thanks to the many
advantages of ELPs, they have been used in the biomedical field to develop nanoparticles,
nanofibers, and nanocomposites. These nanostructures can be used in multiple
applications such as drug delivery systems, treatments of type 2 diabetes,
cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to
shed some light on the main advances in elastin-like-based nanomaterials, their possible
expression forms, and importance to the medical field.
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INTRODUCTION

Nanotechnology is promising because it allows new applications to be used in a wide range of fields,
especially medical ones. To develop new bionanotechnologies, several natural-based components,
such as silk (Chouhan and Mandal, 2020), chitosan (Qi et al., 2004), elastin-like polypeptides (ELPs)
(Rodríguez-Cabello et al., 2016), and others (Ding et al., 2014) have been studied to design
nanomaterials. Elastin-like polypeptides (ELPs), for instance, are biosynthetic structures based
on natural elastin, which occurs naturally in mammals.

ELPs present elastomeric characteristics acquired from the monomeric precursor tropoelastin,
formed from its alignment, and monomer binding (Kaur and Reinhardt, 2015; Coenen et al., 2018;
Varanko et al., 2020). The most frequently used ELPs consist of n tandem repeats of the VPGXG
pentapeptide, where X is a residue which can be any amino acid except for proline (Kim and Chaikof,
2010). The presence of a proline amino acid residue in the X position causes transition temperature
(Tt) loss due to its rigid conformational characteristic (Urry, 1992; Trabbic-Carlson et al., 2004;
Quintanilla-Sierra et al., 2019). ELPs exhibit a reversible phase-transitional behavior at a certain
temperature threshold, referred to as the transition temperature. In aqueous solution and below the
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Tt, ELPs are highly soluble, but they undergo phase-separate
aggregation into coacervates that may coalesce into supra-
hierarchical structures at temperatures above Tt, which is
mostly 37°C (Chow et al., 2008; Floss et al., 2010; Saxena and
Nanjan, 2015; Fletcher et al., 2019; Quintanilla-Sierra et al., 2019).
The insoluble phase occurs because ELP bonds are disrupted by
water molecules (Urry, 1992). Besides being affected by polymer
concentration and molecular weight, pH and ionic strength, Tt is
also dependent on the guest residue composition (Urry et al.,
1991; Meyer and Chilkoti, 2004; Li et al., 2014; Zhao et al., 2016).
Of remarkable interest, the fusion of peptides or small molecules
to ELPs was not seen to significantly compromise thermally
responsive behavior (Trabbic-Carlson et al., 2004; Christensen
et al., 2013; da Costa et al., 2015a; da Costa et al., 2018; da Costa
et al., 2021). In addition, ELPs have been demonstrated to be
biodegradable, biocompatible, and non-cytotoxic (Nair and
Laurencin., 2007; Rodriguez-Cabello et al., 2017), thus
becoming increasingly attractive for the development of
materials suitable for biomedical applications (Despanie et al.,
2016; Varanko et al., 2020; Mbundi et al., 2021).

ELPs can be chemically synthetized (McGrath et al., 1990;
Urry et al., 1990; Urry and Pattanaik, 2006; Aladini et al., 2016),
but this process presents considerable limitations involving
several complex steps, resulting in low yields of a polydisperse
mixture of polypeptides with low molecular weight (McGrath
et al., 1990). In contrast, the production of recombinant ELPs
represents an efficient and high-yield approach, producing
monodisperse polymers with high molecular weight (McGrath
et al., 1990; Nettles et al., 2010; Mbundi et al., 2021; Rodriguez-
Cabello et al., 2021). Owing to the reversible phase transition
behavior of ELPs, purification can be achieved by employing
simple heating/cooling cycles, avoiding the need for complex
chromatographic methods, assisting cost reduction and avoiding
the use of cumbersome steps, because there is no need for

chromatography purification (Figure 1) (Meyer and Chilkoti,
1999; Banki et al., 2005; Trabbic-Carlson et al., 2009; Hu et al.,
2010; Yang et al., 2012; da Costa et al., 2018; Paiva dos Santos
et al., 2019; Pereira et al., 2021a).

Besides chemical production, elastin-like polypeptides can
also be obtained by heterologous expression (da Costa et al.,
2015b), which is less costly than chemical synthesis (Basu et al.,
2014). Heterologous expression is an affordable and effective way
of using yeasts, bacteria, and plants to produce these polypeptides
(Chow et al., 2006; Lin et al., 2006; Schipperus et al., 2009). ELPs
can be fused with peptides of interest and obtained on a large
scale, by means such as fermentation (Lindbo, 2007; Schipperus
et al., 2009; Martínez-Alarcón et al., 2018). Therefore, the choice
of the microorganism depends on what the focus is, and generally
prokaryotes, in particular Escherichia coli, are used (Kuthning
et al., 2015). The heterologous expression of ELPs can be scaled,
favoring their adoption in the industrial sector (Fong et al., 2009;
Cardoso et al., 2020).

Moreover, the use of DNA recombinant technology allows
fine-tuning of the structure of ELRs to incorporate bioactive
domains with precise control over size and composition (Meyer
and Chilkoti, 2002; Mbundi et al., 2021), leading to customized
functional materials (Richman et al., 2005; da Costa et al., 2015a;
Lee et al., 2019; Salinas-Fernández et al., 2020; Pereira et al.,
2021b; da Costa et al., 2021). These materials in nanoscale are
used in a wide range of studies, mainly in the medical field, for
applications such as biosensors, wound dressing, fighting
infections acquired by acute or chronic injuries, or skin burns
(Li et al., 2020; Sarangthem et al., 2021).

The elastin-like polypeptides have intrinsic and versatile
characteristics that allow them to form different
nanostructures, such as nanoparticles (Machado et al.,
2009; Peddi et al., 2020), nanofibers (Mahara et al., 2017;
Sarangthem et al., 2021), and nanocomposites (Lin et al.,

FIGURE 1 | Heterologous expression of ELP fused with proteins or peptides and the purification process for hysteresis, due to their characteristic Tt, which is
separated based on insoluble or soluble ELPs by centrifugation of the other proteins. Created with BioRender.com.

Frontiers in Nanotechnology | www.frontiersin.org April 2022 | Volume 4 | Article 8747902

Lima et al. Elastin-Like Based Nanomaterials and Nanoformulations

http://BioRender.com
https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


2019). These nanotechnologies, when used in applications like
drug delivery, improve the efficacy of treatment since the
nanostructure can direct the molecule, thus enhancing the
stability and boosting the contact surface, which can enhance
the activity of these structures, important for their
thermodynamic properties (Javili et al., 2013; Butcher et al.,
2016; Schöttler et al., 2016). Studies that have already passed
through phase 2 of clinical trials demonstrated that, compared
to free medication, nanoparticle-assembled ELPs enhanced
the drug’s half-life and its focus on the tumor, which is an
interesting and promising construction, but yet to be
approved as a drug delivery system (Macewan and Chilkoti,
2014).

Therefore, due to the benefits of the biotechnological
applications of ELPs, this review presents the significant
advances in using elastin-like polypeptides in the biomedical
field, their production in different systems, and how they can
be used to develop different nanomaterials.

ELASTIN BIOSYNTHESIS AND
DERIVATIVES

Elastin and Tropoelastin
Elastin is a structural protein which is the main component of
elastic fibers present in the extracellular matrix (ECM), imparting
structural support to numerous organs and tissues, for example,
large blood vessels (e.g., aorta artery), skin, cartilage, ligaments,
vocal cords, bladder, and lungs (Mithieux andWeiss, 2005; Nettles
et al., 2010; Roberts et al., 2017). This proteinaceous material
comprises approximately 90% of the elastic fibers (Mithieux and
Weiss, 2005; Wang et al., 2019; Ozsvar et al., 2021), conferring
resilience and elasticity to organs and tissues that require the ability
to undergo a lifetime of repetitive cycles of deformation and
relaxation without rupture (Vrhovski and Weiss, 1998; Floss
et al., 2010). In its natural form, elastin is heavily cross-linked
and therefore insoluble (O’Neill Moore et al., 2020; Rodriguez-
Cabello et al., 2021), providing great stability and an estimated half-
life of 70 years (Mithieux andWeiss, 2005; Rodriguez-Cabello et al.,
2021). Its soluble precursor, tropoelastin, presents 60–72 kDa; it is
an alternatively spliced protein, rich in non-polar residues
including glycine, alanine, valine and proline, and composed of
alternated hydrophobic and hydrophilic domains (Wise et al.,
2014; Wang et al., 2019; Ozsvar et al., 2021). While the
hydrophilic domains comprise a high content of alanine (A)
and lysine (K) residues that promote intra- and intermolecular
crosslinking, the hydrophobic component is mainly composed of
the non-polar amino acids valine (V), glycine (G), alanine (A), and
proline (P) (Wise and Weiss, 2009; Wise et al., 2014; Rodriguez-
Cabello et al., 2021). The hydrophobic moieties often occur as
repeats of the tetra-, penta-, and hexa-peptides VPGG, VPGVG
and APGVGV, with the latter being the most common (Floss et al.,
2010; Casal et al., 2013;Wise et al., 2014).Multiple and periodic PG
motifs promote the formation of repeated fluctuating β-type turns,
imparting to tropoelastin a highly hydrated structure with
conformational flexibility (Wise et al., 2014; Wang et al., 2019).
Under physiological conditions, tropoelastin monomers reversibly

self-aggregate into spherical globules in an intrinsic process known
as coacervation, which plays a pivotal role in elastin biosynthesis
(Yeo et al., 2011).

Elastogenesis
The formation of elastic fibers (Figure 2) is a hierarchical and
complex process that occurs during prenatal and childhood
development, involving tropoelastin synthesis, coacervation,
cross-linking, and microfibrillar deposition (Yeo et al., 2011;
Ozsvar et al., 2021). Initially, tropoelastin is expressed in
elastogenic cells (smooth muscle, mesothelial and endothelial
cells, chondrocytes, and fibroblasts) (Vrhovski and Weiss, 1998;
Mithieux and Weiss, 2005) in response to biological signals such
as developmental stage, mechanical stress, cytokines, and growth
factors (Yeo et al., 2011; Wang et al., 2019). After the
transcription and translation steps, tropoelastin binds to
elastin binding protein (EBP), a 67 kDa chaperone that
prevents self-aggregation and proteolysis of tropoelastin
(Vrhovski and Weiss, 1998; Mithieux and Weiss, 2005; O’Neill
Moore et al., 2020; Ozsvar et al., 2021). The tropoelastin-EBP
complex is then transported to the extracellular space and the
complex dissociates. EBP is recycled intracellularly by
endocytosis, and the cross-linking of the secreted tropoelastin
is initiated, catalyzed by lysyl oxidase (LOX) present at the cell
surface (Vrhovski and Weiss, 1998; Sato et al., 2017; O’Neill
Moore et al., 2020; Ozsvar et al., 2021). Finally, the cross-linked
tropoelastin spherules (elastin) coacervate and deposit onto
microfibril scaffolds of the extracellular space (Vrhovski and
Weiss, 1998; Yeo et al., 2011; O’Neill Moore et al., 2020;
Ozsvar et al., 2021), initiating the assembly of elastic fibers. As
the biosynthesis into the ECM proceeds, the final products are
insoluble mature elastin fibers.

Applications of Elastin and Elastin-Derived
Peptides
The structural role of elastin is well recognized, imparting elastic
recoil and resilience to tissues and organs. Nevertheless, elastin is
also directly or indirectly involved in physiological processes such
as cell adhesion (Senior et al., 1984; Mithieux and Weiss, 2005;
Rodgers and Weiss, 2005; Mithieux et al., 2013; Lee et al., 2017).
Due to its diverse biological properties, elastin has gained special
interest in biomedical applications, namely tissue engineering
and regenerative medicine (Daamen et al., 2007; Wang et al.,
2021). Some examples include the use of elastin from
decellularized tissues combined with endothelial cells for the
development of vascular grafts (Amiel et al., 2006) and heart
valves (Bader et al., 1998), the use of purified elastin for the
development of gastrointestinal patches to repair duodenal
injuries (Kajitani et al., 2000), or as a coating material to
promote cell adhesion and proliferation in tissue scaffolds
(Sales et al., 2007) or metallic surfaces (Yin et al., 2009).
Despite its potential and attractiveness, the use of elastin as a
biomaterial is limited due to the highly dense cross-linked
network that is insoluble and extremely stable. The insoluble
nature of elastin makes its purification highly challenging and
ineffective (Wise et al., 2014), often leading to contamination of
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elastin with other proteins that can elicit immunological
responses (Daamen et al., 2001). Isolation and purification of
tropoelastin are also troublesome processes, due to extensive
soluble precursor degradation during and even after
purification (Vrhovski and Weiss, 1998). Moreover, isolation
and purification of tropoelastin from natural sources present
ethical issues. The isolation from animals is typically a low-yield
process, demanding the use of many animals, and/or fetal and
neonatal animal tissues, since the biosynthesis of tropoelastin
occurs mainly during early development stages (Vrhovski and
Weiss, 1998; Wen et al., 2020).

While mature elastin fibers have an insoluble nature, initial
studies on elastin’s characteristics and remodeling have shown
the possibility of obtaining soluble elastin variants, α- and
k-elastin, depending on the extraction methods (Adair et al.,
1951; Partridge, 1963). The extraction processes involve the
scission of the covalent bonds by hydrolysis under harsh
acidic (α-elastin) or alkaline (k-elastin) chemical conditions.
Usually, α-elastin is obtained by hydrolysis in hot oxalic acid,
whereas κ-elastin is obtained by hydrolysis with 1 M potassium
hydroxide in 80% ethanol (Adair et al., 1951; Partridge, 1963).
The corresponding degradation products are termed elastin-

FIGURE 2 | Elastin biosynthesis: after synthesis in the rough endoplasmic reticulum (rER), the tropoelastin-EBP complex is transported through the Golgi complex
to the extracellular space, aggregating on the cell surface. EBP then unbinds from tropoelastin, and tropoelastin molecules are cross-linked to each other via lysine
residues that are oxidized by lysyl oxidase (LOX) generating cross-linked elastin. The cross-linked molecules deposit onto microfibrils which direct elastin deposition for
the formation of the elastic fibers. EBP is then recycled back into the cell and binds newly synthesized tropoelastin molecules. This process continues, producing
insoluble elastin fibres.

TABLE 1 | Examples of some elastin-derived peptide (EDP) sequences obtained by hydrolysis or proteolytic digestion.

Sequence Description Reference

VGVAPG EDP found in both α- and κ-elastin hydrolysates Gigante et al. (2003), Pocza et al. (2008), le Page et al. (2019), Szychowski and Gmiński.
(2019)

VAPG EDP found in κ-elastin after hydrolysis with potassium
hydroxide

Pocza et al. (2008), Qin. (2015), le Page et al. (2019)
PGAIPG
GAVPG
GVLPG
GGVPG
GVVPG

GFGVGAGVP EDP obtained after proteolytic digestion Foster et al. (1973), Qin (2015)
GLGVGAGVP
AGVPGFGVG
GFGVGAGVP
GGVP
PGVGV
PGVGVA
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derived peptides (EDPs) or elastokines (le Page et al., 2019).
Table 1 enumerates some examples of EDPs obtained by
hydrolysis or proteolytic digestion. EDPs also occur naturally,
as a result of ageing due to the many insults and increased
protease activity, and have many implications in health and
disease. They are not only a hallmark of ageing, but also
influence T-cell modulation, tumor progression, or diabetes
(Robert and Labat-Robert, 2014; Meghraoui-Kheddar et al.,
2017; Boraldi et al., 2018; Salesse et al., 2018; le Page et al.,
2019). κ-EDPs have a bioactive sequence based on the xGxxPG
motif that binds to the elastin receptor complex and produces
biological effects, while α-EDPs have a molecular weight and
sequence much more similar to tropoelastin (Qin, 2015). The
solubility of EDPs is advantageous, allowing their use for several
applications in biomedicine (Gigante et al., 2003; Pocza et al.,
2008; Szychowski and Gmiński, 2019; Amakye et al., 2021) and
the formation of self-assembled supramolecular architectures of
fibrils (Bochicchio et al., 2015). In addition to biomedical
applications, EDPs are frequently used in the cosmetic
industry in creams, shampoos, or even as nutraceuticals
(Arany et al., 2006). In such cases, they act as antistatic, film
forming, skin and hair conditioner, and emollient (Hunter et al.,
1991) and are usually obtained from bovine tendons or from the
skin of fish such as salmon or tuna (Hyun et al., 2004).

To overcome the limitations of natural insoluble elastin, great
attention has been paid to the synthesis of artificial elastin-
mimetic polypeptides, termed elastin-like polypeptides (ELPs)
(Roberts et al., 2017), or elastin-like recombinamers (ELRs)
(Rodríguez-Cabello et al., 2009). These biomimetic sequence-
repetitive molecules are based on the repeating motifs present in
the hydrophobic domain of tropoelastin and can undergo
coacervation in a similar way to elastin (Le and Sugawara-
Narutaki, 2019). Nevertheless, these artificial biomolecules are
inspired by and do not adequately represent the diversity of
natural tropoelastin sequences per se. The canonical sequence for
ELPs is based on repetitions of the pentapeptide VPGVG, but the
most common sequence found in tropoelastin is the hexapeptide
APGVGV (Conticello and Carpenter Desai, 2012). Still, early
studies with the hexapeptide demonstrated the absence of a
reversible coacervation process (Conticello and Carpenter
Desai, 2012). On the other hand, ELPs based on the canonical
pentapeptide VPGVG sequence can undergo a fully reversible
temperature-dependent coacervation process (van Eldijk et al.,
2012).

HETEROLOGOUS EXPRESSION OF
ELASTIN-LIKE POLYPEPTIDES

As described above, elastin is structural protein present in all
vertebrates (Liu et al., 2018), and the synthetic product is
denominated elastin-like polypeptides (ELPs) (Fletcher et al.,
2019). In addition to synthetic production, they can be
produced by recombinant DNA technology (Girotti et al.,
2011; Fletcher et al., 2019; Saha et al., 2020). ELPs can be
produced alone or used in fusion with protein or peptides
(Trabbic-Carlson et al., 2004; Walker et al., 2014). This

technology can provide scalable, sustainable and cheaper
production, and ELPs can be produced in bacteria, yeast
and plants (Girotti et al., 2011; Sampaio de Oliveira et al.,
2020).

Escherichia coli
E. coli has been extensively applied as a host to produce
recombinant proteins for therapeutic use. Moreover, its use
has demonstrated advantages like rapid growth rate, easier
genetic manipulations, high yield of product, and scalability
(Kaur et al., 2018; Sampaio de Oliveira et al., 2020).
Additionally, E. coli presents different strains and expression
vectors and a relatively simple mechanism of protein folding, and
it has been used in several applications in the biotechnology
industry (Sampaio de Oliveira et al., 2020). Some studies used the
capacity of E. coli to produce ELPs via heterologous expression
(Figure 1).

In a study to produce the ABP-CM4 peptide with broad
antimicrobial activity, the researchers used the elastin-like
recombinant consisting of 200 repetitions of the VPAVG
pentamer fused to ABP-CM4 in the terminal N portion,
denominated CM4-A200. The plasmid [pET25b (+)]
containing the sequence of CM4-A200 was transformed into
E. coli BL21 (DE3). CM4-A200 was purified using the thermo-
responsive behavior of the A200 polymer. This polymer was
processed into free-standing films and displayed significant
antimicrobial activity against yeasts, Gram-positive and Gram-
negative bacteria, and filamentous fungi. Authors also reported
that CM4-A200 did not have a cytotoxic effect on human skin
fibroblasts (da Costa et al., 2015b).

An ELP sequence was used in fusion with human interferon-γ
(hIFN-γ). This construction was cloned into the pET-28a (+)
expression vector with 50 repeats of ELP (VPGVG), and then
transferred into competent E. coli strain BL21 (DE3). Authors
described the ELP construction raising the accumulation of hIFN
tenfold, and the average expression of total soluble protein (TSP)
rose by 46.85%. In addition, using inverse transition cycling
(ITC), they obtained hIFN-γ-ELP with 98 ± 5% of purity.
Another result described by the same authors is related to the
bioactivity of recombinant hIFN-γ-ELP, which was comparable
to commercial hIFN-γ, (7.55 × 106 IU/ml) (Heidari-Japelaghi
et al., 2019).

Another study used ELP fused to a glucagon-like peptide,
using a type-2 diabetes drug to produce a novel peptide delivery
system. According to the authors, this system undergoes a
transition phase between room temperature and body
temperature, and the system was tested as an injection.
Researchers tested the proteolytic stability and activity in vitro.
Tests with mice identified that an injection of GLP-1-ELP fusions
decreased blood glucose levels for up to 5 days, which is 120 times
longer than an injection of the native peptide. Results illustrated
the benefit of working with ELPs to release peptide-ELP fusions
(Amiram et al., 2013).

Yeast
The use of yeast cells as an expression system which, compared to
other systems, demonstrated some benefits, including simple
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genetic manipulation, rapid growth, and the ability to perform
adequate post-translational modifications (PTM) and achieve
high cell density. It also demonstrated the ability to produce
and secrete biologically active proteins, and easily adapted to
industrial-scale conditions (Gomes et al., 2018). The most
common of post-translational modifications, such as
methylation, can modified the structure or hydrophobicity of
the protein (Owen and Shewmaker, 2019), and N-myristoylation
can aid the molecular assembly of ELPs and influence the Tt.
(Scheibel et al., 2020).

In this study, the authors tested the 90 repetitions of ELP-
VPGXG (with any amino acid except proline at the X position).
They demonstrated ELP production using the method of
methanol-induced fed-batch cultures of Pichia pastoris (Çelik
and Çalik, 2012; Wang et al., 2017). This study also evaluated the
influence of pH (pH 3–7) on culture growth. Their results showed
that pH 6 was optimum for production of ELP with a yield of
255 mg L−1 of purified ELP of cell-free medium (Schipperus et al.,
2009). Another study produced an ELP with 21 repeats of the
amino acid sequence (VPGVG)2VPGEG (VPGVG)2 in P.
pastoris. This construction presents ~47 kDa and in the
C-terminal includes c-Myc and His-tag, which were used for
purification. The ELP produced was purified, and the yield after
metal ion affinity chromatography was 2.5 mg L−1 in shake flask
cultures (Sallach et al., 2009). The difference in yield observed in
these studies can be explained by the optimal pH evaluated for
enhaced production of ELP in fed-batch fermentation in
Schipperus et al. (2009) study, while the Sallach et al. (2009)
study was produced in baffled flask and no optimization yield was
evaluated yet.

Plants
Plants have been widely used as hosts and are able to produce
biologically active recombinant products (da Cunha et al., 2017;
Margolin et al., 2018). They present advantageous heterologous
expression systems, due to high production and low cost, do not
generate endotoxins, and do not present pathogens mutual to
humans (Twyman et al., 2003; Basaran and Rodriguez-Cerezo,
2008).

In this context, Conley et al. (2009) tested different sizes of
ELP (VGVPG)n to identify the optimal construction for the
accumulation of recombinant proteins in Nicotiana
benthamiana. The results demonstrated that ELP tag (n =
5–40) repeats provided the best results when evaluating
recombinant protein accumulation, and the larger ELP tags
(n = 80–160) showed high efficiency during the purification
by inverse transition cycling (ITC). Results showed that the
use of ELP fusion tags contributed to raising the production of
recombinant proteins in plants (Conley et al., 2009).

A different strategy was used in another study, expressing
single-chain variable fragments (scFvs) in transgenic tobacco
seeds, with fusions on the C-terminal based on ELPs
composed of Val-Pro-Gly-Xaa-Gly, where Xaa is valine,
glycine or alanine with 100 repetitions. This strategy allowed a
40-fold increase in scFv accumulation, with levels nearing 25% of
total soluble seed protein. In addition, ELPylated scFv continued

stable and functional in mature seeds that were stored for a long
period at room temperature (Scheller et al., 2006).

In another study, the authors used 2-cell suspension to
produce human interleukin-10 (IL-10) in tobacco, and they
evaluated the effect of an ELP with 28 repetitions and a green
fluorescent protein (GFP) tag on IL-10 accumulation. The IL-10
obtained via expression demonstrated high accumulation levels.
IL-10-ELP demonstrated cytokine activity, but this activity was
reduced compared to unfused IL-10 (Kaldis et al., 2013).

NANOMATERIALS BASED ON
ELASTIN-LIKE POLYPEPTIDES AND THEIR
MEDICAL APPLICATIONS
Nanoparticles
The ELP self-assembly process is directly associated with the
polymer architecture, which can result in coacervate and
subsequently different organizations according to the
transition temperature (Tt) (Figure 3). Some ELPs have
alternating hydrophobic and hydrophilic domains along the
backbone of the polypeptide. This complex structure results in
the formation of nanoparticles (Smits et al., 2015; Rodríguez-
Cabello et al., 2018). The typical hydrophobic block transition
occurs when the temperature of the solution is raised above the
lower Tt, causing the hydrophobic portion to fold and segregate
from the aqueous solution. The hydrophilic block (top Tt)
remains soluble and hydrated in contact with the surrounding
water, forming the crown of a micellar structure. This feature
allows the hydrophobic core to store nonpolar drugs, while polar
molecules can be kept on the hydrophilic surface (Rodríguez-
Cabello et al., 2016).

The adoption of ELP nanoparticles as nanodrugs is of great
interest in different biomedical areas, as they have a broad-
spectrum therapeutic potential (Smits et al., 2015). The
biological activity of protein motifs can be maintained when
fused to ELPs, and the phase transition property of ELPs as well,
enabling the formation of nanoparticles above their transition
temperature (Monfort and Koria, 2017). These features make
these nanostructures attractive as delivery vehicles. The loading,
targeting, and delivery of drugs can be optimized using ELP
nanoparticles.

As described above, ELPs can be fused to a wide variety of
bioactive peptides. Nanoparticles formed from fusion proteins
based on ELPs showed potential as drug carriers, enabling the
supply of the active principle for a long time and protection
against proteolytic degradation (Yeboah et al., 2016). The self-
assembled nanoparticles from a recombinant fusion protein
composed of cell-derived growth factor-1 (SDF1) and an
elastin-like peptide have shown promise for the treatment of
chronic skin wounds. SDF1-ELP nanoparticles were used in the
treatment of full-thickness skin wounds in diabetic mice and
demonstrated significantly higher healing activity than free SDF1.
By 28 days, the wounds were fully closed, while wounds treated
with free SDF1 or ELP alone took 42 days to close fully (Yeboah
et al., 2016).
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ELPs are also used as purification tags and solubility
enhancers. The human granulocyte-macrophage colony
stimulating factor (hGMCSF), an essential molecule in the
immune system, was fused to an ELP, enabling its direct
purification from the soluble fraction of the E. coli lysate.
Furthermore, this fusion provided the formation of small and
stable spherical nanoparticles that can maintain the pro-mitotic
activity of hGMCSF. Fusion of ELPs to different proteins can
stabilize bioactive nanoparticles based on these proteins of
interest, providing their wide application in medicine and
biology. The hGMCSF-A192 nanoparticles were able to
stimulate TF-1 cell proliferation [EC50 of 0.29 ± 0.07 nM
(mean ± SD, n = 3)], demonstrating that they are biologically
active (Park et al., 2020).

In another study, ELPs were fused to nerve growth factor
(NGF) and brain-derived neurotrophic factor (BDNF) to
improve their biological activity in neural injuries, providing a
robust delivery system that increases the bioavailability and half-
life of these proteins. The fused proteins NGF-ELP and BDNF-
ELP were able to self-assemble into nanoparticles at their
respective transition temperatures. According to the results,
NGF-ELP nanoparticles induced neurite outgrowth in PC12
cells, while BDNF-ELP nanoparticles induced TrkB receptor
phosphorylation in transfected cells. Data indicate that these
nanoparticle fusion proteins can be applied in neural
regeneration, as they retain the biological activity of
nerotrophins and increase their bioavailability (Johnson and
Koria, 2016).

ELP nanoparticles also play an important role as a tumor-
targeting drug (Mie et al., 2019). In a study described by
Matsumoto et al., epidermal growth factor (EGF) fused to

genetically engineered ELPs with a fused polyaspartic acid
(ELPD) tail was loaded with the anticancer drug paclitaxel.
The nanoparticles formed were able to induce the death of the
human lung adenocarcinoma epithelial cell line, A549 cells,
known to express large amounts of the EGF receptor (EGFR).
According to the data, cell proliferation was at least 10 times
lower in the presence of the generated nanoparticles, when
compared to the presence of EGF alone. This result suggests
that the EGF contained in nanoparticles retained its ability to
bind to EGFR and induce cell proliferation (Matsumoto et al.,
2014).

Nanofibers
Nanofibers are nanomaterials that present characteristics such as
biocompatibility and biodegradability of elastin-like
polypeptides, which is an interesting strategy for the
development of bionanomaterials focused on the medical field
(Figure 3) (Shah et al., 2018; Sarangthem et al., 2021; Sugioka
et al., 2021). Furthermore, nanofibers can be associated with
antimicrobial peptides for the development of smart wound
dressings (Pfalzgraff et al., 2018). These constructions are
attractive in treatments such as drug delivery (Aluri et al.,
2012), wound healing (Kang et al., 2021), and tissue
engineering (Chen et al., 2021). They can be produced by
distinct methods, especially electrospinning and self-assembly
(Benitez et al., 2013; Machado et al., 2013; Le et al., 2017; Iscen
and Schatz, 2019), a low-cost technique that provides mass
production (Valizadeh and Farkhani, 2014).

In this regard, Le et al. (2017) developed nanofibers by self-
assembly based on a double-hydrophobic sequence of elastin-like
polypeptides, called GPG1, GPG2, and GPG3. The proliferative

FIGURE 3 | ELPs aggregated coacervate involved in water molecules in a conformation in different types of nanostructures that can be used in various
nanotechnological applications. Created with BioRender.com.
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potential of these fibers was tested on NIH-3T3 fibroblasts. The
GPG3 nanofibers were able to stimulate more proliferation after
3 days than negative and positive control, which were non-
coating with polystyrene and human fibronectin, respectively.
They also presented higher proliferation than GPG 1 and 2,
making them an interesting development for tissue engineering
(Le et al., 2017). These nanofiber constructions treated with
trifluoroethanol can also help in self-assembly (Le et al., 2015).

The study carried out by Sugioka et al. (2021) used GPG
constructions of ELP hydrophobic hydrogel formed into a self-
assembly nanofiber. Characteristics that are important for
nanofibers for use as tissue engineering were evaluated, such
as thixotropicity, and the results demonstrated enhanced
thixotropicity of the GPG1 nanofiber with genipin, an agent
for cross-linking (Sugioka et al., 2021).

Nanofibers formed by electrospinning have also been
studied. Constructions of ELP with a sequence of amino acid
residues (VPGIG) and motif (RGD) were tested ex vivo in
abdominal aortae from rats, and ELP was used as control.
The evaluation of regeneration was observed in the nanofiber
ELP/RGD and not in the control, indicating that the
construction can regenerate small-caliber vessel tissues
(Mahara et al., 2017). Nanofibers developed for drug delivery
can improve limitations of traditional drug carriers, such as
non-targeted delivery, low stability and others, which can make
treatment more effective (Fan and Moon, 2015; Isaacson et al.,
2018; Shah et al., 2018). Polymers constructed from silk-elastin-
like polypeptide nanogels self-assembled into nanofibers were
evaluated, based on the stability from dilution in PBS, and
sodium dodecyl sulfate as control (Isaacson et al., 2018). Their
stability is interesting because it can provide a biomaterial for
drug delivery (Isaacson et al., 2018).

For the wound healing process, some recent smart
biomaterials have been developed to contribute to wound
healing (Sousa et al., 2021). In this regard, antimicrobial
peptides that inhibit infections can be used topically for burn
wounds (Mofazzal Jahromi et al., 2018). Antimicrobial peptides
can be used to treat wound infections, mainly acting against
different pathogens (Pfalzgraff et al., 2018). The antimicrobial
peptide ABP-CM4, associated with 200 repetitions of VPAVG
pentamer of elastin-like polypeptides, demonstrated
antimicrobial activity against strains of Gram-negative and
Gram-positive bacteria (da Costa et al., 2017). More than 70%
of Staphilococcus aureus was killed and almost 100% of
Pseudomonas aeruginosa, when the peptide was immobilized
in electrospun nanofiber (da Costa et al., 2017). This study
demonstrated hydrolytic degradation of nanofibers, which is
an important characteristic of nanofibers for wound healing
(da Costa et al., 2017).

Nanocomposites
Composites are materials that present at least two components or
phases, with different chemical and physical properties (Figure 3)
(Roy et al., 1986). These materials are classified as matrix and
reinforcement (Alshabib et al., 2019). They can be found in
biological systems such as tissues and bones (Gaharwar et al.,
2014). When at least one of the components of these composites

presents a nanometric scale they are denominated
nanocomposites (Motealleh and Kehr, 2017). They are
subdivided into categories based on their compositions or
connections (Gaharwar et al., 2014). Currently,
nanocomposites are being studied by many scientists because
of their properties such as the greater matrix/reinforcement
surface when at the nanoscale (Motealleh and Kehr, 2017).
These are promising characteristics for industrial uses, such as
biosensors, and mostly in the medical field (Sahoo et al., 2013;
Cheikh et al., 2019; Hatami et al., 2020).

In the medical field, the use of nanocomposites for controlled
release of drugs from stimulus in drug delivery is possible due to
characteristics present in the matrix and reinforcement (Li et al.,
2018; Cheikh et al., 2019). The addition of an inorganic phase can
help to increase controlled drug release, assisting treatments (Liu
et al., 2008).

The use of nanocomposites composed of nanoparticles has an
important role because their characteristics influence bioactivity,
biodegradability, biocompatibility, and other properties (Sahoo
et al., 2013; Asadi et al., 2018). ELP nanocomposites are attractive
strategies that can improve mechanical properties such as film-
silk-ELP-carbon nanotubes that then enhance characteristics
such as elongation and tensile strength (Correia et al., 2019).
To enhance mechanical properties, an inorganic matrix can be
used, such as hydroxyapatite (Wang et al., 2011). Hydroxyapatite
is a component present in bones and teeth that can be obtained
after precipitation in a mixture of calcium phosphate. It can be
used in tissue engineering to reconstruct parts of lost tissues
(Kikuchi, 1666; Chang et al., 2003). Wang et al. (2011), for
instance, conducted studies with hydroxyapatite bonds with
ELP segments. They observed that the connection of ELP and
hydroxyapatite was sequence-dependent from binding assays
(Wang et al., 2011). The result of the ELP-hydroxyapatite
nanocomposite linked with calcium phosphate cement
demonstrated enhanced strength and washout resistance
properties (Wang et al., 2011).

One problem in the application of new materials is their
potential cytotoxicity ((Patlolla et al. 2010). These biomaterials
might also simulate an inflammatory process (Yuan et al., 2019).
The nanocomposites produced nine repetitions in tandem of
elastin-like polypeptides and silk with different percentages of
multiwall carbon nanotubes. They demonstrated no cytotoxicity
in C2C12 myoblast mice cells, and viability was analyzed in the
MTT test. Previous studies also demonstrated no cytotoxicity to
Bj-5ta cells from human skin fibroblast, revealing the importance
of nanotechnologies for use in treatments (Pereira et al., 2017;
Correia et al., 2019).

CONCLUSION AND PROSPECTS

Nanotechnology is an important science that is still emerging.
The nanoscale of structures can improve therapies that are
currently difficult to treat. It also presents benefits such as a
larger contact surface for materials in nanoscale, mostly in the
medical field, providing several alternatives to conventional
treatment (Xin et al., 2016).
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When formulated into nanostructures, ELPs can be influenced
by several properties such as pH, temperature, sequence of amino
acid residues and post-translational modifications. Studies of
ELPs with in vitro and in vivo tests with characteristics such
as non-cytotoxicity, potential antimicrobial activity,
biocompatibility, biodegradability and other advantages
demonstrate that ELP nanostructures are a promising medical
tool for the near future, and they will likely improve the treatment
of difficult-to-treat diseases. They can also be a cheaper medical
option, since they can be produced by heterologous expression.

In this review, we examined nanostructures based on ELP
biomaterials and their advantages. They can be produced from
heterologous expression in several organisms, which provides the
possibility of fusion with antimicrobial peptides or proteins.
These ELP-based bionanomaterials can be an alternative in
producing novel treatments in the medical field.

Several nanomedicines were approved by the FDA between
1990 and 2015, with an emphasis on some that were indicated for
more than one treatment, and mostly providing enhanced
stability (Bobo et al., 2016). Clinical trials in phase 1, 2, or 3,
from 2001 to 2015, showed a considerable increase in 2014–2015
(Bobo et al., 2016). ELPs have also been studied in clinical trials.
The conjugated construction of cell penetration peptide, ELPs
and doxorubicin (SynB1-ELP-Dox) was developed to deliver
doxorubicin in glioblastoma tumor chemotherapy based on
the Tt of ELPs which inhibit tumor cell proliferation. It was
efficiently demonstrated to be a potential drug delivery system,
due to ELP’s characteristic which directs the drug to the tumor
(Dragojevic et al., 2019). Furthermore, lacritin, a prosecretory
protein present in human tears, was associated with ELPs
expressed in E. coli BLR (DE3) and purified with Tt; then, size
exclusion chromatography was evaluated in vivo. The fused ELPs
retained the prosecretory activity of lacritin, based on increasing

secretion of tears in mice, maintaining and enhancing the
retention time, demonstrating that this could be an interesting
means of drug delivery for dry eye disease (Wang et al., 2015).

ELP-based nanostructures present a number of advantages
and advances in their application in the medical field.
However, before being adopted in clinical practice, they
must undergo phase 4 of clinical trials, which have not yet
approved ELP purification commercially or for therapeutic use
(Yeboah et al., 2016; Peddi et al., 2020). However,
nanotechnology is a novel science, and many aspects still
need to be further explored.
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