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In this work we explore the mechanisms of ion-specific stabilization of a polysaccharide-
based coating for colloidal nanomaterials used within the oil & gas industry. While
nanotechnology has wide prevalence across multiple industries, its utility within this
sector is largely undeveloped but has potential applications in areas including (but not
limited to) exploration, drilling and production processes. For example, reservoir contrast
agents in the form of superparamagnetic nanoparticles could be used to accurately
determine the residual oil saturation distribution in a reservoir and thus advise enhanced oil
recovery (EOR) efforts. However, deployment of such materials in oil reservoirs proves
challenging in cases where high salinity subsurface environments induce nanoparticle
aggregation, leading to loss of mobility. Here, we report the synthesis and characterization
of dextran-coated superparamagnetic iron oxide nanoparticles (Dex-SPIONs), the colloidal
stability of which was evaluated in various brine formulations at elevated temperatures.
Initial dynamic light scattering (DLS) measurements reveal a lack of contingency between
particle stability and total electrolyte concentration for samples comprised of synthetic
seawater and low-salinity brine, the latter fluid of which possesses higher ionic strength yet
preserves colloidal integrity to a much greater extent than its seawater counterpart. Further
experiments point to a calcium (Ca2+) ion-specific stabilization effect wherein surface
complexation of Ca2+ ions to the dextran periphery improves carbohydrate hydration and
thus enhances colloidal stability. Ion selective electrode (ISE) measurements provide
additional evidence of the Ca2+ - dextran binding interaction, the role of which also
factors significantly into mitigation of polysaccharide degradation [as demonstrated
through gel permeation chromatography (GPC)]. Finally, we assess the transport of
Dex-SPIONs through porous media, including examination of retention properties with
respect to variances in ionic composition.
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1 INTRODUCTION

Understanding the fate and transport of nanomaterials in
subsurface environments has far reaching implications in fields
ranging from enhanced oil recovery (EOR) to environmental
remediation. (Amanullah and Al-Tahini 2009; Halford 2012;
Hashemi et al., 2014; Hotze et al., 2010; Ju and Fan 2009;
McElfresh et al., 2012; Nabhani et al.,; Yu et al., 2012; Yu
et al., 2010; T. Zhang et al., 2015). As such, much attention
has been directed towards developing coating chemistries that are
capable of stabilizing nanomaterials in harsh subterranean
environments (ShamsiJazeyi et al., 2014; Xue et al., 2014).
Intricate strategies have been developed to facilitate the use of
nanomaterials in such conditions, mainly focusing on coating
chemistries that leverage electrostatic, steric and/or electrosteric
repulsion to prevent colloid aggregation (Ponnapati et al., 2011;
McElfresh et al., 2012; Bagaria et al., 2013; ShamsiJazeyi et al.,
2014; Xue et al., 2014). Despite this success, the particularly
challenging conditions encountered in oil reservoirs, where the
downhole temperature frequently exceeds 100°C and the salinity
reaches levels of 220,000 ppm total dissolved solids (TDS), (Lynn
and Nasr-El-Din 1998), have proven difficult to surmount. These
difficulties arise due to charge screening by electrolytes in the
concentrated brine and by high temperatures which often lead to
collapse of the steric layer due to lower critical solution
temperature (LCST) transitions of the coating layer (Principles
of Colloid and Surface Chemistry 1997; Matteucci et al., 2008;
Kotsmar et al., 2010). The latter point is exemplified by the failure
of polyethylene glycol coatings to stabilize colloids at elevated
temperatures in saline solution, whereas the room temperature
performance of the same coating in saline solution is quite
satisfactory (Worthen et al., 2016).

Within the broad scope of engineered nanomaterials, a
considerable amount of interest has been placed in the
application of iron-based nanoparticles, specifically
superparamagnetic iron oxide nanoparticles (SPIONs) and
nanoscale zero-valent iron (nZVI), as contrast agents for
magnetic resonance imaging and for environmental
remediation, respectively. Dextran-coated superparamagnetic
iron oxide nanoparticles (Dex-SPIONs) have shown promise
in clinical applications as magnetic resonance imaging (MRI)
contrast agents, providing enhanced image quality at lower
particle concentrations relative to their nearest polymer-coated
counterparts (Unterweger et al., 2018; Nelson et al., 2020).
Surface-reactive nanoscale zero-valent iron nanoparticles have
been explored as in situ reducing agents for the de-chlorination of
chlorinated solvent contaminants present in soil and
groundwater, and as adsorbents of heavy metals (Zhao et al.,
2016). However, due to their high surface energy and magnetic
attraction bare nZVI nanoparticles are extremely prone to
aggregation, not to mention loss of reactivity through
interactions with surrounding media (Mondal, Jegadeesan, and
Lalvani 2004; Zhao et al., 2016). To mitigate aggregation and low
transportability, methods for surface modification of nZVI have
been explored via polymeric coatings, e.g. biopolymers. Humic
acid and calcium ions present in groundwater are postulated to
have an effect on surface-modified nanoparticle stability through

destabilizing bridging interactions that are highly dependent on
groundwater geochemistry (Dong and Lo 2013), making it
difficult to predict nZVI transport in the subsurface. Dong
et al. reported that different surface-modified nZVIs led to
varying stability characteristics; yet, regardless of the
stabilization mechanism (polyelectrolyte, non-ionic surfactant,
potato starch) the results remained largely the same in that
aggregation and sedimentation could not be mitigated under
the examined circumstances (Dong and Lo 2013).

In an effort to advance the development of technologies that
would enable the use of nanomaterials in oilfield exploration, we
embarked on a program to identify coating systems capable of
withstanding high salinities through leveraging synergistic
interactions between functional groups present on the
periphery of nanoparticles and ions present in the brine. This
type of interaction, known as an ion specific effect, has received
considerable attention within the scientific community (Boström
et al., 2001; Deniz et al., 2008; Kunz 2010; X.; Li and Shantz 2010;
Pfeiffer et al., 2014; Vereda et al., 2015; Y.; Zhang and Cremer
2006). Intense research aimed at developing a mechanistic
understanding of how specific ions interact with
macromolecules, interfaces and colloids paints a picture much
different than one would intuitively expect, namely that ions can
behave in disparate ways despite possessing the same charge
valency. This phenomenon is illustrated by cases where colloids
and nanoparticles have been re-stabilized in concentrated
electrolyte medium through addition of excess electrolyte after
having passed through a region of instability at lower ionic
strength; the minimum electrolyte concentration at which the
colloid becomes stable against aggregation is known as the critical
stabilization concentration (CSC) (Healy et al., 1978; Molina-
Bolívar et al., 1997; Molina-Bolıvar et al., 1998; Molina-Bolivar
et al., 1999; López-León et al., 2005; Santander-Ortega et al., 2010;
Santander-Ortega et al., 2011). The majority of this work has
focused on examining how a single ion (or electrolyte pair) can
influence the behavior of processes ranging from colloidal
stability to changes in interfacial tension. Surprisingly, much
less emphasis has been placed on examining the role of
specific ion effects in multicomponent complex brines.

Thus, the work presented here aims to provide insight into the
synergistic interactions occurring between certain divalent ions and
carbohydrate-based coatings, namely dextran, to yield colloids with
exceptional stability in high ionic strength multicomponent brines.
To this end, we have synthesized Dex-SPIONs and tested their
colloidal stability in various brine formulations as well as their
transport properties in Ottawa sand. Utilization of sand as a
medium for characterizing mobility enables benchmarking
against transport studies of state-of-the-art engineered
nanoparticles also tailored for reservoir applications (Xue et al.,
2014).We observe that the presence of calcium ions appears to boost
the colloidal stability of polysaccharide-coated nanoparticles in
concentrated brines, a possible paradigm shift in designing
coatings for subsurface applications. Separately, from a transport
perspective, when decoupled from colloidal stability we find that the
total ionic strength of the fluid rather than a specific ion effect
dominates the retention behavior of the particles in column
experiments.
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2 EXPERIMENTAL

2.1 Materials
Dextran-low fraction for biochemistry (Mw~90 kDa), iron(III)
chloride hexahydrate, iron(II) chloride tetrahydrate, sodium
borohydride, sodium hydroxide, 30% ammonium hydroxide,
tris buffer (2 M), magnesium chloride hexahydrate and
calcium chloride dihydrate were obtained from Fisher
Scientific (Fair Lawn, NJ) and used as received. Pentaerythritol
glycidyl ether was obtained from Frontier Scientific, Inc. (Logan,
UT) and used as received. Water was double-deionized using a
Millipore Milli-Q system to produce 18 MΩ deionized water.
Sealable 5 ml borosilicate microwave vials were obtained from
Chemglass, Inc. (Vineland, NJ) and used as received. Tangential
flow filtration for purification of synthesized Dex-SPIONS was
performed using a KrosFlo Research Iii TFF system from
Spectrum Labs, Inc. (Rancho Dominguez, CA). Preparation of
stock electrolyte and brine compositions used in evaluation of
colloidal stability is detailed in the supporting information.

2.1.1 Synthesis of Dextran-Coated
Superparamagnetic Iron Oxide Nanoparticles
Dex-SPIONs were prepared using a procedure reported by
Weissleder et al. (Tassa et al., 2011) with slight modification.
A round-bottomed flask (200 ml) was charged with a stir bar,
50 ml of deionized water and FeCl3 6H2O (1.35 g, 0.005 mol).
Dextran (3.0 g, 90 kDa Mw) was then added, followed by cooling
of the reaction vessel to 5°C through the use of an ice water bath
and subsequent deoxygenation via nitrogen bubbling. This
deoxygenation/cooling cycle was applied for 30 min with
vigorous stirring. After 30 min, FeCl2 4H2O (0.54 g,
0.0027 mol) was dissolved in 5 ml of deionized water and
added to the vessel, after which the mixture was allowed to
stir under an N2 atmosphere for an additional 10 min. Then,
NH4OH solution (3 ml, 30% w/w) was added dropwise to the
mixture over a period of 15 min; as the addition proceeded, the
reaction color changed from orange to dark brown/black. The
reaction was subsequently heated to 80°C for 45 min, then
allowed to cool to room temperature. At this stage, the
resulting particles possess a non-covalent dextran coating but
require crosslinking to ensure that the coating will remain intact
during subterranean operations. In a separate crosslinking
procedure, pentaerythritol glycidyl ether (2 ml) was added to
1 M aqueous NaOH (200 ml) and NaBH4 (400 mg) in a round
bottom flask (500 ml). A 100 ml addition funnel was mounted to
the round bottom flask containing the crosslinking formulation
and subsequently charged with the crude nanoparticle dispersion
(58 ml), which was added dropwise over a period of
approximately 1 h to the crosslinking solution, with vigorous
stirring. Following the addition, the reaction was allowed to
proceed at room temperature for 24 h. Upon reaction
completion, 2M 2-amino-2-hydroxymethyl-propane-1,3-diol
(20 ml) was added to the crude mixture to quench unreacted
crosslinker; the reaction was allowed to proceed at room
temperature for 12 h. The resulting mixture was purified via
tangential flow filtration (100K MWCO filter) to provide a
nanoparticle dispersion with a nominal Dex-SPION

concentration of 2,250* ppm (280 ml). *Based on iron oxide
content, as determined by thermogravimetric analysis.

2.1.2 Cryo-Transmission Electron Microscopy
Dex-SPION at 200 ppm concentration in various brines solutions
were imaged without dilution. C-flat copper grids with 1.2 µm
holes on the 5 nm carbon support film were used as substrates.
5 µL of the diluted samples were drop-casted on the grid and
blotted for 2 s before freezing. Plunge freezing was performed on
a Gatan CP3 Cryoplunge at the Harvard University’s Center of
Nanoscale Systems (CNS) using liquid ethane as cryogen.
Samples were loaded onto an FEI Tecnai Arctica CryoTEM at
the Harvard CNS and imaged at 200 kV accelerating voltage.

2.1.3 Colloidal Stability Testing Protocol
2.1.3.1 Stability in the Presence of Divalent Ions
The potential impact of calcium and magnesium ions on the
colloidal stability of Dex-SPIONS was primarily investigated via a
series of heating experiments. Brines composed of 0.5 M MgCl2
doped with varying amounts of CaCl2 were used to generate the
following series of stock solutions: 0.5 M MgCl2, 0.5 M MgCl2/
0.05 M CaCl2, 0.5 M MgCl2/0.1 M CaCl2, 0.5 M MgCl2/0.2 M
CaCl2, and 0.5 M MgCl2/0.5 M CaCl2. A 500 μL aliquot of
Dex-SPION stock was added to each 3.5 ml of each respective
electrolyte solution to achieve concentrations of 500 ppm across
all samples. Neutralized and deoxygenated (N2 purged) samples
were subsequently subjected to heating at 103°C over a period of
4–5 days, with particle stability monitored through DLS and
visual observation. To further probe the effects of calcium as a
specific ion on colloidal stability, Dex-SPIONS were also
dispersed in tap water, deionized water, 0.5 mM CaCl2, 5 mM
CaCl2, and 50 mM CaCl2, the only variations from dual Ca2+/
Mg2+ studies being in electrolyte concentration and duration of
measurement. Operational details regarding DLS measurements
are provided in the supporting information.

2.1.3.2 Stability in Representative Reservoir Fluids
Stock solution of Dex-SPION dispersion (in DI water) was
diluted into either seawater or low-salinity brine to yield
200 ppm Dex-SPION nanoparticle dispersions. The sols were
pipetted inside 5 ml microwave vials which were subsequently
crimp-sealed with PTFE lined aluminum septa. Three replicates
of each nanoparticle dispersion were placed in a thermostat
regulated oven operating at 103°C. An additional set of
duplicates of each nanoparticle dispersion was kept at room
temperature to serve as control samples.

3 RESULTS

3.1 Dextran-Coated Superparamagnetic
Iron Oxide Nanoparticles Synthesis and
Characterization
Dex-SPIONs were synthesized according to the cold gelation
approach as previously referenced. Crosslinking of dextran
around the periphery of the nanoparticle was carried out using
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the tetra-crosslinker pentaerythritol glycidyl ether. Purification of
the resulting nanoparticles via tangential flow filtration afforded
superparamagnetic nanoparticles with an intensity average
hydrodynamic diameter centered around 50 nm (Figure 1B).
Examination of the nanoparticles using cryo-TEM (Figures
1A,C) reveals that the nanoparticles are actually clusters of
magnetite crystallites that average 7 nm in diameter. These
clusters are presumably held together by the crosslinked
dextran shell which also increases the hydrodynamic diameter
of the assembly due to its extended conformation in
aqueous media.

3.2 Dextran-Coated Superparamagnetic
Iron Oxide Nanoparticles Colloidal Stability
in Representative Reservoir Fluids
As ultimate reservoir deployment of Dex-SPIONs is
contingent upon their compatibility with reservoir fluids,
evaluation of their stability in representative multi-valent/
component brines proves crucial. The colloidal stability of
Dex-SPIONs was followed via DLS at 103°C in both seawater

and brine over the course of 2 weeks. As shown in Figure 2A,
the colloidal stability of Dex-SPIONs in brine is satisfactory,
however; the case in seawater is different as the average
hydrodynamic diameter of the nanoparticles increases as a
function of time—an early indication of colloidal instability.
Initially, we were surprised by this result as the total electrolyte
content of seawater is substantially less than that of brine. To
investigate further, we proceeded to conduct a root cause
analysis to identify if a particular ion present in the
seawater was responsible for the decreased stability. The
results of this study are depicted in Figure 2B which
displays the hydrodynamic diameter of the nanoparticles as
a function of time at 103°C in various salt solutions. Each salt
component is present within the seawater formulation and is
of the concentration as it exists in seawater. As can be seen
from the results, magnesium is the only ion that leads to an
increase in hydrodynamic diameter as a function of incubation
time. Similar to earlier observations, an initial salt- and/or
heating-induced dehydration event occurs across all samples
in the initial 2-day time period before individual salt influences
take full effect.

FIGURE 1 | (A)Cryo-TEM image of Dex-SPIONs in DI water. (B)Graph showing (intensity) average size distribution of Dex-SPIONs. (C)Magnified cryo-TEM image
of Dex-SPIONs. (D) Schematic depicting arrangement of dextran on periphery of a SPION bundle, featuring an inset of the atomistic structure of a dextran fragment.
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This preliminary result was indeed surprising as magnesium is
also present in brine (see Supplementary Table S1) yet the
nanoparticles are quite stable in this media; however, brine
also possesses a much higher concentration of CaCl2 in
comparison with seawater, suggesting that Ca2+ may serve as
the mitigating ion present in brine that off-sets the instabilities
caused by magnesium salts, thus stabilizing the Dex-SPIONs
against their coating-dependent aggregation.

3.3 Dextran-Coated Superparamagnetic
Iron Oxide Nanoparticles Colloidal Stability
in the Presence of Divalent Ions
Divalent ions such as calcium and magnesium pose the
greatest challenge to the colloidal stability of nanomaterials

in natural fluids such as connate and seawater. Within
subsurface environments, high salinities bear strong
association with nanoparticle aggregation, thus hindering
their mobility (Y. Li et al., 2008; Saleh et al., 2008). With
the predominance of Ca2+ and Mg2+ ions in synthetic seawater
and low-salinity brine, an investigation into their potential
(de)stabilizing effects is necessary. Dex-SPIONs were
dispersed into aqueous media containing varying
concentrations of CaCl2 and MgCl2, and the resulting
solutions were subjected to continuous heating. Initial
evidence of sample precipitation occurs after 36 h of heating
(Figure 3A, t = 36 h), at which point the left-most sample
containing solely magnesium salts begins to precipitate. Our
following observations suggest a definite correlation between
colloidal stability and the amount of calcium present in
solution, as prolonged heating induces sample precipitation

FIGURE 2 | (A) DLS graphs of the average hydrodynamic diameter of
Dex-SPIONS in seawater (left) and brine (right) versus elapsed time at 103°C.
(B) Average hydrodynamic diameters of dextran-coated nanoparticles as a
function of heating at 103°C in various electrolyte solutions for the
specified time intervals. NaCl = 700 mM; CaCl2 = 16 mM; MgCl2 = 87 mM;
NaHCO3 = 2 mM; Na2SO4 = 45 mM.

FIGURE 3 | (A) Time-lapse images of Dex-SPIONS dispersed in the
following brine compositions (left-to-right, per time point): 0.5 M MgCl2, 0.5 M
MgCl2/0.05 M CaCl2, 0.5 M MgCl2/0.1 M CaCl2, 0.5 M MgCl2/0.2 M CaCl2,
and 0.5 M MgCl2/0.5 M CaCl2. (B) DLS graph showing average
hydrodynamic diameter as a function of time spent under heating at 103°C.
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occurring in a seemingly ordered manner consistent with the
hypothesis that brines containing higher levels of Ca2+ enable
preservation of colloidal integrity for longer periods of time;
with increasing Ca2+ concentration comes greater delays in
particle growth/aggregation, as monitored by DLS
(Figure 3B). As the DLS instrument measures each sample
in triplicate, average particle sizes were calculated and plotted,
with the standard deviation(s) included as y-error. Notably,
within the first 24 h (approx.) all 5 samples experience an
initial reduction/stagnation in particle growth which may be
attributed to a temporary dehydration effect that occurs in the
early stages of heating, leading to reductions in measured
hydrodynamic diameters of Dex-SPIONs.

Figure 4 summarizes the results of further investigations into
the singular, possibly stabilizing role of Ca2+ ions. Tap and
deionized water were included within the series of electrolyte
solutions as references. All Dex-SPION-containing dispersions
were found to be stable at room temperature (Figure 4A), both
initially and over time; however, precipitation of the deionized
water sample occurred after 23 days of heating at 103°C
(Figure 4B). Under the premise that calcium ions provide
stabilizing effects, the lack of calcium in deionized water
implies that no ion-specific stabilization is afforded;
survivability of the tap water sample, however, may be
attributed to the intrinsic calcium content of tap water (Morr
et al., 2006).

3.4 Ion Selective Electrode Measurements
Real-time analysis of calcium-dextran binding activity was
performed using a Ca2+- selective electrode, wherein dextran
solution was gradually titrated into electrolyte solution under
stirring and the changes in [Ca2+] measured. Experimental details
regarding electrode usage are outlined in the supporting
information. Prior to the addition of dextran solution, the
initial measured ionic activity of Ca2+ was 10.8 mM
(Figure 5); if we solely account for the effects of dilution, the
resulting Ca2+ activity upon completion of dextran addition
should be equal to 10.3 mM. The discrepancy between this
value and the measured value of 9.7 mM, however, indicates
the possibility of Ca2+ binding to the dextran periphery that
would then lead to a decrease in the presence of free calcium ions
able to be detected.

3.5 Oxidative Degradation of Dextran as
Studied by Gel Permeation
Chromatography
To better understand the extent of coating stabilization of our
Dex-SPION nanoparticles, we chose to examine the degradation
mechanics of dextran alone under exposure to reservoir
conditions, both at atmosphere (in the presence of oxygen)
and under deoxygenated conditions (N2 purged). Aqueous gel
permeation chromatography (GPC) provides a means to detect
changes in molecular weight distributions of dextran and its
degradative products based on size-exclusion principles. Our
results show that the molecular weight distribution of dextran
dissolved in both DI water and seawater (abbreviated as DI and
SW, respectively) does not change (after 7 days) with respect to
their respective room temperature controls, implying that
degradation does not occur even at elevated temperatures and
in the presence of oxygen (Figures 6A,B). Conversely, GPC
analysis of dextran dissolved in both brine and tap water
(abbreviated as LSB and Tap, respectively) shows changes in
elution volume and detector response that are indicative of

FIGURE 4 | (A) Dex-SPIONS dispersed in (left-to-right) tap, deionized
water, 0.5 mM CaCl2, 1 mM CaCl2, and 50 mM CaCl2 at room temperature.
(B) The same series after 23 days of heating at 103°C.

FIGURE 5 | Change in calcium ion concentration as a function of
dextran added.
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molecular weight fragmentation, in reference to the lowest elution
curve in each plot that represents samples sealed under regular
atmosphere and subjected to heating, labeled as LSB-100C-ATM
and Tap-100C-ATM (Figures 6C,D). To explain this
phenomenon, we postulate that elevated levels of Ca2+ present
in brine in comparison with seawater lead to maximized ion-
polysaccharide interactions, allowing the dextran polymer to
maintain an extended conformation. In this state, the polymer
is more prone to degradation via chain scission catalyzed by the
presence of heat and oxygen, causing changes in its molecular
weight distribution and resulting in the differing GPC elution/
detector response; presumably, the presence of calcium in tap
water also gives rise to similar results (Xue et al., 2014). Although
calcium is present in seawater, the concentration is much less
than in brine and as such, the relative abundance of magnesium
salts may exert opposing effects, as suggested by previous work
(Morr et al., 2006). The implications of this include poorer
solvation of dextran that causes the polymer to remain in a
shrunken conformation. In this condensed form, the probability
of chain scission is minimized as the polymer backbone is

shielded from its surrounding environment. In DI water,
dextran maintains this same conformation, thus accounting
for the lack of degradation observed.

3.6 Sand Pack Transport Experiments
The purpose of the sand pack column transport experiments is
twofold—1) to assess the mobility and stability of the Dex-
SPIONS as they traverse a porous medium; and 2) to study
the effect of ionic composition on the irreversible retention and
arrival time of the Dex-SPIONs. Firstly, the assessment of
mobility is important with respect to the robustness of the
dextran coating. The bulk of prior experiments herein are
performed in batch settings and the Dex-SPIONs are not
subjected to any shearing effects that may compromise the
coating. Although Ottawa sand is a relatively homogenous
porous medium compared to consolidated rocks in nature, the
tortuosity of the flow paths is significant enough to be deemed
suitable for evaluating the fate and transport of engineered
nanomaterials (Morr et al., 2006; Saleh et al., 2008; Xue et al.,
2014). Each experimental injection contains a Dex-SPION

FIGURE 6 | GPC chromatograms depicting elution of dextran dissolved in deionized water (DI), seawater (SW), low-salinity brine (LSB) and tap water (TAP),
including elution of its molecular weight fragments. RT = room temperature, 100C = heated sample, DG = degassed (purged with N2), ATM = sealed under regular
atmosphere.
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FIGURE 7 | Effluent breakthrough curves from column chromatography sand pack experiments showing the difference in the transport and mass recovery
between Dex-SPIONs in DI water and in various ionic solutions, i.e. API brine and calcium chloride (CaCl2) / sodium chloride (NaCl) solution.

TABLE 1 | Summary of results from sand pack transport experiments.

Nanoparticle source
& typea

Porous mediab Aqueous phasec Vdisp
d (ft/day) NP pulsee

(PV)
BTf (%) Retentiong (μg/g)

ASC Dex-SPION 40–50 mesh unwashed OS DI Water 2.5 1.0 77.8 30
ASC Dex-SPION 40–50 mesh unwashed OS API Brine 2.5 1.0 91.6 11
ASC Dex-SPION 40–50 mesh unwashed OS 8 wt% NaCl 2.5 1.0 90.7 13
ASC Dex-SPION 40–50 mesh unwashed OS 2 wt% CaCl2 2.5 1.0 91.1 13
ASC Dex-SPION 40–50 mesh unwashed OS API Brine 2.5 3.0 99.2 9
UT-Austin nMag39 40–50 mesh unwashed OS API Brine 2.5 3.0 80.1 72*

aASC Dex-SPION, Aramco Services Company – Dextran coated superparamagnetic iron oxide nanoparticle; UT-Austin nMag, University of Texas at Austin nano-magnetite (iron-oxide)
from Kmetz et al., 2016.
bOS, unwashed Ottawa sand, 99% quartz, 297–420 μm diameter grains.
cAqueous phase, salinity of fluid used to saturate the column and inject nanoparticle solution with; API brine, American Petroleum Institute brine comprising of 8 wt% NaCl and 2 wt%
CaCl2.
dVdisp, average injection velocity of displacement front across column.
eNP Pulse, Volume of injected nanoparticle solution in pore volumes.
fBT, percentage of recovered mass over injected mass aka breakthrough percentage.
gRetention, mass of nanoparticle irreversibly retained per mass of porous media; better known as normalized retention.
*Modeled max, solid phase retention annotated as Smax in publication.
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concentration of 625 ppm in their respective ionic solution and
spans a pulse width of 3 pore volumes.

Figures 7A–C show the normalized effluent concentration
curves of Dex-SPIONS in various ionic solutions compared to
those of Dex-SPIONs in DI water. The most telling artifact of
these experiments is the slight delay in the arrival of Dex-SPIONs
in DI water (shown by the red curves) in comparison with that of
Dex-SPIONs in ionic media, as well as the observation that parity
with the injected concentration does not quite reach C/C0 = 1.0
(100% of input concentration). Both the delays in arrival and lower
peak effluent concentrations are indicative of retention and perhaps
irreversible loss due to adsorption. The mass recovery of the Dex-
SPIONs as a function of eluted pore volumes is shown in Figure 7D.

To quantify Dex-SPION transport as a function of ionic
solution, a mass balance of the injected pulse and subsequent
flush of Dex-SPION-free ionic solution was kept to track material
not collected in effluent samples. Below in Table 1, a full
summary of the experimental results can be found. Even
though the results were considered to be extremely promising,
they could not be completely appreciated until an external
benchmark could be drawn for comparison. Thus, an
experiment in API brine with a Dex-SPION pulse width of
3 PVs was conducted with a setup and conditions equal to
that detailed in Kmetz et al., 2016. (Kmetz et al., 2016). In the
direct comparison, it is appropriate to compare total SPION
recovery given all other parameters were equal. Approximately
99% of Dex-SPIONs were recovered in effluent samples whereas
the external study recovered only about 80% of the injected
nanoparticles. Likewise, the solid phase irreversible retention
was approximately 7x′s larger in the external study.

4 CONCLUSION

In summary, the study detailed here describes and characterizes
the phenomena dealing with calcium-ion specific binding to
polysaccharides, namely dextran. Broader implications include
the stabilization of colloids within harsh environments, as
highlighted by recent efforts towards exploiting functional
nanomaterials for hydrocarbon exploration within subsurface
oil reservoirs as well as for production applications (Kanj
et al., 2011; Chen et al., 2015; Chen et al., 2016). In addressing
this issue, we show that superparamagnetic iron-oxide
nanoparticles (SPIONs) coated with dextran exhibit colloidal
stability at high temperatures over a period of several days, as

enabled by synergistic interactions between Ca2+ and the
carbohydrate periphery. While there still remain extensive
challenges to overcome, we hope that the observations
presented here serve as valuable contributions towards the
development of robust coating chemistries for materials
deployed not only for oil & gas applications but across
multiple industries.
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