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There are approximately 50 million people with epilepsy worldwide, even about 25% of
whom cannot be effectively controlled by drugs or surgical treatment. A wireless closed-
loop system for epilepsy detection and suppression is proposed in this study. The system
is composed of an implantable optrode, wireless recording, wireless energy supply, and a
control module. The system can monitor brain electrical activity in real time. When seizures
are recognized, the optrode will be turned on. The preset photosensitive caged
compounds are activated to inhibit the seizure. When seizures are inhibited or end, the
optrode is turned off. The method demonstrates a practical wireless closed-loop epilepsy
therapy system.
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1 INTRODUCTION

Epilepsy is a chronic brain disease characterized by transient central nervous system dysfunction
caused by the abnormal discharge of brain neurons. Clinical manifestations are symptoms of
motor, sensory, consciousness, and neural dysfunction (Mormann et al., 2006; Sterbova et al.,
2018). It affects approximately 50 million people worldwide, of which 25% have intractable
epilepsy (Bordey, 2021; Gao et al., 2021). For patients with intractable epilepsy, even the maximum
dose of drugs cannot fully inhibit seizures. The absorption and accumulation of antiepileptic drugs
will lead to significant side effects (Hoffman et al., 2020). Surgery is an effective therapy in the
treatment of refractory epilepsy. However, it has certain risks and easily produces sequelae (Dai
et al., 2020).

In recent years, researchers have devoted themselves to exploring other treatments for epilepsy.
Hristova et al. (2021) demonstrated that the optogenetic method could shorten seizures. The
optogenetic method can only be tested in animal models, the application of which in humans is
limited. Vagus nerve stimulation, transcranial magnetic stimulation, deep brain stimulation, external
electric field stimulation, and deep anesthetic treatment are also widely used in the treatment of
epilepsy (Rossetti et al., 2004; Kawai, 2008; Krishna and Lozano, 2014; Klinger andMittal, 2018; Yang
et al., 2019; Hu et al., 2020; Tsai et al., 2020). The parameters of these electric stimulation therapies
need to be continuously adjusted according to the patients and treatment stages (Sun and Morrell,
2014; Zheng et al., 2019; Takeuchi et al., 2021).
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Caged compounds, including caged-γ-aminobutyric acid
(GABA), such as ruthenium-bipyridine-triphenylphosphine-c-
GABA (RuBi-GABA), can be activated with light in epilepsy
treatment (Trigo et al., 2009; Lopes-dos-Santos et al., 2011).
Caged compounds are generally neurotransmitters or natural
proteins that can be absorbed by neurons quickly. Yang et al.
(2012) reported that RuBi-GABA with blue light could quickly
terminate the seizure activity. In the years that followed, the team
optimized the optimal concentration and light intensity of RuBi-
GABA to achieve the best inhibition effect (Wang et al., 2017).
RuBi-GABA contains a photolabile protecting group that can be
removed by exposure to light. Combined with RuBi-GABA and
light, targeted treatment of epilepsy inhibition can be realized
(Rothman et al., 2007; Yang et al., 2010). However, seizures are
identified by people and then give light to release RuBi-GABA
manually at present.

In this study, a closed-loop optical regulation system of seizure
detection and wireless light-controlled RuBi-GABA inhibition is
proposed. The effect of real-time seizure detection and
suppression is demonstrated in vivo. The system dramatically
shortens the seizure time. The wireless and closed-loop optical
regulation system provides a new method for epilepsy treatment.

2 MATERIALS AND METHODS

2.1 Reagents and Apparatus
Anhydrous lithium chloride (LiCl), pilocarpine hydrochloride,
and scopolamine methyl bromide were purchased from Macklin
Biochemical Corporation (China). RuBi-GABA was obtained
from Tocris Bioscience (Missouri, United States). Saline (0.9%
NaCl), red glue (LOCTITE 3611), and AB glue (Kafuter) were

obtained from Shuang He Corporation (China). Phosphate-
buffered saline (PBS, 0.1 M, pH 7.4) was obtained from Sigma
(China).

The instruments used in the experiment were an
electrochemical workstation (HUACHEN CHI660D, China), a
source meter (KEITHLEY 2450, United States), infrared thermal
imager (Fotric 220 s United States), optical power meter
(THORLABSPD100D probe S142C, United States), and
chemical vapor deposition apparatus (Specialty Coating
Systems PDS 2010, United States). Animals in the study were
anesthetized by using an isoflurane anesthesia machine
(RWD520, RWD Life Science, China).

2.2 Wireless Closed-Loop Optical
Regulation System
The wireless closed-loop optical regulation system for seizure
detection and suppression (WLCS) can be divided into two parts:
an implanted part and an external part. The implanted part is a
homemade optrode consisting of a microelectrode array (MEA)
and an LED probe. The external part is composed of the wireless
recording, wireless energy supply, and control module, as shown
in Figure 1. The optrode records the local field potential (LFP)
and gives light to the specified area. The wireless recording
module (Neuracle, China) is used to amplify the LFP and
transmit it to the control module. The control module is used
to receive, analyze the LFP, and send signals to turn on or off the
optrode. The control module is composed of a circuit and a
laptop. The circuit is composed of a single-chip microcomputer
(Arduino UNO R3, Italy) and one relay (Juying electronic,
China), which is used to receive the signal sent by the
computer and control the opening and closing of the wireless

FIGURE 1 | System block diagram of the wireless closed-loop system for epilepsy detection and suppression. The illustration is a physical picture.
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energy supply system. The wireless energy supply module
(XKT801-05, China) provides energy for the optrode through
the principle of electromagnetic induction to generate the LED
light. The wireless energy supply system consists of two parts: the
transmitter circuit uses a chip to generate an alternating current
(AC) signal of 180 kHz. Then, this signal is amplified by an
amplifying circuit to supply power to the inductor. The
inductance is 13 μH with 20 cm in diameter and wound by a
copper wire with a diameter of 1 mm. The receiver circuit uses the
LC (C:330 pF in 0402 L: 2.2 mH in CD43) network to receive
energy from the optrode.

The LFP during seizures has the characteristics of high
frequency and large amplitude. Three characteristic
parameters, amplitude (AMP), slope (SLP), and line length
(LL) are defined to make predictions. When the LL is greater
than a threshold, it can be preliminarily determined as a seizure.
LL alone as a criterion may lead to misjudgments. To enhance
the algorithm’s robustness, the amplitude (AMP) and slope
(SLP) of the LFP are added as criteria. The calculation
formulas of AMP, SLP, and LL are as follows (White et al.,
2006; Xu et al., 2019):

AMP � 1
N

∑
N

i�1abs[x(i)] , (1)

SLP � Max[x(i)] −Min(x(j))∣∣∣∣i − j
∣∣∣∣

, (2)

LL � ∑N−1
i�1 abs[x(i + 1) − x(i)], (3)

where N represents the length of the data window, and x(i)
represents the sampling data.

The key to accurately judging seizures lies in the
determination of three thresholds. In the experiment, the
LFP in the normal state was recorded for at least 10 min, and
three characteristic parameters were calculated every 5 s. The
average values (AAMP, ASLP, and ALL) and standard deviation
(SAMP and SSLP) of AMP, SLP, and LL are obtained. The
thresholds for seizures are set as follows, where d is an
integer and k is also an integer:

AMP threshold:

TAMP � AAMP + SAMP × d. (4)
SLP threshold:

TSLP � ASLP + SSLP × d. (5)
LL threshold:

TLL � ALL × k. (6)
The LFP is collected through the wireless EEG recording

system. The sampling frequency is 1 kHz, and the flow chart
of the seizure detection algorithm is shown in Figure 2. The
collected signals are processed by down acquisition
(250 Hz), filtering (2–100 Hz), and notching (50 Hz). The
AMP, SLP, and LL of the LFP are calculated every 5 s and
compared with the thresholds; when the AMP, SLP, and LL
are greater than the corresponding threshold
simultaneously, set the seizure flag and the wireless
energy supply signal to 1. Then, the relay is turned on to
make the wireless energy supply system work. The optrode is
light on, and RuBi-GABA is active.

FIGURE 2 | Flow chart of the seizure detection algorithm.
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2.3 Design, Fabrication, and Assembly of
the Optrode
2.3.1 Microelectrode Array Fabrication Process
The optrode is fabricated by integrating a silicon microelectrode
array (MEA) with an LED probe. The size of the recording point
on silicon MEA is 20 μm, the spacing between recording points is
200 μm, and the length is 5 mm. The detailed preparation process
is shown in our previous study (Chen et al., 2014). The
straightforward fabrication process is demonstrated in
Figure 3A: the SOI wafer is cleaned with standard methods;
SiO2 is oxidized as the lower insulating layer; the metal is
deposited and is patterned by stripping; the SiO2/SiNx/SiO2

insulating layer is grown as the upper insulating layer;
recording points and solder joints are exposed; photoresist is
used as a mask layer, and the needle shape is etched; and theMEA
is released from the silicon wafer.

2.3.2 LED Fabrication Process
The LED probe was prepared on a sapphire substrate with a
needle length of 5.5 mm, a width of 195 μm, and a luminous
surface size of 87.5 μm × 4000 μm. The preparation process is
shown in Figure 3B. For the specific preparation process, please
refer to the study published by our group (Zhang et al., 2016; Li
et al., 2021), briefly introduced as follows: a. indium tin oxide
(ITO) is grown on the cleaned sapphire epitaxial wafer; b. the
P-type luminous area is defined ; c. N-type mesa is defined; d.
SiO2 is deposited as the passivation layer; e. photolithography
passivation layer to corrode SiO2; f. metal lines are patterned,
and metal electrodes are allowed to evaporate; g. the metal is
peeled off of the nonelectrode; h. the insulating layer is
evaporated by PECVD; finally, the LED is released by laser
cutting. Then, parylene was grown as an anti-liquid
penetration layer.

2.3.3 Integration of MEA and LED Probes
MEA and LED probes are pasted on a printed circuit board (PCB)
with red glue under an operating microscope. The MEA and LED
probes need to be closely adjacent to reduce implantation
damage. The MEA and LED probes are connected to the PCB
through gold wires and used for signal transmission and LED
power supply. At the same time, the power receiving module
(inductance and capacitance) is welded on the PCB. Finally,
waterproof resin is used to seal the circuit. Figure 4A shows
the optrode packaged on the PCB, and the sealed device is shown
in Figure 4B.

2.4 In Vivo Experiments
Male Sprague–Dawley rats (250–300 g, 8–10 weeks) were
purchased from Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China) for epilepsy modeling. All rats were
placed in a 12-hour light/dark cycle with temperature and
humidity maintained at 22 ± 2°C and 40 ± 5%. All
experiments were performed with the permission of the
Beijing Association on Laboratory Animal Care, license
number SYXK(JING)2020-0045.

Temporal lobe epilepsy (TLE) is a recurrent and unpredictable
neurological disorder which is associated with dysfunction of
neuronal circuits in the hippocampus (Janz et al., 2017). In this
study, we built the TLE model as follows: Lithium chloride
(127 mg/kg) was injected intraperitoneally into rats. After a
duration of 18–20 h , scopolamine (1 mg/kg, i. p.) was injected
to reduce cholinergic injury of the peripheral blood to the nervous
system, and pilocarpine (10 mg/kg, i. p.) was injected 30 min
later. Rats with stage IV or V seizures within 30 min after
pilocarpine injection were considered as successful TLE
epilepsy models. They were tested when they entered the
incubation period.

FIGURE 3 | Preparation process of (A) MEA and (B) LED.
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The rats were fixed on a stereotactic platform. Craniotomy was
performed under isoflurane anesthesia. Isoflurane at a 4–5%
concentration was used for induction, and 0.5–2% was used to
maintain general anesthesia. Meanwhile, the rats were warmed
with a 37°C heating pad. A stainless steel nail is fixed to the skull
above the cerebellum to connect the ground wire and reference
line. According to the rat brain atlas of Pacinos and Watson, one
position of the drilling hole is AP—3.6 mm, ML 2.2 mm, which is
used to implant the optrode into the CA3 of the hippocampus,
according to trajectory 1, and the other position is AP—3.6 mm,
ML—1.0 mm, which is used to inject the RuBi-GABA solution,
according to trajectory 2, as shown in Figures 4B,C. 20 μL of the
RuBi-GABA solution (5 mM, dissolved in normal saline) was
microinjected via a syringe pump in the dim circumstance with a
red lamp. In addition, 20 μL of normal saline was injected instead
in the control experiment.

3 RESULTS

3.1 Characterization of the Optrode
Performance
The impedance of the optrode determines the signal-to-noise
ratio of the recorded LFP. The platinum electrode and the
optrode were inserted into 0.1 M phosphoric acid buffer to
test the impedance at frequencies from 1 Hz to 100 kHz. The
three-electrode test system was used to measure the impedance of
the optrode, in which the platinum electrode is used as the
reference electrode and the counter electrode. The results are
shown in Figure 5. The impedance and phase meet the
requirements of neural signal recording (Kozai et al., 2016;
Schander et al., 2016). The micro morphology of the electrode
is shown in Figure 5A through a SEM (scanning electron
microscope).

FIGURE 4 | (A) Optrode packaged on the PCB (B) Conditions monitoring under anesthesia (C) Optrode is implanted into the hippocampal CA3 region.

FIGURE 5 | Characterization of optrode electrical properties (A) Impedance, illustration is the SEM of the electrode point. (B) Phase.
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The optical and thermal performances of the optrode are
characterized. It can be seen from Figure 6 that the turn-on
voltage of the optrode is approximately 2.6 V. The optical power
increases linearly with the increasing current, providing enough
optical power required for RuBi-GABA activation. The optrode
cannot convert all the electrical energy into light energy. It will
cause the temperature to rise in the brain, which directly or
indirectly affects the action potential and the LFP of neuronal
groups (Long and Fee, 2008). It is generally considered that a
temperature rise <1°C is acceptable (Shen and Schwartzkroin,

1988). The temperature is 29.9°C with the optrode off and rises to
30.6 -°C when the optrode is derived with a voltage of 2.8 V. The
heat dissipation in the brain is better than that in the air.
Therefore, it is considered that the optrode’s temperature rise
is negligible.

The amplitude of the LFP is commonly approximately
10–1000 μV, and it is easily disturbed by noise (Santhanam
et al., 2006). When recorded with the optrode, the external
power supply and the light will interfere with the recording of
the LFP. To assess the interference, the optrode is inserted into

FIGURE 6 | Characterization of the optical and thermal properties of the optrode (A) Current–Voltage curves, illustration is the emission wavelength (B)
Current–Power curves (C) Initial temperature (D) Temperature of the optrode after the power is on.

FIGURE 7 | Noise test of the optrode (A) Picture of the optrode on (B) Bottom noise when the optrode is off (C) Bottom noise when the optrode is on.
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the PBS solution to simulate the internal environment. The
noise floor is recorded when the optrode is turned on and off.
Then, the data pass through a bandpass filter (1–200 Hz). The
filtered data are shown in Figure 7. The noise floor is
approximately 10 μV when the optrode is off. When the
wireless energy supply system works and the optrode lights
up, the noise floor is probably 15 μV. By comparison, noise will
be introduced when the wireless energy supply system is
working and the optrode is turned on. However, the
influence is relatively small, and a good signal-to-noise ratio
can still be obtained.

3.2 Analysis of the Threshold Value
Threshold affects the accuracy of seizure detection. It can be seen
from the threshold formula that the values of parameters d and k
affect the threshold. Seizures are determined only when the AMP,
SLP, and LL exceed the threshold entirely. While paying attention
to the seizure detection rate, we also showed solicitude for the false
detection rate of the seizure (determining the normal signal as the
epileptic signal). The values of d and k affect the true detection rate
and false detection rate of seizures. The greater the values of d and
k, the greater are the thresholds of AMP, SLP, and LL. Eight
channels of LFP data were collected in the experiment. Because
each channel is located in different positions of the rat brain, we
calculated the threshold of each channel separately. Table 1 shows
the effect of the threshold on seizure detection of one channel and
more than four channels. Table 1 shows that with increasing d and
k, the detection rate and false detection rate of seizures decrease at
the same time. For the same parameter, the detection rate of more
than four channels is higher than that of one channel, and the false
detection rate is lower. Seizures are determined only when more
than half of the channels detect seizures, further ensuring a high
detection rate and low false detection rate. When epilepsy occurs,
the optrode will be turned on, and the drug will be released. To
reduce drug release mistakenly, we adopted threshold parameters
(d = 3 and k = 2) in real-time detection.

3.3 Analysis of Normal and Seizure Activities
in the Acute TLE Model
The LFP can be used to judge whether epilepsy occurs. The
experiment results for the control group just for optical
stimulation with saline injected are shown in Supplementary
Figure S1. Supplementary Figure S1 shows the local field
potential (LFP) of a channel. When no RuBi-GABA was injected
and only saline was injected, it will not affect the epileptic activity. In
the experiment, the LFP of rats in the normal, seizure, and RuBi-

GABA release was recorded, as shown in Figure 8. During seizures,
rats have apparent convulsions and salivation, sometimes
accompanied by a squeak. To verify whether RuBi-GABA works
after light irradiation, we used a self-control approach. First, the relay
is de-energized manually, and seizures are allowed to last for a while.
Combined with animal behavior and seizure detection algorithms,
the time of seizure occurrence can be determined. As shown in
Figure 8, compared with the normal signal, the signal amplitude and
frequency increased significantly during seizures. Before light was
given, seizures continued. After the seizure lasted a few minutes, the
relay is energizedmanually. Then, the algorithmdetected the seizure,
the wireless energy supply system started to provide energy, and the
receiving coil received energy to light the optrode. The intensity is
1.03mW. After 10 s of illumination, the amplitude and frequency of
the LFP decreased, which is due to the release of RuBi-GABA which
can be activated with light in epilepsy treatment, and the algorithm
detected that seizures stopped. The control signal was sent to the off
state, and the wireless energy supply system stopped working. It can
also be seen from the behavior of rats that the convulsion was
weakened, so it was judged that the seizure had been inhibited. The
feasibility of this wireless energy supply system in seizure detection
and suppression was verified by recording the LFP and frequency
spectrum analysis of rats in normal, epileptic, and light supply
conditions.

4 DISCUSSION

Table 2 lists a few seizure detection and inhibition systems
published previously. Through the comparison, it can be seen
that this study innovatively introduces the optrode into the
closed-loop system of seizure detection and suppression. The
optrode consists of MEA and LED probes. Compared with the
preparation of monolithic integrated optrodes, this preparation
method has the following advantages: on the one hand, the MEA
and LED probes are prepared on different substrates. The
separation of MEA and LED probes in space distance and
heavily doped silicon substrate can significantly reduce
crosstalk. According to published studies (Fang et al., 2015;
Kim et al., 2020; Wang et al., 2021), there are two sources of
noise: first, when the wireless energy supply system works, it will
introduce electromagnetic interference by supplying power to the
LED probe through electromagnetic induction; second, when the
LED probe is turned on and illuminated on the silicon substrate,
it will produce the photovoltaic effect. The MEA used in the
experiment was prepared on a heavily doped silicon substrate,
which suppressed noise to a large extent (Wei et al., 2020).

TABLE 1 | Effect of the threshold on seizure detection.

Parameter value False detection rate (1 channel) False detection rate (≥4 channel) Detection rate (1 channel) Detection rate (≥4 channel)

d = 1, k = 1 0.37 0.42 0.78 0.86
d = 2, k = 1 0.23 0.214286 0.78 0.85
d = 3, k = 1 0.20089286 0.142857 0.77 0.84
d = 3, k = 2 0 0 0.74 0.80
d = 3, k = 3 0 0 0.73 0.79
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On the other hand, the waterproof performance is improved.
After the LED probe is prepared, a layer of FDA-certified
biocompatible, insulated, waterproof film parylene is
encapsulated. The LED encapsulated by parylene can work
normally in the sodium chloride solution for more than 60 days.

The seizure detection algorithm of this system distinguishes the
normal LFP from epileptic LFP through a threshold judgment. It
has the characteristics of fast processing speed and a small amount
of calculation, but it has not been entirely accurate. It is difficult to
determine the starting point of seizures because of the significant
individual differences between rats and the asynchrony of the LFP
and behavioral abnormalities. In addition, if abnormalities in the
LFP can be detected before a seizure, it can be treated when
epileptic behavior does not occur in rats to avoid the
occurrence of epileptic behavior. For this exploration, we will
refer to other algorithms to improve the real-time and accuracy
of seizure recognition. For example, Bolus et al. (Bolus et al., 2021)

established a general framework for continuously modulated
closed-loop optogenetic control of neuronal circuits, which
applied the state-space linear dynamical system model structure
and with linear quadratic optimal control. Fang et al. (Fang and
Yang, 2021) also developed a new discrete-time robust and
adaptive closed-loop control algorithm. They all significantly
improved the performance of the closed-loop control system
and provided a method for further study of brain function.

5 CONCLUSION

In this study, a wireless closed-loop optical regulation system for
seizure detection and suppression is designed and built. The
closed-loop system innovatively combines the electrical signal
recording and photosensitive-caged compound therapy and
adopts the wireless signal recording, energy supply, and

FIGURE 8 | Time domain and frequency domain diagram of the LFP and control signals in normal, epileptic, and light-exposed conditions.

TABLE 2 | Comparison of epilepsy detection systems.

System Recording Channels Stimulation Ref.

Closed-loop LFP (Optrode) 8 Light + RuBi-GABA (Optrode) This work
Closed-loop LFP (wire electrode) 4 Electric (wire electrode) Zheng et al. (2019)
Closed-loop LFP (flexible electrode) 3 Electric (flexible electrode) Berényi et al. (2012)
Open-loop EEG (screw electrodes) 2 Light + RuBi-GABA (fiber) Wang et al. (2017)
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wireless signal transmission. Through animal experiments, the
functions of the whole closed-loop system in LFP real-time
monitoring, seizure detection, wireless energy supply, light to
release RuBi-GABA, and inhibiting seizures are verified, which
provides a new treatment method for epilepsy treatment.
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