
Nanocontainers Against Biofouling
and Corrosion Degradation of
Materials: A Short Review With
Prospects
George Kordas*

Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia

The current state of the art in active corrosion prevention is based on the use of
macromolecular containers that can store and release corrosion inhibitors particularly
to the surface when corrosion develops. These corrosion inhibitor-containing nano- or
microcontainers are subsequently infused into coatings, allowing them to self-heal.
Especially, nanocontainers for self-healing coatings with controlled corrosion inhibitors,
energy storage, cement fracture repair, and antifouling metal protection have recently been
developed. Incorporating these nanocontainers into materials in small amounts (e.g.,
5–10 wt% in paints) provided anticorrosion protection that was incomparably better than
the current approaches. Furthermore, the materials developed had multifunctional
properties, including self-healing, antibacterial, and antimicrobial properties. The
primary goal of this review was to compile the different research studies that have
been published in a variety of publications so that the reader may better understand
the potential of these new types of nanotechnology and the prospects for nanocontainers.
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INTRODUCTION

Nanocontainers have stimulated our research group to apply them to medicine (Efthimiadou et al.,
2011; Lelovas et al., 2018), catalysis (Kartsonakis et al., 2008), implants (Angelopoulou et al., 2015),
metal protection (Montemor et al., 2012), energy (Kordas, 2021), biofouling (Kordas, 2020a), and
cement (Kordas, 2021). The main motive for developing nanocontainers was the possibility of
encapsulation of substances inside them and their release there and when necessary to act on its
target, e.g., targeted cancer therapy (Kordas, 2022), and self-healing of corrosion (Kartsonakis et al.,
2013a; Kordas et al., 2015). The triggers used to release the substances trapped in the nanocontainers
are internal or external, such as temperature (Kordas, 2019a), redox (Kordas, 2019a), pH (Tapeinos
et al), rf-field (Chatzipavlidis et al., 2011), and chemical potential on the surface of the corrodedmetal
(Kartsonakis et al., 2013a). Hollow nanocontainers are produced following three steps: core
production, coating production, and removal of the core via thermal (polystyrene core) or dilute
HF solution (silica core) treatment (Kordas, 2019b).

Other groups followed a different path for incorporating corrosion inhibitors within nanocrystalline
layered double hydroxide (LDH)-based nanocontainers. These nanocontainers consist of layered double
Mg/Al and Zn/Al hydroxides with vanadium incorporated in the interlayer zones. The LDHs release the
inhibitors on demand (Shchukina and Shchukin, 2019). We studied the beneficial effect of self-healing
combining the two nanocontainer systems, namely, CeMo and LDH nanocontainers (Montemor et al.,
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2012). We attributed the observed phenomena to the different
release kinetics of the inhibitors from the nanocontainers.

The purpose of this article was to gather the scattered literature
on nanocontainers to review the state of the art of the impinging
technology in self-healing of coatings and to highlight the
opportunities arising from this technology. The discussion will
be limited to the autonomous self-healing of materials and the
antifouling technology that we developed in the sol-gel laboratory
of the National Center for Scientific Research (NCSR) Demokritos.
In addition, we developed technologies for self-healing of concrete
(Kordas, 2021), energy storage (Belessiotis et al., 2018) and
absorption (Kordas, 2020b), and quadrupole stimuli-responsive
nanocontainers for targeted cancer therapy in the same laboratory
(Tapeinos et al., 2016). We will not discuss these technologies here
but refer the reader to the existing literature.

CONCEPT OF THE MULTILEVEL
PROTECTION APPROACH

Figure 1 summarized the active ingredients incorporated into the
protective system that respond to different types of mechanisms
of destruction due to the external environment:

1) The first level of protection consists of CuO or ZnO
nanocontainers enriched with bromosphaerol or SeaNine©.
Next, antimicrobial action occurs via TiO2 nanocontainers.

2) The second level of protection comprises water and chlorine
nanotraps.

3) The third level of protection involves the encapsulation of
inorganic anticorrosion substances (corrosion inhibitors) in
different types of micro/nanocontainers (CeO2 (5-ATDT) or
CeMo (8-HQ)) that will, upon release, suppress corrosion.

The technology we developed uses nanocontainers on the
coatings of the order of 5–10% with multiple coatings to achieve

multifunctionality of the protection system. In addition, some
nanocontainers perform multiple functions on the coatings.

In the following, we focus on (I) antifouling protection for
metals used in ships and (II) the anticorrosion protection that we
can use in the transport industry (cars and aircraft).

BIOFOULING PROTECTION VIA
NANOCONTAINERS

Biofouling is a process that occurs on the skeletons of ships via the
accumulation of organisms or rust on them. Thus, one can divide
the development of pollution into two factors. The chemical
factor is due to the corrosive processes on the marine structures
developing rust and other corrosive products, and the organic
factor is due to fouling occurring gradually, which is more evident
in a marine environment than in freshwater. A metallic surface
exposed to the atmosphere or an electrolyte acts automatically as
an ion conductor, where load-carrying reactions (electrons) take
place in the interface of the metal and the electrolyte, resulting in
corrosion of the metal. Thus, corrosion of a metal is a destructive
attack through an electrochemical reaction with the environment.
Organisms that cling persistently to the skeleton of a ship slow
down the speed of its journey. The result is that its efficiency
decreases (Singh and Turner, 2009). Solutions to this problem
have been attempted using different technologies with different
results. One used natural products such as wax, tar, and asphalt,
and wooden inserts with fat, tar, and studs placed next to each
other to create a metal shell. Other tests used rubber, vulcanite,
and cork, and were soon discarded due to high cost and difficulty
of application. Others used copper as a nail attached on zinc,
nickel, steel, and other materials but were soon discarded, as well
as the bronze exterior with iron pins due to their corrosion. In
1950, studies included the use of organo-metallic dyes with tin,
arsenic, and mercury, leading to the discovery of tributyltin
compounds (TBT; (C4H9)3Sn), but were discarded due to

FIGURE 1 | Multilevel protection of metals via nano/microcontainers. BR, bromosphaerol; 8-HQ, 8-hydroxyquinoline; CeMo, cerium/molybdenum oxide; CuO,
copper oxide.
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their toxicity, primarily to oysters, snails, and shellfish (Carlsson
et al., 2000). Nowadays, copper oxide used in commercially
available antifouling has been found to be very detrimental to
marine organisms, although aquatic species differ greatly in their
sensitivity to the heavy metal. Some animals, such as mollusks,
can tolerate high concentrations of the metal, while others are
adversely affected by very low concentrations of copper. In
general, copper toxicity mechanisms involve the inhibition of
some key respiratory enzymes, the generation of oxygen species
(ROS), and changes in gene transcription especially related to
oxidative stress (Kiaune and Singhasemanon, 2011). Some Baltic
Sea countries limit the use of copper to incorporating them into
antifouling paints. Due to environmental concerns, the Swedish
authorities placed restrictions on the use of copper antifouling
paints for recreational boats in 2000. However, this restriction has
been lifted today in Sweden, where biocides are allowed in a
limited concentration, including copper. In Denmark, there are
restrictions on the use of copper in paints for recreational boats
(HELCOM et al., 2010). The requirement (HELCOM et al., 2010)
is a limited copper release rate in the color of 200 μg Cu/cm2 in
14 days and 350 μg Cu/cm2 after 30 days (Baaner and Anker,
2015). It is also forbidden to use antifouling paints on boats that
sail mainly in freshwater (Kordas, 2019a). Netherlands has
proposed to abolish the use of copper in antifouling paints in
small boats but changed the policy after the EU’s scientific
committee responsible for health and environment concluded
in a study that there is no satisfactory evidence of damage to
health caused by the use of copper. So, the Dutch government has
prevented its use in antifouling (HELCOM et al., 2010). Today,
no such restrictions are imposed on large ships, and copper is
used in percentages ranging from 26 to 76 wt%, along with zinc
and SeaNine©, to act against the growth of organisms (Kordas,
2019a). However, because zinc is a weak biocide, copper is added
to the paint, thus increasing the toxicity of the final product. Some
organisms are still resistant to inorganic Cu and Zn, so it is
possible to enrich the antifouling paint to improve its properties
by adding other ingredients that support biocidal products
containing Cu, Zn, or others (Magin et al., 2010). Sea-Nine
211© is another example that is known to act against
nontarget phytoplankton, bivalves, echinoderms, and ascidians
by causing embryotoxicity, larval mortality, and immunotoxicity
(Cima et al., 2013). Today, there is a demand to find natural and
environmentally friendly antifouling compounds (Callow and
Callow, 2002). Much effort has been directed toward
identifying such natural compounds that may act as
antifoulants (Burgess et al., 2003). In the marine environment,
some organisms are equipped with natural physical or chemical
defense mechanisms against fouling (Hellio et al., 2000). Several
marine metabolites show significant levels of antibacterial,
antifungal, antiprotozoal, and antimacrofouling properties and
have good potential to be developed as additives for antifouling
paints (Ali et al., 2002). There are many demonstrable examples
of marine organisms that resist epibiotic biofilms, including
several species of algae that contain a diverse spectrum of
chemical entities with antifouling activity. Algae seem to be
chemically protected by surface-bound or continuously
released water-soluble compounds that can deter invertebrate

larvae from settling. Algal metabolites can affect some settling
organisms’ development and grazing behavior, pointing to
chemical antifouling mechanisms. Such bioactive secondary
macroalgae metabolites can be developed into new eco-
friendly antifouling paints. This research field has been quite
fruitful (Turner, 2010), and recently, bromosphaerol was
identified as a naturally occurring diterpene from the red algae
Sphaerococcus coronopifolius (Hellenic, 2015) and was found to
inhibit the settlement of barnacles on painted substrates. The
antifouling activity of this compound has been tested in
laboratory assays. It is important to test such compounds in
commercial paint formulations to determine if they are active
when included in an antifouling coating. Testing of compounds
after incorporation into paints is extremely important for
assessing their potential use as a commercial antifouling agent.

In the epoch of nanotechnology, scientists attempted to solve
the problem by using 2 wt% of CeO2−x nanorods in the paints
(Herget et al., 2017). The technology was tested in the laboratory
and the field. Another team developed vanadium pentoxide
nanowires incorporated into ship paints as anti-biofouling
agents (Natalio et al., 2012). A large number of scientists tried
to mimic the surfaces of sharks, mussels, and crabs that do not
exhibit biofouling (Piola et al., 2009; Magin et al., 2010; Xu and
Siedlecki, 2012; Chapman et al., 2014). In the field of biocides, a
research group isolated bromosphaerol from red algae of the
genus Laurencia found in the sea near Corfu (Protopapa et al.,
2019). We incorporated bromosphaerol into CuO and ZnO
nanocontainers, which exhibited excellent antifouling
properties (Kordas, 2020a; Kordas, 2020).

CeMo nanocontainers loaded with 8-hydroxyquinoline (8-
HQ) have been synthesized by our sol-gel laboratory as described
in recent literature (Kordas, 2020). Additionally, we produced
CuO and ZnO nanocontainers filled with bromosphaerol and
SeaNine© (Kordas, 2020a). We obtained commercial paints from
Wilkens and Re-Turn, containing our nanocontainers but not
including any extracts. The nanocontainers mix very well with the
commercial paints. We used two commercial paints and not
paints of our laboratory because no shipping company will accept
to paint its ships with commercially unknown paints that have
not passed the approval process. We tested the paints in the
seawater of Mikrolimano, a few kilometers from the Piraeus
harbor, and other samples in the harbor of Singapore. We
constructed a test facility consisting of a tube and a propeller
rotating to move the seawater inside the tube at a speed of 14
knots and placed our test samples in the tube. We wanted to
observe results corresponding to a ship moving with the
mentioned velocity. We took the samples from the tubes after
3 months for further laboratory examinations. We placed the
samples on a platform in the Singapore experiment for more than
35 months without significant fouling (Kordas, 2020a).

Figures 2A–F summarize the frequency response analysis
(FRA) results of this study and present the SEM micrographs
of the nanocontainers (top) and paints (bottom) of the
measurements.

The top part of Figure 2 shows the SEM micrographs of the
CeMo (left), ZnO (middle), and CuO (right) nanocontainers
incorporated into the paints. One can also observe the TEM
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picture of the CuO nanocontainers on the right top of this figure,
indicating their porous structure allowing the load and release of
the active agents. The bottom part of Figure 1 shows the image of
the primer (~90 μm), primer + anticorrosion paint (~70 μm), and
primer + anticorrosion + antifouling (~100 μm) paint. The

identical Figure 2 shows the FRA measurements of paints
with compositions indicated below each FRA graph.
Figure 2A shows that the FRA measurement of the primer
drops considerably after exposure of the sample for 3 months
to sea at the port of Mikrolimano. Figure 2B shows poor

FIGURE 2 | (A) FRA of the primer, (B) FRA of the primer and anticorrosion paint with 5 wt%CeMo (8-HQ), (C) FRA of the primer, the anticorrosion layer with 5 wt%
CeMo (8-HQ), and the antifouling topcoat with 5 wt% CuO (BrSp), (D) FRA of the primer, anticorrosion paint with 5 wt% CeMo (8-HQ), and the antifouling topcoat with
5 wt% CuO (SN)–ZnO (SN), (E) FRA of the primer, anticorrosion paint with 5 wt% CeMo (8-HQ), and the antifouling topcoat with 5 wt% CuO (SN)–ZnO (SN), (F) FRA of
the primer, Wilkens anticorrosion, and antifouling paint. The symbol “after” in the graphs means 3-month exposure to seawater. Top figure: SEM of the CuO, ZnO,
and CeMo nanocontainers as produced in the literature (Kordas, 2020a). The top right figure shows the TEM micrograph of CuO nanocontainers. The bottom figures
present the SEM micrographs of the paints.
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anticorrosion resistance of the sample containing the primer and
the anticorrosion paint starting with a |Z| greater than 5 109Ω
before and |Z| about 108Ω after exposure to seawater for
3 months. One can perceive from measurements shown in
Figures 2C-E a significant improvement of the anticorrosion
performance of the samples: |Z| does not change after exposure to
seawater after 3 months.

We noted that the |Z| increases significantly after 3 months of
exposure to marine water in the sample shown in Figure 2D. This
outcome is due to the self-healing phenomenon observed in all
our coatings containing nanocontainers loaded with inhibitors
(Montemor et al., 2012; Kordas et al., 2013). At this point, we
discuss the measurements made on coatings of Wilkens SA
shown in Figure 2F. The measurement for this sample shows
a significant drop in the |Z| from 1010Ω to 510 Ω (Kordas, 2020),
which proves that the samples in Figures 2C-E passed the test,
demonstrating better performance.

Samples produced with the commercial paints from Wilkens
and Re-Turn were exposed to a marine environment for many
months, and results pertaining to the antifouling protection they
offer to the metal were evaluated in the laboratory. Figure 3
shows a typical result of a sample that was exposed for 36 months
to the marine environment of Singapore. We observed fouling
mostly composed of sediments, slime, and green algae. Very few
tubeworms were found. We did not observe other foulers on the
substrate.

This laboratory finding will have a commercial application if
we prove that paints based on nanotechnology will have better
results than commercial paints in the sea environment. This led
us to work with Wilkens and Re-Turn, and we painted a small

section of two ships. Figure 4 shows the strip we painted in the
Sea Anemos passenger ship traveling across the Adriatic Sea
between Ancona and Patras for a year. The ship was taken out
in a yard after a year (shown in Figure 4), and no fouling contrary
to the other part of the ship with commercial paint was found.We
observed the same result for the ship painted with the Re-Turn
paint (Kordas, 2019a; Kordas, 2020a; Kordas, 2020).

We used 5% CuO nanocontainers in the paints, whereas
today’s commercial technology uses 40–76% copper in paints.
Copper reduction with improved properties makes this
technology very attractive. Moreover, we used bromosphaerol,
a compound taken from the sea. In other words, our technology
will not require extra costs to approve its use. All these make our
technology more applicable and effective.

Other technologies to solve the biofouling problem are
available in the literature. One idea is to detach the
microorganisms from the epidermis of the metal in the way it
is achieved with the shark’s skin, which consists of small
triangular surfaces of geometric length ~350 μm, with gaps
between them of the order of 70 μm (Kordas, 2020b). This
structure does not allow the deposit of microorganisms
permanently on the shark’s skin because the movement rinses
away the fouling products. This hypothesis in our case, like
others, must prove more convincing, but the result is that this
surface prevents the establishment of algae, barnacles, and
bacteria.

Modification of polymer surfaces with different molecular
structures that determine their length can lead to a new
surface with a wide variety of biosystems. For example,
addition of a PEG layer with a co-polar connection to a
polymer substrate reduces bacterial adhesion (Kordas, 2019a).
Another work showed that PEG-based coating inhibits the
adherence of proteins, bacteria, and mammalian cells (Stobie
et al., 2008; Chapman et al., 2010; Hench and Thompson, 2010;
Francolini et al., 2012; Zhao et al., 2018). A sequence poly
(L-lysine) (PLL)–PEG creates a coating that prevents cell
adhesion, such as that of fibroblast and osteoblast cells (Gillies
et al., 2004; Peleshanko and Tsukruk, 2008; Ma et al., 2012). The
disadvantage of PEG-based systems is the lack of stability that is
often observed over time (Banerjee et al., 2011; Charnley et al.,
2011; Qian et al., 2013) and is the main reason it is not used. A
successful coating involved attaching vancomycin to aneseline
chromosomes via a PEG connector (Cutler and Cutler, 1999;
Manahan, 2003; Andreas et al., 2011; Charnley et al., 2011). The
aneseline chromophore allows strong connection to TiO2

surfaces and vancomycin provides antimicrobial action.
Polyexamethylene biguanides (PHMBs) can also be used as a
potential antimicrobial agent (Lubell, 2001; Charnley et al., 2011).

The biocides we use today are small molecules that must be
delivered on demand. One must guarantee a life expectancy of
about 5 years in the seawater environment. In this study,
antifoulant immobilization is achieved by trapping
bromosphaerol, SeaNine©, and 8-hydroxyquinoline into
nanocontainers, where the actual diffusion coefficient is
controlled by the porosity of the nanocontainers and the
dissolution kinetic. Diffusion control of molecules
incorporated into nanocontainers was proven in previous

FIGURE 3 | Sample with copper oxide nanocontainers loaded with
SeaNine© incorporated into Re-Turn paints exposed to the seaport in
Singapore.

Frontiers in Nanotechnology | www.frontiersin.org March 2022 | Volume 4 | Article 8139085

Kordas Nanocontainers Against Biofouling and Corrosion

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


studies by our group (Kartsonakis et al., 2008). Immobilization of
biocides in antifoulant paints was carried out with Cu2+ and Zn2+

nanoparticles, where a different adsorption and release profile
was observed depending on the type of metal (Saji, 2019). The
biocides incorporated into the nanocontainers in this work may
be connected to the inner surface of the metal or stored freely
inside the containers. Therefore, different release kinetics of
biocides could be achieved depending on the external conditions.

We know from previous studies the behavior of Cu and Zn
elements in their antifouling ability (Kordas, 2019a; Kordas,
2020a). We also note that the anticorrosion property is close
to 10E10 (Kordas, 2021) in the CeMo (8-HQ) coating measured at
10E8 (Kordas, 2021) after 3 months of exposure to the marine
environment. The as-received of the company is 10E10 (Kordas,
2020a) before exposure to the marine environment, and after
3 months of exposure, it is 5*10E7 (Kordas, 2020a), which is less
than the value of the unexposed coating to the sea with CeMo (8-
HQ) the as received paint of the company. This value increases
when CeMo nanocontainers or ZnO charged with
bromosphaerol or SeaNine211© is added to the triple paint.
We must emphasize the fact that the values of |Z| after
3 months are the same as the best of the original paint
without exposure to the sea. This is due to the phenomenon
of “self-healing” that we have proved in other coatings with
nanocontainers on a different metal but with the use of the
scanning vibrating electrode technique (SVET) method
(Montemor et al., 2012).

Recently, there has been a great effort in the literature toward
the development of supramolecular chemistry, which is one of the
exciting branches of chemistry that deals with co-polar
interactions between molecules and subsequent super
molecular structures for corrosion and biofouling prevention
(Saji, 2019). This exciting work was aimed at developing
surface coatings and corrosion inhibitors that include
supramolecular polymers, organic–inorganic hybrid materials,
and supramolecular graphene structures. We note that strategies

that are not based on currently used industrial coatings will fail
because the ship painting industry is very conservative and
penetration of foreign technologies is very difficult. A new
technology will be adopted more easily if it is based on
current commercial paints, as we did in this study.

Many companies in the market produce corrosion-resistant
and antifouling paints for ships. These companies have invested
in the advancement of their technologies by developing excellent
paints. The question is whether our technology can penetrate the
ship painting industry and deliver improved properties. We have
shown with our work that nanotechnology is a revolutionary
technology with many expectations in this area.

CORROSION PROTECTION USING
NANOCONTAINERS

In the recent past, we produced several types of nanocontainers
that can protect iron, aluminum, and magnesium metals
(Kartsonakis et al., 2012a; Kartsonakis et al., 2013b;
Kartsonakis et al., 2014). The results were satisfactory, with
many expectations for the automobile, ship, and airplane
industry. In addition to nanocontainers filled with corrosion
inhibitors, we developed nanosystems called nanotraps and
water traps to control the diffusion of water and chlorine in
the coatings (Krzak et al., 2012; Kartsonakis et al., 2014). Our
research has shown that the coefficient of water and chlorine
diffusion depends on the incorporation of these nanostructures
in coatings (Krzak et al., 2012). We also made significant
progress in the development of organically modified silica
(ORMOSIL) coatings (Kartsonakis et al., 2011; Balaskas et al.,
2012; Mekeridis et al., 2012; Kartsonakis et al., 2013a). Figure 5
shows the FRA results of samples containing CeMo and water
traps of coatings on AA2024-T3 metals incorporating
nanocontainers such as water traps, chlorine traps, and
CeMo (8-HQ), offering multiple properties to protect metals

FIGURE 4 | Result of the nanocontainer-based paint exposed to seawater.

Frontiers in Nanotechnology | www.frontiersin.org March 2022 | Volume 4 | Article 8139086

Kordas Nanocontainers Against Biofouling and Corrosion

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


using the technology presented in Figure 1. We exposed the
coatings to NaCl (aq) 0.5 M for 1, 124, and 288 h. High-
frequency spectra can be used to understand the
development of the protective barrier properties of the
coating. We noticed that the protective coatings containing
water and chlorine nanotraps together with CeMo (8-HQ)
nanocontainers remain unchanged from their original value
even when exposed to NaCl (aq) 0.5 M for 288 h. These results
of the FRA revealed that the incorporation of nanocontainers
and micro-water traps into coatings is of extreme importance

for substantial improvement of the corrosion properties of
protective coatings without damaging the barrier properties
and for preventing corrosion.

In another experiment, we incorporated CeMo (8-HQ)
nanocontainers on Mg ZK10 in ORMOSIL coatings to show
another application of our technology to another metal. SVET
measurements were made in collaboration with the UAVR
Aveiro and IST Lisbon Portugal teams (Kartsonakis et al.,
2012b; Montemor et al., 2012). Figure 6 shows Rpolarization

(Rpol) versus the exposure time to 0.5 M NaCl (aq) of an
epoxy coating with CeMo (8-HQ) on Mg ZK10 substrate. One
can perceive from this figure that Rpol first decreases with time
from time point (a) to (b) and then increases with time from time
point (b) to (c) for coatings with CeMo (8-HQ). The increase in
Rpol from (b) to (c) results from the self-healing effect due to the
action of 8-HQ from the nanocontainers. On the contrary, we
noticed a temporary increase from time point (d) to (e), and then
we observed a decrease in Rpol from time point (e) to (f) in
samples with coatings without CeMo (8-HQ) due to corrosion.

Hot-dip galvanized zinc (HDG) steel is used in marine
environments such as decks of bridges and various marine
structures under adverse climatic conditions to strengthen
concrete (Kartsonakis et al., 2008; Efthimiadou et al., 2011;
Lelovas et al., 2018). When hardening the concrete to a very high
pH, hydrogen and zinc corrosion products are created, resulting in a
loss of strength of the bonds between the concrete and galvanized bar
(Zhang, 1996; Maldonado et al., 2010). The evolution of hydrogen
occurs on the surface of zinc-coated steel incorporated in portland

FIGURE 5 | FRA of the multifunctional coating on AA2024-T3 metals including inhibitor-loaded nanocontainers and nanotraps of water and chlorine exposed to
0.5 M NaCl (aq) for 1, 144, and 288 h.

FIGURE 6 | Rpol versus the time of exposure to 0.5 M NaCl (aq) in epoxy
coating with ((A–C) route) and without ((D–F) route) CeMo (8-HQ) onMg ZK10
substrate.

Frontiers in Nanotechnology | www.frontiersin.org March 2022 | Volume 4 | Article 8139087

Kordas Nanocontainers Against Biofouling and Corrosion

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


cementwhere iron and zinc are in contact (Bird, 1962). The corrosion
reaction of a part of the pure zinc layer is responsible for the passivity
of galvanized steel (Wilson et al., 1987). While zinc tends to dissolve
in acidic aqueous solutions, with the evolution of hydrogen, in
alkaline solutions with pH values between 8.5 and 10.5, zinc
forms a zinc hydroxide film, and erosion occurs only at a low
rate (Yeomans, 1994). We produced ORMOSIL coatings in which
we incorporated CeO2 nanocontainers loaded with 5-amino-1, 3, 4-
thiadiazole-2-thiol (5-ATDT), and we evaluated them with
electrochemical impedance spectroscopy (EIS) and determined the
value of Rp for the various coatings we developed as a function of
immersion time in 0.5M NaCl for 30, 60, 90, and 180 h (Kordas,
2021). The Rp at 30 h for HDG, HDG + ORMOSIL, HDG +
ORMOSIL + 5-ATDT, HDG + ORMOSIL + CeO2 (EMPTY),
and HDG + ORMOSIL + CeO2 (5-ATDT) was 1.62 E+03,
1.54 E+04, 4.0 E+04, 21.62 E+04, and 16.78 E+05Ω cm2, respectively.
Rp was smaller for HDG + ORMOSIL+5-ATDT than for HDG +
ORMOSIL + CeO2 (5-ATDT) because we assume that 5-ATDT was
captured in the coating and thus immobilized, without being able to
be released when needed and offer protection like the 5-ATDT in the
nanocontainers (Kordas, 2021). Figure 7 presents the Rp for HDG +
ORMOSIL + CeO2 (EMPTY) and HDG + ORMOSIL + CeO2 (5-
ATDT) after exposure to 0.5M NaCl for 30, 60, 90, and 180 h. We
noticed that the Rp forHDG+ORMOSIL+CeO2 (EMPTY) depends
linearly on the time of exposure but has values smaller than the
corresponding values of HDG + ORMOSIL + CeO2 (5-ATDT). The
extra protection comes from the release of 5-ATDT from the
nanocontainers, which creates gelatin on the HDG surface and
protects it.

The Rp increase inHDG+ORMOSIL +CeO2 (5-ATDT) coatings
up to 60 h is explained by the self-healing phenomenon resulting
from the release of corrosion inhibitors from nanocontainers. It
seems that a significant fraction was consumed in the initial stage
(60 h), and over time, the efficiency was reduced, offering protection
against corrosion. Several organic compounds demonstrated an
inhibiting effect toward aqueous corrosion in various metals and
alloys (Guo et al., 2017). Among them, 5-ATDT forms a membrane
on the iron surface, hindering the diffusion of water on the surface

(Ahamad et al., 2010). Molecules comprising nitrogen and sulfur are
very efficient inhibitors. 5-ATDT performs outstandingly on
aggressive media (Ramesh Saliyan and Adhikari, 2008).

ORMOSIL coatings containing TiO2 nanocontainers loaded
with 8-hydroxyquinoline (8-HQ) were made on pure copper
exposed to 0.05M NaCl solution for 3, 6, and 50 h (Kordas
et al., 2013). Figure 8 shows the impedance spectrum of the
coated samples compared with bare Cu substrate. After 3, 6,
and 50 h of immersion, the impedance spectra show that the
phase angle’s shape, in the medium frequency range, is broader
when the epoxy coating is formed compared to that of the bare Cu
substrate. This was explained assuming two overlapping processes
in the midterm frequency range. The first process is due to an
interfacial oxide layer, probably involving a copper oxide layer
(Kordas et al., 2013). The second process is due to the formation of
an additional interfacial layer generated by inhibitors, namely, the
formation of Cu (II)–hydroxyquinoline complexes (Kordas et al.,
2013). We observed another time constant in the bare Cu substrate
in the low-frequency region attributed to diffusion-controlled
pathways in the copper oxide layer for corrosive species such as
Cl− and O2- to the Cu substrate (Kordas et al., 2013).

We fitted the EIS spectra using the equivalent circuits (EC) of
Figure 7. We observed the two time constants R1oxide/CPE1oxide
formed at frequencies of about 120 Hz and the R2oxide/CPE2oxide
at slightly lower frequencies (about 2 Hz). Figure 9 shows the
results of R1oxide and R2oxide at 3, 6, and 50 h in 0.05 M NaCl
solution. From Figure 9, one can perceive an increase in R1oxide

and R2oxide from 3 to 6 h and then a decrease from 6 to 50 h of
immersion in the salt solution.

We took a sample by engraving a 50-μm scratch to remove the
ORMOSIL coating with the TiO2 (8-HQ) nanocontainers. This
sample was immersed in a 0.05M solution of NaCl water for 6 h.
Then, Raman spectra of the scratch were recorded (Kordas et al.,
2013). Figure 10B shows the Raman spectrum of the compound
formed on the scratch. This spectrum can be interpreted possibly as
the spectrum of the Cu(8-HQ)2 compound. To prove that, we
composed the Cu(8-HQ)2 compound in the laboratory with the
procedure described in the bibliography and measured the Raman
spectra (Figure 10A) that emerges from this process (Kordas et al.,
2013). Figure 10C shows the Cu(8-HQ)2 spectrum calculated using
the DFT (B3LYP-6-311G)method. The theoretical spectrummatches
very well with the spectrum of the synthetic Cu(8-HQ)2 (Figure 10A)
and the Raman spectrum of the compound formed on copper after
corrosion-induced diffusion of 8-HQ from the nanocontainers.
Therefore, we conclude that Cu(8-HQ)2 formed after the reaction
of 8-HQ with the copper surface. The Raman investigation, together
with the EIS measurements, suggests the “self-healing” phenomenon
occurring in our samples. These experiments have shown that the self-
healing mechanism is driven by the reaction of 8-HQwith the copper
of the substrate, thus theGibbs energy of theCu(8-HQ)2 formation. 8-
HQ was released from the CuO nanocontainers.

RELEVANT WORKS FOR FUTURE STUDY

Based on the encapsulation of ultrasonically produced zinc
molybdate (ZM) nanoparticles, Karekar et al. created a smart

FIGURE 7 | Rp of HDG + ORMOSIL + CeO2 (EMPTY) and HDG +
ORMOSIL + CeO2 (5-ATDT) exposed to 0.5 MNaCl for 30, 60, 90, and 180 h.
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coating of corrosion inhibitive nanocontainers. The results of
corrosion potential and Bode graphs indicate that ZM
nanocontainers can be successfully used in multifunctional
anticorrosion coating formulations (Karekar et al., 2018).
Mechanized hollow mesoporous silica nanoparticles
(HMSNs) as smart nanocontainers implanted into self-
assembled nanophase particle (SNAP) coating were used by
Fu et al. to create an intelligent anticorrosion coating. According
to the scanning vibrating electrode technique, smart
nanocontainers with acid and alkaline dual stimuli-

responsive properties can suppress corrosion activities on
both microanodic and microcathodic regions at the same
time, displaying superior self-healing functionality (Fu et al.,
2013). Wang et al. employed a sol–gel protection technique to
effectively construct morphologically intact hollow mesoporous
zirconia nanospheres (HMZSs) with a hollow core mesoporous
shell structure as scaffolds for smart nanocontainers (Wang
et al., 2015). Feng and Cheng created an intelligent coating
based on the encapsulation of benzotriazole (BTA) inhibitors in
SiO2 nanoparticle-based polyelectrolyte nanocontainers and
self-release of the inhibitors for corrosion inhibition of
pipeline steel in a chloride solution (Wang et al., 2015). To
preserve mild steel as a substrate, Yeganeh et al. created a

FIGURE 8 | EIS Bode plots for ORMOSIL-TiO2 (8-HQ) after 3, 6, and 50 h in 0.05 M NaCl together with bare Cu.

FIGURE 9 | R1oxide and R2oxide variation for 3, 6, and 50 h in the salt
solution.

FIGURE 10 | Raman spectra of the synthetic Cu(8-HQ)2 (B), Cu(8-HQ)2
formed as a result of the reaction between the released 8-HQ and copper
substrate (A), and theoretical Raman spectrum of the Cu(8-HQ)2 compound
(C) (Kordas et al., 2013).
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composite coating by embedding 1% mesoporous silica loaded
with sulfamethazine (MSInh) as a corrosion inhibitor into an
epoxy film (Feng and Cheng, 2017). The results showed that
epoxy/MSInh had a stronger corrosion resistance, confirming
the barrier action of mesoporous silica against corrosive species
and the corrosion inhibitory impact of released sulfamethazine
molecules (Yeganeh et al., 2019). Xu et al. described a one-step
approach for making inhibitor-loaded mesoporous silica
nanocontainers without the need for extra processes such as
template removal or inhibitor loading. The findings indicate
that the one-step synthesis technique was effective, energy-
efficient, and devoid of organic solvents, among other things
(Xu et al., 2018). As corrosion inhibitor hosts, Saremi and
Yeganeh created mesoporous silica nanocontainer powders
and disseminated them in a polypyrrole matrix. In a NaCl
solution, the release and corrosion resistance of composite
coatings were investigated with and without an inhibitor
(Saremi and Yeganeh, 2014). Lanzara et al. studied the
dynamics of a fluid flowing out of a ruptured single-walled
CNT (SWNT), where the fluid resembles an organic healing
agent, to see if CNTs may be used as nanocontainers (Lanzara
et al., 2009).

The photothermal response of plasmonic titanium nitride
nanoparticles (TiN NPs) generated a new nanocomposite
coating with dual-action self-healing corrosion protection,
according to Ma et al. (TiN NPs) (Ma et al., 2021). In vitro cell
cytotoxicity experiments performed by Yang et al. revealed
that the loaded doxorubicin’s cell-killing effectiveness against
human fibrosarcoma (HT-1080) and human breast
adenocarcinoma (MCF-7) cells was pH-dependent (Yang
et al., 2010). As a result, these hybrid composites could be
used as pH-controlled drug delivery devices (Wang et al.,
2015). Balaskas et al. synthesized and studied unique two-
shell structured inhibitor-loaded poly (methacrylic acid)
@cerium oxide (PMAA@CeO2) nanocontainers. The
objective of the nanocontainers was to improve the
corrosion resistance of an epoxy coating applied to an
aeronautical metal (AA 2024-T3) (Balaskas et al., 2017). By
loading a conventional 1-hydroxybenzotriazole (HOBT)
inhibitor for corrosion protection of copper alloys in
mesoporous silica nanocontainers, Ma et al. created a new
form of composite nanoparticles (CNPs) (Ma et al., 2017).
Microcapsules containing linseed oil were made by in situ
polymerization, and benzotriazole was entrapped between
polyelectrolyte layers constructed outside the microcapsules
using the layer-by-layer process, according to Leal et al.
(2018). As an unique nanocontainer system, Li et al.
developed silica/polymer double-walled hybrid nanotubes
with a hollow cavity, a porous silica inner wall, and a
stimuli-responsive (pH, temperature, and redox) polymeric
outer wall (Leal et al., 2018). Qian et al. demonstrated a novel
self-healing coating based on nanocontainers. To make these
nanocontainers and build a final structure of SiO2/chitosan/
alginate/polyaspartic acid/alginate/polyaspartic acid, layer-
by-layer deposition was used (Abu-Thabit and Hamdy,
2016). In another work, with the use of tannic acid
complexes, Qian et al. demonstrated a simple approach for

encapsulating a corrosion inhibitor in mesoporous silica
nanoparticles (MSNs), resulting in inhibitor-loaded MSNs
with a pH-controlled release function (Qian et al., 2019).
Polyaniline capsules showed delayed release under oxidation
and quick release under reduction, making them attractive
candidates for anticorrosion applications, according to Lv
et al. (2013).

The goal of Liu et al. was to create an intelligent coating
using pH-responsive attapulgite (ATP) nanocontainers. Layer-
by-layer (LBL) self-assembly technology was used to build
these nanocontainers containing polyelectrolytes and
inhibitors (Liu et al., 2018). For the corrosion inhibition of
carbon steel, Yabuk et al. created a polymer covering
incorporating cellulose nanofibers and a corrosion inhibitor
(Yabuki et al., 2016). Sonawane et al. introduced a unique
encapsulation-based method for the manufacture of
nanocontainers that may release corrosion inhibitors in a
controlled manner (benzotriazole) (Sonawane et al., 2012).
Chenan et al. developed hollow mesoporous zirconia (hm-
ZrO) nanospheres with a hollow core/porous shell
configuration that could be used to load and release
corrosion inhibitors. Solid silica nanoparticles serve as
templates for hm-ZrO nanocontainers (Chenan et al., 2014).
He et al. used a unique and simple chemical approach to
successfully manufacture a new type of functional
nanoreservoir based on MWCNTs and cyclodextrin (He
et al., 2016). The research of Sambyal et al. focused on the
creation of composite coatings for mild steel corrosion
prevention in marine environments. In an aqueous medium
of chitosan, a chemical oxidative polymerization technique
was used to create poly (aniline-anisidine)/chitosan/SiO2

composites (Sambyal et al., 2018).

CONCLUSIONS AND PROSPECTS

Our team started research on nanocontainers around 2000,
applying this technology to medicine (Efthimiadou et al.,
2017; Kordas, 2019b), concrete (Kordas, 2021), and many
other materials. Nanocontainers respond autonomously after
excitation and correct damage resulting from the influence of
the environment. Depending on the problem, one must choose
the nanocontainers and their content. This technology has
attracted the scientific and industrial world in the last
20 years because it is a flexible and promising technology.
When a damage is caused, the substances trapped in the
nanocontainers are released and cause self-healing, resulting
in the coating acquiring its original characteristics. In
collaboration with many other European teams and
companies, our team worked to transfer this technology to
the commercial level by subjecting it to strict industrial tests.
This study shows that there is no value in producing a new
technology if it is not tested in the field operating conditions by
commercial users. We concluded from our many years of
experience that the capabilities of nanocontainers are endless.
This technology will undoubtedly be a part of the fourth
industrial revolution with products to improve people’s lives.
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