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Guided tissue regeneration (GTR) is a dentistry technique based on the use of

polymeric biomembranes as physical barriers for selective cell exclusion,

directing the growth of gingival tissue, bone tissue, and periodontal

ligaments in a region previously affected by periodontitis. Postoperative pain

andmicrobial infection constitute, however, twomajor challenges to be tackled

right after implantation. To address these challenges, we prepared and

characterized eight chitosan/hyaluronic acid/glycerol (CS/HA/GL)

bioresorbable membranes embedded with lidocaine- and chloramphenicol-

loaded polycaprolactone nanoparticles (LDNP and CHNP, respectively),

combining the local anesthetic effects of lidocaine with the antibacterial

effects of chloramphenicol. The formulations were prepared with varying

amounts of CS, HA, GL, LDNP, and CHNP. As a plasticizing agent, GL could

modulate the samples mechanical properties such as thickness, morphology,

tensile strength, elongation at break, as well as swelling and degradation in

simulated saliva. Two samples exhibited greater resistance to biodegradation

and were selected for further studies. Their drug release profiles indicated that

LDNP and CHNP first detach from the membrane matrix, and a zeroth order

drug release kinetics from the detached NPs dominates the overall process

thereafter, with lidocaine being released 3 times faster than chloramphenicol, in

a controlled and sustained rate over time. Drug encapsulation efficiency was

such that optimal samples exhibited bactericidal activity (inhibition halos)

against gram-positive S. aureus and gram-negative A.

actinomycetemcomitans strains similar to that observed for free
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chloramphenicol. Finally, one of these samples showed no intrinsic toxicity

against healthy mammalian model cells (99% viability for the unloaded

membrane; 80% viability for the fully LDNP- and CHNP-loaded membrane),

and may now be further optimized as a drug-eluting biomembrane with

potential for GTR.

KEYWORDS

lidocaine, nanoparticles, chitosan, hyaluronic acid, glycerol, guided tissue
regeneration, antibacterial activity, bioresorbable membranes

1 Introduction

Guided tissue regeneration (GTR) is a dentistry technique

based on the use of polymeric biomembranes as physical barriers

for selective cell exclusion, directing the growth of gingival tissue,

bone tissue, and periodontal ligaments in a region previously

affected by periodontitis (Castillo Dalí and Torres Lagares, 2016;

Zhang et al., 2016; Bhavsar et al., 2018). Conventionally, the basic

requirements for GTR membranes are good flexibility and

biocompatibility, as well as suitable biodegradation profile and

physicochemical/mechanical properties (Sgorla et al., 2016;

Osathanon et al., 2017; Khorsand et al., 2019).

Chitosan (CS) and hyaluronic acid (HA) are among the

polymers of interest for the development of membranes used

in periodontal GTR (Battistella et al., 2011; Dahiya and Kamal,

2013). Derived from chitin, CS is one of the most abundant

biopolymers in nature. HA, in turn, is a hydrophilic

polysaccharide naturally present in the extracellular matrix.

Both are biocompatible polymers, adequate for use in

periodontal GTR membranes (Ballini et al., 2009; Zhang et al.,

2011). Glycerol (GL) is widely applied in the pharmaceutical,

cosmetic and food industries, generally as a plasticizing agent.

Indeed, when introduced in polymeric matrices, GL can

modulate their mechanical properties, consequently favoring

mobility/diffusivity within the matrix, among other effects

(Fundo et al., 2014; Wang and Jing, 2017).

The use of these biomembranes as drug-eluting devices is

a more recent approach (Gupta and Ravi Kumar, 2000;

Vahabi and Mardanifar, 2014). Drugs may be directly

dispersed in the membrane matrix, or otherwise entrapped

in nanoparticles, and then embedded in the matrix. The

advantages of the latter strategy are the reduction of the

drug toxicity and a prolonged drug release profile (Thein-

Han and Stevens, 2004; Anisha et al., 2013; Ma et al., 2014;

Sanchez-Rexach et al., 2018). Indeed, drug-loaded

nanoparticles can physicochemically bind to the

biomembranes and to local tissues, which not only

prevents their rapid clearance, increasing their residence

time in the oral mucosa, but also contributes to the

sustained release of their cargo (Patel et al., 2011; Pramod

et al., 2016). However, a growing number of studies propose

drug delivery systems based either on inorganic materials

(Prado-Prone et al., 2020; Yin et al., 2020), or on more

complex fabrication protocols, such as uniaxial or coaxial

electrospinning (Shi et al., 2019; Xu et al., 2020).

In this study, we prepare and characterize drug-eluting

bioresorbable membranes for GTR, aiming to achieve

sustained anesthetic and antimicrobial effects, thus addressing

both postoperative pain and eventual sources of infection (Thein-

Han and Stevens, 2004; Aravamudhan et al., 2013; Kiruthika

et al., 2015). The novelty of the work consists of embedding two

types of drug-loaded nanoparticles in biomembranes usually

applied for GTR. Indeed, drug-free biomembranes have been

traditionally used for GTR, with anesthetics and antibiotics

eventually administered separately, either systemic or by local

injection (Sgorla et al., 2016; Osathanon et al., 2017; Khorsand

et al., 2019). Drug-eluting biomembranes have been developed as

alternatives, yet with drugs either directly dispersed throughout

the matrix, or loaded in electrospun nanofibers (Gupta and Ravi

Kumar, 2000; Vahabi and Mardanifar, 2014). Herein, we chose

drug-loaded nanoparticles instead, since they are easier to

prepare than electrospun nanofibers, especially when a dual

regime (anesthetic and antibiotic) is desired in a controlled

and sustainable manner.

We prepared drug-eluting biomembranes consisting of a CS/

HA/GL matrix embedding lidocaine- and chloramphenicol-

loaded polycaprolactone nanoparticles (LDNP and CHNP,

respectively). Lidocaine works as a fast-acting local anesthetic,

while chloramphenicol acts as broad-spectrum antibiotic. The

fabrication protocols employed are rather simple, with the CS/

HA/GL biomembranes being prepared by casting, and the drug-

loaded nanoparticles being prepared by nanoprecipitation. The

physicochemical/mechanical properties, degradation, swelling

and drug release profiles, as well as antibacterial activity and

biocompatibility of different samples were thoroughly examined,

leading to the development of an optimal drug-eluting system

with potential for periodontal GTR.

2 Materials and methods

2.1 Materials

Lidocaine, chloramphenicol, poly(ε-caprolactone), Pluronic
F-127, chitosan (low molecular weight), hyaluronic acid, acetic

acid, acetone, acetonitrile, trifluoroacetic acid, methanol, sodium
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hydroxide (NaOH), phosphate buffer saline (PBS), ethylene

oxide, DMEM, penicillin, streptomycin, inactivated fetal

bovine serum, and trypsin-EDTA, were purchased from Sigma

Aldrich, United States. Miglyol® 812 N was obtained from Sasol,

Germany. Soybean phosphatidylcholine was acquired from

Lipoid, Germany. Glycerol was bought from Labsynth, Brazil.

Mueller-Hinton agar (MHA) was purchased from Acromed,

Brazil. Defibrinated horse blood was obtained at the Cavalry

Battalion of the Military Police of Goiás, Brazil. The cell viability

kit Live/Dead Cell (calcein/EthD-1) was provided by Life

Technologies, United States. Water was obtained from a Milli-

Q system commercialized by Millipore, United States. All other

chemicals were of analytical grade.

2.2 Preparation and characterization of
lidocaine- and chloramphenicol-loaded
nanoparticles

Lidocaine- and chloramphenicol-loaded nanoparticles

(LDNP and CHNP) were prepared separately, by

nanoprecipitation (Fessi et al., 1989). Briefly, 6 mg of lidocaine

(or chloramphenicol) were dissolved in 6 ml of acetone, along

with 50 mg of poly(ε-caprolactone) (PCL), 150 μg Miglyol®

812 N, and 50 mg of soybean phosphatidylcholine, to form the

organic phase. The aqueous phase, on the other hand, contained

100 mg of Pluronic F-127 in 12 ml of ultrapure water. The

organic phase was then poured into the aqueous phase, and

solvents were removed under controlled pressure in a rotary

evaporator (IKA) at 40°C, leading to a final volume of 6 ml (and

therefore, 1 mg of lidocaine or chloramphenicol per mL).

2.2.1 Size and polydispersion
Nanoparticles mean hydrodynamic diameter and

polydispersity index (PdI) were determined via dynamic light

scattering (DLS), using a ZetaSizer Nano S (Malvern Panalytical,

United Kingdom). Readings were performed in triplicate.

2.2.2 Drug analytical quantitation
Drug quantitation was performed via high-performance

liquid chromatography (HPLC), using an Agilent

1200 Infinity Series HPLC (Agilent Technologies, Lake Forest,

California) equipped with a UV-Vis detector. The Zorbax-

Eclipse-C18 chromatographic column (150 mm × 4.6 mm)

was kept at 35 °C during the runs. The mobile phase consisted

of acetonitrile (ACN) and acidified water (trifluoroacetic acid,

TFA, 0.1%) at a volumetric ratio of 75:25 (ACN:H2O). The

sample injection volume was 10 μL, the flow rate was set to

1 ml/min, and the detection wavelengths were 230 nm for

lidocaine and 360 nm for chloramphenicol (Iqbal et al., 2006;

Al-Rimawi and Kharoaf, 2011; Ramos Campos et al., 2013;

Bhusal et al., 2017).

2.2.3 Encapsulation efficiency
Drug encapsulation efficiency (EE) was calculated as follows:

EE [%] � total drug − free drug
total drug

× 100 (1)

To quantitate the free drug, an aliquot of the given

colloidal dispersion was placed in a 20-kDa Vivaspin®

centrifugal filtration device (Sigma-Aldrich, St. Louis, MO,

United States), and centrifuged at 5,000 g for 30 min. Then,

100 μl of the resulting filtrate was diluted in 900 μl of methanol

for HPLC quantitation. Meanwhile, to quantitate the total

drug, 100-μl aliquots of the selected colloid were first added to

900 μl of methanol for extraction, and then centrifuged at

14,500 rpm for 20 min to separate the total drug from the

polymeric content. Supernatants were then collected for

HPLC quantitation.

2.2.4 Drug release from lidocaine- and
chloramphenicol-loaded nanoparticles

In vitro drug release assays were accomplished by diffusion

through dialysis membranes. The donor medium consisted of

1.6 ml of the assessed colloid, and the receptor medium

consisted of 20 ml of artificial saliva, prepared as previously

reported (Ionta et al., 2014), with sink conditions satisfied.

The system was kept under orbital shaking at 50 rpm and 37°C

for up to 120 h. Aliquots (200 μl) were withdrawn from the

receptor medium at pre-established times (1, 3, 6, 9, 12, 24, 48,

96, and 120 h) and replaced by the same volume of fresh

medium at each sampling. Each aliquot was then diluted in

800 μl of methanol for drug extraction, followed by drug

quantitation via HPLC.

2.3 Preparation and characterization of
drug-eluting chitosan/hyaluronic acid
biomembranes

Eight different biomembranes were prepared with varying

compositions of chitosan (CS), hyaluronic acid (HA), glycerol

(GL), acetic acid, LDNP, and CHNP, as described in Table 1.

Noteworthy, Group 135 membranes were designed with overall

lower CS, HA, GL, acetic acid, and drug contents compared to

Group 2100 membranes.

The sample names are MXCS|HA|GL, where X stands both for

the membrane group and for the volume (in ml) of both LDNP

and CHNP colloidal dispersions used in the sample preparation.

Hence, Group 135 membranes were prepared with 1 ml of both

LDNP and CHNP, whereas Group 2100 membranes were

prepared with 2 ml of both LDNP and CHNP.

Additionally, the subscripts CS and HA stand for the

proportional amount (in mg) of chitosan and hyaluronic acid

used in the sample preparation, while the subscript GL stands for
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the proportional volume (in µl) of glycerol. The corresponding

group subscript is a multiplication factor that yields the actual

amount of CS, HA, and GL used.

For instance, sample M2211 belongs to Group 2100 and was

then prepared with 2 ml of both LDNP and CHNP, 2 × 100 =

200 mg of CS, 1 × 100 = 100 mg of HA, and 1 × 100 = 100 µl of

GL. On the other hand, sample M12.21 belongs to Group 135
and was then prepared with 1 ml of both LDNP and CHNP,

2 × 35 = 70 mg of CS, 0.2 × 35 = 7 mg of HA, and 1 × 35 = 35 µl

of GL.

All membranes were prepared by casting, as previously

described in the literature (Yan et al., 2000; Xu et al., 2007;

Contri et al., 2010; Yao and Wu, 2011), yet with some

modifications. Briefly, HA was first dispersed in water.

Then, CS, GL, acetic acid, LDNP and CHNP were added,

and the mixture was left under magnetic stirring at 25°C for

24 h. Next, the resulting dispersions were poured into plastic

Petri dishes (60 mm × 15 mm) and kept under 37°C in an air-

circulating oven for 24 h. The resulting membranes were then

washed with distilled water and NaOH solution (1% w/v), and,

finally, left for drying under 37 °C in an air-circulating oven

for 1 h.

2.3.1 Thickness and morphology
Membrane thickness was determined with a digital caliper.

Measurements were taken in triplicates at five different points

along the length, and thickness was calculated as the resulting

mean value.

Surface and cross-sectional morphology were analyzed via

FESEM (Field Emission Scanning Electron Microscopy, JSM-

7100F, JEOL, United States). Before imaging, the membranes

were first cut in rectangles (2 cm × 1 cm) and then coated with a

thin layer of gold. Micrographs were taken

at ×3,000 magnification at room temperature.

2.3.2 Tensile strength and elongation at break
Tensile strength (TS) and elongation at break (EB) were

obtained using a TA-XT Plus Texture Analyzer (Stable Micro

Systems, Surrey, England). The membranes were cut in strips

1 cm wide and 5 cm long and attached to the lower and upper

ends of the analytical probe, which were initially distant of

3.5 cm. The elongation rate was set at 10 mm/s, with a load

cell capacity of 50 kg. Measurements were taken in triplicates

at 25°C.

2.3.3 In vitro degradation profile
Degradation rate in simulated saliva was also evaluated. The

membranes were first cut in rectangles (2 cm × 1 cm), then

weighed, and incubated in 10 ml of artificial saliva at 37°C for

1, 7, 14, 21, and 28 days. At the end of each sampling time, the

membranes were removed from the incubation medium and

placed in an oven at 37°C for drying and then weighing. All

measurements were taken in triplicates. The weight loss (WL)

was calculated as follows:

WL [%] � W0 −Wd

W0
× 100 (2)

where W0 represents the membrane initial dry weight, and Wd

represents its dry weight after incubation in simulated saliva at a

given sampling time.

2.3.4 Swelling profile
Similarly, swelling in simulated saliva was also assessed. The

membranes were first cut in rectangles (2 cm × 1 cm), then

weighed, and incubated in 5 ml of artificial saliva at 25°C for

0.25, 0.5, 1, 3, 6, 12, and 24 h. At the end of each sampling time,

the superficial excess of saliva was carefully wiped off with

absorbent paper, and the membranes wet weight was

determined. All measurements were taken in triplicates. The

swelling index (SI) was calculated as follows:

SI [%] � Ww −W0

W0
× 100 (3)

where W0 represents the membrane initial dry weight, and Ww

represents its wet weight after incubation in simulated saliva at a

given sampling time.

TABLE 1 Biomembranes: Designed composition.

Group 135 Group 2100

M1211 M1215 M12.21 M12.25 M2211 M2215 M22.21 M22.25

CS [mg] 70 70 70 70 200 200 200 200

HA [mg] 35 35 7 7 100 100 20 20

Glycerol [µL] 35 175 35 175 100 500 100 500

Acetic acid [µL] 100 100 100 100 300 300 300 300

LDNP[1 mg/mL] [mL] 1 1 1 1 2 2 2 2

CHNP[1 mg/mL] [mL] 1 1 1 1 2 2 2 2

M, membrane; CS, chitosan; HA, hyaluronic acid; LDNP, lidocaine-loaded nanoparticles; CHNP, chloramphenicol-loaded nanoparticles. The subscript [1 mg/ml] corresponds to the

designed lidocaine or chloramphenicol concentration.
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2.3.5 Drug release from biomembranes
embedded with lidocaine- and
chloramphenicol-loaded nanoparticles

Membranes were immersed in 25 or 50 ml of artificial saliva

so that sink conditions were satisfied for both drugs. Samples

were kept under orbital shaking at 150 rpm and 37°C. Aliquots

(1 ml) were withdrawn at pre-established times (1, 3, 6, 9, 12, and

24 h) and replaced by the same volume of fresh medium at each

sampling. Each aliquot was then diluted in methanol (1:4 v/v) for

drug extraction, followed by drug quantitation via HPLC.

2.3.6 Antibacterial activity
Antibacterial activity was assessed by diffusion in Mueller-

Hinton agar (MHA) and in Mueller-Hinton agar plus 5% v/v

defibrinated horse blood (MHB). Assays were conducted

against the gram-positive Staphylococcus aureus (ATCC

25923) and the gram-negative Aggregatibacter

actinomycetemcomitans (FDC Y4) (Tihan et al., 2015;

Szafrański et al., 2017). Bacterial suspensions were obtained

in 0.85% saline at 0.5 McFarland turbidity. S. aureus was

seeded in MHA, and A. actinomycetemcomitans was seeded in

MHB. Membranes were first sterilized using ethylene oxide,

then placed on Petri plates, and incubated with the bacterial

suspensions at 37°C for 24 h. Plates with S. aureus were kept

under aerobiosis, while plates with A. actinomycetemcomitans

were kept under microaerophilic conditions. Assays were

performed in triplicates, and readings were taken by

measuring the halo size in mm. The interpretation of halo

sizes was that of the Clinical Laboratory Standards Institute

(CLSI) for S. aureus. For A. actinomycetemcomitans, since the

CLSI does not define a reference halo size for

chloramphenicol, the interpretation was instead based on

the presence/absence of the inhibition halo.

2.3.7 Biocompatibility
Biocompatibility assays were performed on 3T3 fibroblasts

(ATCC CRL-1658) using the cell viability kit Live/Dead Cell

(calcein/EthD-1). The 3T3 murine lineage is a common model of

normal healthy mammalian cells (Henklewska et al., 2021). Cells

were cultured in DMEM, supplemented with 10% v/v inactivated

fetal bovine serum and 1% v/v penicillin/streptomycin. Culture

bottles (75 cm2) were kept at 37°C, under 5% CO2 atmosphere

and controlled humidity. Culture medium was renewed every

other day until 90% confluence. For cell detachment, 0.25%–

0.03% v/v trypsin-EDTA was used.

Considering their optimal degradation profiles, M12.21 and

M2211 were selected for the biocompatibility assay. Membranes

were first sterilized using ethylene oxide, then cut in rectangles

(2 cm × 1 cm), placed in the center of 35 mm × 15 mm plates

previously seeded with 3T3 monolayers (approximately 5×104

cells) and incubated for 24 h. Next, the membranes were

removed from the plates, and the cells were washed with PBS.

Following the manufacturer’s protocol, 1 ml of calcein/EthD-

1 solution was used for staining. Viability results were obtained

via fluorescence microscopy (DMI 4000 B, Leica Microsystems,

Bannockburn, United States). Calcein was excited at 488 nm and

the corresponding fluorescence was detected within 491–545 nm

(L5 filter, green, stain for live cells). EthD-1 was excited at 568 nm

and the corresponding fluorescence was detected within

590–685 nm (N21 filter, red, stain for dead cells).

Cell viabilities were calculated as follows:

Viability [%] � MFIgreen
MFIgreen +MFIred

× 100 (4)

where MFI stands for mean fluorescence intensity. Mean

values were calculated over ten equally sized random areas

over the corresponding image, neglecting the background

fluorescence.

2.4 Statistical analysis

Measurements were expressed as mean value ± SD. Statistical

analyses were performed in GraphPad Prism 5 via analysis of

variance (ANOVA) followed by Tukey test or via student’s

T-test. Statistically significant differences were considered

for p < 5%.

3 Results

3.1 Preparation and characterization of
lidocaine- and chloramphenicol-loaded
nanoparticles

Both lidocaine- and chloramphenicol-loaded polymeric

nanoparticles (LDNP and CHNP) presented mean

hydrodynamic diameters of approximately 200 nm, with PdI

within 0.2–0.3, suggesting low polydispersity (Table 2). LDNP

and CHNP reduced size favors their embedding in polymeric

matrices, enabling drug-elution in the vicinity of the site where

the biomembrane was implanted—an alternative to local

injections of the drugs, avoiding further pain and discomfort

(You et al., 2017).

TABLE 2 Characterization of LDNP and CHNP.

LDNP CHNP

DH [nm] 212 ± 2 208 ± 2

PdI 0.26 ± 0.04 0.23 ± 0.01

EE [%] 77 ± 4 83 ± 5

Encapsulated drug [mg] 4.6 ± 0.2 5.0 ± 0.3

LDNP, lidocaine-loaded nanoparticles; CHNP, chloramphenicol-loaded nanoparticles;

DH, mean hydrodynamic diameter; PdI, polydispersity index; EE, encapsulation

efficiency.
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The analytical method for the simultaneous quantitation of

both lidocaine and chloramphenicol was validated, showing

selectivity, linearity within 0.5–50 μg/ml, precision (relative

standard deviation, RSD < 5%), and accuracy (> 95%).

The drug encapsulation efficiencies (EE) were estimated at

77% for LDNP and 83% for CHNP, corresponding to about

4–5 mg of either lidocaine or chloramphenicol encapsulated in

nanoparticles (Table 2). This amount of encapsulated lidocaine is

expected to raise the intensity and the duration of the analgesia

relatively to the free drug, besides reducing its local and systemic

toxicities (Takenami et al., 2012; Ramos Campos et al., 2013).

Similarly, this amount of encapsulated chloramphenicol is

expected to improve the bactericidal effect relatively to the

free drug, besides reducing its toxicity (Mandal et al., 2009;

Soscia et al., 2010; Kalita et al., 2015; Kiruthika et al., 2015;

Marslin et al., 2017).

Drug release reached about 80–90% after 48 h for LDNP and

120 h for CHNP (Figure 1). Quantifiable amounts of released

drug were detected only after 3 h for lidocaine and after 6 h for

chloramphenicol. Within 24 h, about 40% of lidocaine and 20%

of chloramphenicol had been released, hence lidocaine is

expected to be released faster than chloramphenicol.

LDNP data could be properly modeled by a typical 0th order

kinetics (constant drug release rate, R2 = 0.99, Figure 1;

Supplementary Figure S1). Within the assessed timeframe,

CHNP data seemingly also follows a 0th order kinetics (R2 =

0.98), although the experimental data could quite closely be

modeled by a typical 1st order kinetics (drug release rate

proportional to the remaining drug contents, R2 = 0.96,

Figure 1; Supplementary Figure S1). Assuming 0th order

kinetics for both LDNP and CHNP, their drug release rate

would be, respectively, 2.18 ± 0.05 %/h and 0.98 ± 0.04 %/h

(Supplementary Figure S1).

In a previous study, lidocaine release from PCL nanospheres

was faster than the observed in the present study within the first

6 h (Ramos Campos et al., 2013). On the other hand, the release

profile observed for chloramphenicol was very similar to the one

reported by Kalita et al. (2015). The therapeutic effects of

lidocaine are thus expected to act in combination with those

of chloramphenicol, in a controlled and sustainable manner, as

the biomembranes slowly degrade (Ma et al., 2016).

3.2 Preparation and characterization of
drug-eluting chitosan/hyaluronic acid
biomembranes

Dry weight, thickness, tensile strength (TS) and elongation at

break (EB) for all the biomembranes prepared for this study are

shown in Table 3. Overall, Group 2100 membranes exhibited

higher mean dry weight compared to Group 135 membranes.

Their mean thickness varied within about 0.1–0.3 mm, with

intragroup significant differences overall related to differences

in designed glycerol (GL) contents (Table 1). The same trend was

observed for both TS and EB values, suggesting that GL plays a

significant role in their final mechanical properties. In general,

the higher the GL contents, the higher the thickness, the lower the

TS and the higher the EB observed (Tables 1, 3).

Indeed, GL has well-known plasticizing effects, endowing

more flexibility and less mechanical resistance to polymeric

matrices to which it is incorporated (Fundo et al., 2014; Ma

et al., 2017). The increase in membrane thickness correlated to a

higher amount of GL was also observed elsewhere (Mazzarino

et al., 2014), being attributed to an increase in the separation in

between polymeric chains due to GL.

With regards to their macroscopic aspect, the surface of

membranes with lower amounts of HA were visually smoother

and more homogeneous, as expected (Yao and Wu, 2011). By

combining the positively charged CS chains with the negatively

charged HA chains, the formation of a polyelectrolyte complex

(PEC) is expected (Nath et al., 2015). The electrostatic interaction

between the positive amines inCS and the negative carboxyl groups in

HAwere reported to be the strongest interaction within this PEC, and

an increase in the amount of HA was correlated with an increase in

macroscopic surface roughness (Vasile et al., 2013; Nath et al., 2015).

The surface and cross-sectional microscopic morphologies of

selected membranes (M12.21 and M2211), with and without

embedded LDNP and CHNP, are shown on the scanning

electron micrographs in Figure 2. Both the surface and the

cross-sectional views of M12.21 and M2211 are clearly rougher

for samples with LDNP and CHNP. Round structures suggest the

presence of nanoparticles, indicating that the embedding

protocol was successful.

FIGURE 1
Drug release from nanoparticles. Lidocaine and
chloramphenicol release profiles from lidocaine- and
chloramphenicol-loaded polycaprolactone nanoparticles (LDNP
and CHNP, respectively). Coefficients of determination (R2)
for three different fitting models: 0th order, 1st order, and Higuchi.
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Figure 3A brings the in vitro degradation profiles of Group

135 and Group 2100 membranes separately. Group 135
membranes degraded faster than Group 2100 membranes.

Seemingly, within each group, the higher the GL contents, the

higher the degradation rate. Indeed, the separation in between

polymeric chains promoted by GL was reported to speed up

degradation. Although thicker, these membranes are more

susceptible to swelling and degradation (Mazzarino et al.,

2014). Particularly, M12.21 and M2211 were more resistant to

degradation in simulated saliva after 28 days and were then

selected for the following characterizations/studies.

Figure 3B shows the swelling profiles for M12.21 and M2211
membranes. After 15 min, M2211 reached a mean swelling index

(SI) plateau at about 150%. Comparatively, M12.21 reached an SI

of approximately 330% in 15 min, then continued its hydration

through the 24 h of study, up to a mean SI around 450%.

Consistently, with a higher amount of GL, M2211 was less

susceptible to swelling than M12.21 (Mazzarino et al., 2014).

Figure 3C displays the drug release profiles for M12.21 and

M2211 membranes, embedded with LDNP and CHNP. During

the first hour, we observe the so-called “burst effect”, both for

LDNP and CHNP. Following this initial fast release, a slow

sustained release was verified up to the 24 h of observation. A

similar behavior was highlighted for chitosan biomembranes in

previous reports (Elgadir et al., 2015). The “burst effect” is

generally associated to the release of drugs which were

previously encapsulated close to the nanoparticles surface

(Aminu et al., 2013). No significant differences were observed

between the release profiles of M12.21 and M2211, neither for

LDNP nor for CHNP. Hence, membrane degradation and

swelling profiles seem to prevail over LDNP and CHNP

release profiles in terms of the overall drug release, as

preconized by other authors for chitosan-based films (Ren

et al., 2005; Labib et al., 2014) and observed for

chloramphenicol- (Sanchez-Rexach et al., 2018) and lidocaine-

loaded membranes (Thein-Han and Stevens, 2004).

Figure 3D summarizes the results obtained from the

antibacterial activity assays. Following the CSLI standards

(CLSI, 2018), if an inhibition halo with diameter greater than

18 mm is formed around chloramphenicol disks after 24 h of

exposure, S. aureus can be considered “susceptible” to the

antibiotic. If the halo diameter is in between 13–17 mm, its

sensitivity is regarded as “intermediate”. However, if the halo

diameter is lower than 12 mm, S. aureus can be considered

“resistant” to the antibiotic.

In our assays, chloramphenicol alone induced the formation

of a 30-mm halo after 24 h of incubation with S. aureus, attesting

its antibacterial activity (Figure 3D, top left). Similarly, when

loaded with CHNP, both M12.21 and M2211 (
+M12.21 and

+M2211)

induced the formation of 25-mm halos, suggesting that S. aureus

can be inhibited by these membranes. When deprived of CHNP

(–M12.21 and
–M2211), no inhibition halo was formed (Figure 3D,

bottom left), which indicates that the antibacterial activity

observed comes solely from chloramphenicol, and not from

CS, HA, GL, or other membrane components.

Analogously, chloramphenicol alone induced the formation

of a 50-mm halo after 24 h of incubation with A.

actinomycetemcomitans, attesting its antibacterial activity

(Figure 3D, top right). Likewise, +M12.21 and +M2211 induced

the formation of inhibition halos, suggesting that A.

actinomycetemcomitans can be inhibited by these membranes.

In turn, –M12.21 and –M2211, both deprived of CHNP, did not

induce inhibition halos (Figure 3D, bottom right).

Noteworthy, CS has been reported as an intrinsic bactericidal

agent (Dash et al., 2011). Although controversial, its antibacterial

activity is seemingly related to polymeric chains with high

molecular weight and low acetylation (Kanwar et al., 2017).

The CS used in this study had low molecular weight and,

consistently with the literature, did not display perceivable

bactericidal action.

The antibacterial activity of HA was reported to correlate

with its concentration, molecular weight, functionalization, and

TABLE 3 Biomembranes: Physical and mechanical properties.

Dry weight [mg/cm2] Thickness [mm] TS [MPa] EB [%]

Group 135 M1221 23 ± 1d 0.10 ± 0.04b,d 1.4 ± 0.4a,c,d 49 ± 12a,b

M1215 48 ± 4a,c,e 0.14 ± 0.02b,d 0.7 ± 0.2b,d 56 ± 4a

M12.21 20 ± 5d 0.10 ± 0.02e 1.5 ± 0.4a,c 40 ± 6a

M12.25 46 ± 10a,c,e 0.13 ± 0.03b,d,e 0.7 ± 0.1b,d 58 ± 3b

Group 2100 M2221 56 ± 2a 0.18 ± 0.04a,b 2.1 ± 0.4a 45 ± 7a,b

M2215 87 ± 11b 0.32 ± 0.07c 0.8 ± 0.1b,c 53 ± 8a,b

M22.21 42 ± 5c 0.16 ± 0.02d 2.0 ± 0.5a 49 ± 4a,b

M22.25 80 ± 5b 0.23 ± 0.04a 1.1 ± 0.2b,c 53 ± 9a,b

TS, tensile strength; EB, elongation at break; M, membrane. Different superscript letters indicate statistically significant differences (p < 5%).
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FIGURE 2
Biomembranes morphology. Surface and cross-sectional scanning electron micrographs taken from chitosan/hyaluronic acid/glycerol (CS/
HA/GL) representative membranes M12.21 and M2211, either with or without embedded LDNP and CHNP.
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bacterial strains assessed (Dahiya and Kamal, 2013; Lequeux

et al., 2014; Romanò et al., 2017). At the concentrations used in

this work, HA did not exhibit perceivable activity against the

assessed strains.

Figure 4 shows the results of the biocompatibility tests. Green

fluorescence (calcein staining) comes from viable cells, while red

fluorescence (EthD-1 staining) comes from non-viable/dead cells.

No significant cytotoxicity was observed for –M2211 (not

loaded with LDNP and CHNP), since cell viability remained

at 99%, like the corresponding control. Slight cytotoxicity was

observed in the vicinity of +M2211 (loaded with LDNP and

CHNP), with cell viability reduced to 80%.

Unlike M2211, M12.21 exhibited some cytotoxicity even

when deprived of nanoparticles (–M12.21), with cell viability

reduced to 93%. Moreover, significant cytotoxicity was

observed for +M12.21, even at regions relatively distant from

the vicinity of the membrane, the overall viability decreasing

to 32%.

The results obtained for M2211 are consistent with those

observed by other authors in terms of the intrinsic toxicity of

FIGURE 3
Biomembranes degradation, swelling, release kinetics, and antibacterial activity. (A) Degradation profiles of membranes incubated in simulated
saliva. (B) Swelling profiles ofmembranesM12.21 andM2211 in simulated saliva. (C) LDNP andCHNP release profiles frommembranesM12.21 andM2211.
(D) Chloramphenicol (top), M12.21 and M2211 (bottom) antibiotic activity against S. aureus and A. actinomycetemcomitans. The superscripts + and
− indicate whether M12.21 and M2211 were embedded or not with LDNP and CHNP.

Frontiers in Nanotechnology frontiersin.org09

Vasconcelos et al. 10.3389/fnano.2022.1049599

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2022.1049599


chloramphenicol (Kostopoulou et al., 2015; Nada et al., 2016). On

the other hand, the significantly higher cytotoxicity presented by

M12.21 suggests that this biomembrane was unexpectedly

intrinsically toxic.

4 Discussion

Drug-eluting biomembranes were obtained by the

incorporation of lidocaine- and chloramphenicol-loaded

polycaprolactone (PCL) nanoparticles (LDNP and CHNP,

respectively) to a biodegradable polymeric matrix composed

of chitosan (CS), hyaluronic acid (HA), and glycerol (GL)

(Table 1).

LDNP and CHNP final size, polydispersion, encapsulation

efficiencies (EE) and release profiles were shown to be suitable for

the embedding, with similar total amounts of encapsulated drug

(Table 2; Figure 1). Indeed, with sizes as small as 210 nm, the total

surface area comprised by LDNP and CHNP tends to increase

interactions and eventually binding between negatively charged

ketones of their PCL structure to the structural components of

the biomembranes, particularly to positively charged amines

available in CS chains (Semnani et al., 2017; Kalantari et al.,

2019). The reduced polydispersion is an indicative that these

interactions are expected to occur nearly homogeneously across

the biomembranes surface area.

Moreover, the relatively high EE allowed the encapsulation of

approximately 4.5 mg of lidocaine and 5.0 mg of

chloramphenicol in a 6-ml colloidal dispersion of LDNP and

CHNP, respectively. This is a relatively large amount of

encapsulated drug to be eventually incorporated to the

biomembranes. Indeed, chloramphenicol minimum inhibitory

concentrations MIC50 andMIC90 are reported to be, respectively,

3 mg/L and 8 mg/L (Sueke et al., 2010). The total amount of

chloramphenicol encapsulated in a 6-ml dispersion of CHNPwas

5.0 ± 0.3 mg, hence a final concentration slightly below the

designed one (about 0.83 mg/ml, Tables 1, 2). As the

chloramphenicol release rate from CHNP was estimated at

0.98 ± 0.04 %/h (Supplementary Figure S1), the CHNP

dispersion would be able to release about 8.2 mg/L per hour,

which is greater than the chloramphenicol MIC90, and thus

suitable for a sustained antibiotic activity. Indeed, even if

about 60% of the CHNP are not ultimately embedded in the

biomembranes, the delivery system will still be able to provide

more than 3 mg/ml of chloramphenicol (MIC50) per hour.

However, based on their drug release profiles (Figure 2),

the anesthetic effect of lidocaine is expected to take place

within the first 48 h (2 days), whereas the antibacterial effect

of chloramphenicol would be active up to 120 h (5 days) after

exposure to the biological medium (saliva). The difference

between the release rates of lidocaine (2.18 ± 0.05 %/h,

Supplementary Figure S1, 0th order) and chloramphenicol

(0.98 ± 0.04 %/h, Supplementary Figure S1, 0th order) is

especially important for the envisaged application. Indeed,

a few hours after the biomembrane is implanted, the

anesthetic effects of lidocaine on the local oral mucosa will

be rapidly felt, relieving the patient from pain and discomfort

(Ribeiro et al., 2016). On the other hand, the bactericidal

activity of chloramphenicol is expected right after the

biomembrane implantation, but also some time (days) after

FIGURE 4
Biomembranes biocompatibility. Membranes M12.21 and M2211 toxicity against 3T3 cells, either with or without embedded LDNP and CHNP.
Green fluorescence (calcein staining) indicates viable cells, while red fluorescence (EthD-1 staining) indicates non-viable cells. Viabilities, calculated
via Eqn 4, are shown for each image/sample.
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the procedure, in order to prevent bacterial growth,

diminishing the risk of infections (Tihan et al., 2015). Since

0th order release kinetics seems appropriate for both drugs, we

can expect these effects occurring at a constant rate during the

whole timeframe of the treatment (guided tissue

regeneration, GTR).

Membranes physicochemical and mechanical properties

were noticeably dependent on their designed composition. GL

clearly exerted greater influence on their dry weight, thickness,

tensile strength (TS), and elongation at break (EB), which can be

attributed to its well-known plasticizing function (Table 1 and

Table 3). Overall, membranes with higher designed amounts of

GL were the ones with greater dry weight, thickness, and EB

(hence, lower TS). As a plasticizer, GL promotes the separation of

adjacent polymer chains by reducing the intermolecular

interactions within the polymeric network, resulting in

loosening, greater matrix flexibility, and lower mechanical

resistance (Fundo et al., 2014; Ma et al., 2017).

The incorporation of nanoparticles to biomembranes may

modify their physicochemical/mechanical properties and

morphology (Ng et al., 2013; Morihama and Mierzwa,

2014; Hasan et al., 2017). In this work, LDNP and CHNP

did not significantly altered the physicochemical/mechanical

properties of the developed membranes, although their

morphology was clearly affected (Figure 2). Positively

charged amines in CS chains strongly attract negatively

charged functional groups (e.g., carboxyl and hydroxyl

groups) in HA chains, leading to the formation of a

polyelectrolyte complex (PEC), which serve as a scaffold for

the embedding of drug-loaded NPs (Nath et al., 2015). The

resulting polymeric matrix is expected to be dense, smooth,

and homogeneous, as attested by surface and cross-sectional

scanning electron micrographs of samples without

nanoparticles in Figure 2.

Changes in the morphology, as those seen in samples with

LDNP and CHNP in Figure 2, can be caused by various factors.

One of the main challenges of the embedding process is to

preserve the homogeneity of the original matrix. Indeed, even

monodispersed nanoparticles can form aggregates when

introduced to the polymeric matrix, as a result of interactions

with its structural components (Kim et al., 2005). These

aggregates may be due to the colloid original concentration,

ionic strength, and pH, or may be related to the nanoparticle

dimensions, morphology, and surface ligands, overall increasing/

reducing physicochemical interactions with the polymeric

network (Ng et al., 2013).

Importantly, the entrapment in polymeric matrices

generally does not impair the nanoparticle designed

functionality, the final delivery system benefiting both from

the matrix physicochemical/mechanical properties and from

the controlled/sustained drug release engendered by the

embedded nanoparticles (Contri et al., 2014; Cardoso et al.,

2019). Chitosan positive amines in the CS/HA/GL membranes

are expected to attract polycaprolactone (PCL) negative

ketones in LDNP and CHNP, favoring the embedding, an

interaction widely explored for assembling electrospun

nanofibers (Semnani et al., 2017; Kalantari et al., 2019).

The resulting membrane roughness observed in Figure 2 is

reported to foster the adhesion of biomolecules, consequently

promoting cell adhesion and proliferation in guided tissue

regeneration (GTR) applications (Ma et al., 2010; Cardoso

et al., 2019).

Membranes degradation and swelling profiles in aqueous

media are expected to be a function of the hydrophilic/

hydrophobic nature of their structural components.

Figure 3A suggests that GL-rich samples (M1215 and

M12.25 in Group 135, and M2215 and M22.25 in Group 2100)

were less resistant to degradation in simulated saliva. In turn,

Figure 3B indicates that M2211 is less susceptible to swelling

than M12.21.

Indeed, the amount of structural HA and GL determines the

crosslinking degree within the polymeric network, with

degradation being proportional to the number of free amines

in CS chains and to the porosity of the matrix (Mathews et al.,

2014). Moreover, the presence of polar groups, such as the

hydroxyl and carboxyl groups in HA, are reported to favor

water absorption and diffusion through a polymeric matrix

(Silva, 2013; Tarusha et al., 2018). The higher the water

absorption, the higher the swelling index and the higher the

probability of hydrolysis, hence the higher the matrix

degradation rate and consequent loss of the original

physicochemical/mechanical properties (Kim et al., 2005).

The drug release profiles in Figure 3C could suggest that

drug-elution from the CS/HA/GL matrix would be

characterized by an initial burst-release followed by a slow

sustained release. We highlight, however, that these profiles

correspond to LDNP and CHNP release from the

biomembranes, whereas the anesthetic effect of lidocaine

and the antibacterial effect of chloramphenicol are expected

to be a function of the release kinetics in Figure 1. Indeed,

drug efficacy/toxicity is expected solely after its eventual

release from the PCL nanoparticles towards the site of action

(Gikas et al., 2004; Kotoky et al., 2015; Preem et al., 2017).

Accordingly, LDNP and CHNP first detach from the

biomembrane structures and then start the release of

lidocaine and chloramphenicol, respectively. Indeed, the

hydrolysis of the biomembrane structure, including the

unbounding between PCL negative ketones (in LDNP and

CHNP) and CS positive amines (of the biomembranes), is

expected to precede the actual lidocaine and

chloramphenicol co-release—which is, in turn, a result of

the hydrolysis of the PCL structure of both LDNP and

CHNP. Combined, the release profiles in Figures 1, 3C

demonstrate that both M12.21 and M2211 can provide the

desirable therapeutic effects in a controlled and sustained

manner.
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For the antibacterial activity assays, S. aureus was chosen as a

representative of gram-positive bacterial strains, whereas A.

actinomycetemcomitans was selected as a representative of

gram-negative bacterial strains (Tihan et al., 2015; Szafrański

et al., 2017). Corroborating this drug-elution kinetics, the

antibacterial activity of M12.21 and M2211 could be successfully

verified against both S. aureus and A. actinomycetemcomitans

bacterial strains, as shown in Figure 3D. Indeed, inhibition halos

induced by chloramphenicol alone (top) closely resemble those

induced by the functionalized membranes (bottom, +M12.21 and
+M2211). No inhibition halo was induced bymembranes deprived

from CHNP (bottom, –M12.21 and
–M2211), which suggests that

CS, HA, and GL, at the designed concentrations, have no

significant antibacterial effects, although some toxicity has

already been attributed intrinsically to CS (Dash et al., 2011).

For instance, there are studies reporting that biomembranes

composed exclusively by CS chains (with high molecular

weight and low level of acetylation) were able to inhibit the

action of A. actinomycetemcomitans—although no inhibition

was observed for S. aureus (Kmiec et al., 2017; Ma et al.,

2017). This might be related to the absence/presence of the

cell wall protection, with high molecular weight positively

charged CS chains with low level of acetylation more prone to

interact and degrade negatively charged bacterial membranes

deprived from cell wall protection (gram-negative).

Finally, M12.21 and M2211 were submitted to

biocompatibility assays (Figure 4), to evaluate their safety

when in contact with mammalian cells, especially due to the

intrinsic toxicity of chloramphenicol. The 3T3 murine lineage

of fibroblasts was selected for this assay, since it is a common

model of healthy mammalian cells (Henklewska et al., 2021).

The greater cytotoxicity observed for M12.21 might not be

related to its drug-release kinetics, since it is very similar to

that of M2211 (Figure 3C). Therefore, M12.21 cytotoxicity

might be related to its degradation and swelling rates

(Figures 3A,B), clearly higher than that of M2211. Richer in

HA, M2211 might also have benefited from HA pro-

adhesiveness and pro-cell-growth properties (Yamane et al.,

2005; Schneider et al., 2007; Kaderli et al., 2015). Indeed,

fibroblast growth and proliferation were reported to be a result

of the modulation of the cellular microenvironment signaling

due to the presence of HA (Chen et al., 2019).

5 Conclusion

Eight biomembranes, structurally composed by chitosan and

hyaluronic acid polymeric chains, were developed, with

mechanical properties, such as thickness, tensile strength, and

elongation at break, modulated by the addition of glycerol as a

plasticizing agent.

Lidocaine- and chloramphenicol-loaded nanoparticles were

incorporated to the membranes, envisaging their application as

drug-eluting systems in periodontal guided tissue regeneration.

Two samples displayed greater resistance to degradation and

swelling in simulated saliva and were then selected as optimal for

further assays.

A burst release of lidocaine and chloramphenicol was

observed for the membranes release profiles, which actually

corresponds to the detachment of the drug-loaded

nanoparticles. After detachment, a 0th order drug release

kinetics is observed from the nanoparticles, with lidocaine

being released almost 3 times faster than chloramphenicol.

This controlled and sustainable drug release profile is

notably due to the drug encapsulation in polycaprolactone

nanoparticles.

Drug encapsulation efficiency was such that

chloramphenicol minimum inhibitory concentration MIC50

per hour can be achieved even if the embedding efficiency is

reduced to 40% only. As a result, the optimal samples exhibited

bactericidal activity against both gram-positive S. aureus and

gram-negative A. actinomycetemcomitans similar to the one

observed for free chloramphenicol.

Richer in hyaluronic acid, one of these samples showed no

intrinsic toxicity against 3T3 murine fibroblasts, a common

model for healthy cells, and may now be further optimized as

a drug-eluting biomembrane with potential for guided tissue

regeneration.
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