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We demonstrate amodified stochastic gradient (Tiki-Taka v2 or TTv2) algorithm

for deep learning network training in a cross-bar array architecture based on

ReRAM cells. There have been limited discussions on cross-bar arrays for

training applications due to the challenges in the switching behavior of

nonvolatile memory materials. TTv2 algorithm is known to overcome the

device non-idealities for deep learning training. We demonstrate the

feasibility of the algorithm for a linear regression task using 1R and 1T1R

ReRAM devices. Using the measured device properties, we project the

performance of a long short-term memory (LSTM) network with

78 K parameters. We show that TTv2 algorithm relaxes the criteria for

symmetric device update response. In addition, further optimization of the

algorithm increases noise robustness and significantly reduces the required

number of states, thereby drastically improving the model accuracy even with

non-ideal devices and achieving the test error close to that of the conventional

learning algorithm with an ideal device.
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1 Introduction

The annual worldwide internet traffic reached the zetabyte (1021) regime in 2017 and is

expected to show an exponential growth as the demand for data skyrockets (Jones, 2018). The

corresponding increase in electrical consumption has been countered by an increased efficiency

of computing. The machine learning algorithm has been considered a promising algorithmic

means to enhance computing efficiency, especially due to its ability to efficiently break down

enormous amounts of data into a useful form, and has been adopted in many areas, including

image processing, natural language processing, and forecasting various time series data

(Collobert et al., 2011; Hinton et al., 2012; Krizhevsky et al., 2012; LeCun et al., 2015).

Improved computing hardware efficiency is one of the key enablers of such advances, and a

predominant approach for hardware improvement has been relying on a simple transistor

scaling. While the transistor scaling shows increasingly diminishing returns lately (Agrawal

et al., 2016; Haensch et al., 2019), a roadmap for sustainable improvement in hardware
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efficiency has been proposed by optimizing the computing

architecture to achieve acceleration of a specific task (Chen et al.,

2017; Jouppi et al., 2017; Choi et al., 2019). For example, GPUs and

ASICs have been exploited to accelerate neural network (NN)

computation (Agrawal et al., 2016), and a non-volatile memory

(NVM)-based cross-bar array architecture has been proposed for

further improvement (Ielmini andWong, 2018;Haensch et al., 2019).

These cross-bar arrays are constructed where NVM devices are built

in the vertical space between two perpendicular sets of the bitlines

and the wordlines. Such cross-bar arrays can locally perform

multiplications and summations using Ohm’s and Kirchhoff’s

laws, using NVM devices encoding synaptic weights as

conductance values. This configuration can be used to execute

matrix operations used in deep learning in a constant time, rather

than as a sequence of individual multiplication and summation

operations. While most of the cross-bar array architecture focuses

on improving inference performances, proposals for improving

training efficiency have been limited. The resistive processing unit

(RPU) is a cross-bar array architecture, which has the promise to

improve neural network training speed significantly. Figure 1

illustrates the following: (a) forward, (b) backward, and (c) weight

update executed in parallel in a constant time for an RPU. Enabling

all the training procedures to be performed in parallel reduces the

training time complexity from O(n2) to O(1) and can provide orders

of magnitude reduction in training times (Gokmen and Vlasov,

2016).

2 Parallelized weight update in
resistive memory and its challenges

The weight update in most of the NN algorithms relies on

stochastic gradient descent (SGD) algorithm (Bottou, 1991). The

SGD algorithm follows the update rule:

FIGURE 1
Schematics for RPU array describing (A) forward pass, (B) backward pass, and (C) update pass. The update procedure utilizes the stochastic
gradient descent algorithm where the randomized pulse sequences are sent to rows and columns. Those cells where the pulses coincide get
updated (e.g., w41). Otherwise, the cell is not updated (e.g., w43) (Haensch et al., 2019). (D) Schematics of ideal device characters, which have a
bidirectional switching response and are symmetric to the negative/positive switching pulses. Such a character is suitable for SGD algorithm.
However, the realistic device character is different. ReRAM shows a bidirectional but nonsymmetric switching character, and PCM exhibits
unidirectional with a highly nonsymmetric switching character. Those are not suitable for the SGD algorithm, but the modified SGD (Tiki-Taka)
algorithm can accommodate ReRAM-like switching characters (Gokmen and Haensch, 2020). (E) Typical ReRAM conductance response to the
multiple voltage pulses. The red line depicts the response to the upward pulse, and blue line describes the response to the downward pulse. The
differential conductance shown on the right panel of (E) describes the symmetry point where the conductance changes to the upward/downward
response are equal.
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w ← w − η δTx[ ] orwij ← wij − η δj × xi[ ], (1)

where wij is a logical weight representation at the ith row and jth

column, x = [x1, . . ., xi, . . . ] is the input/activation vector

propagated during the forward pass, δ = [δ1, . . ., δj, . . . ] is

the error vector computed during the backward pass, and η is a

hyperparameter controlling the strength of the update. Each of

the logical weights is encoded as a conductance of an NVM

device in RPU as

wij � K gij − gij,ref( ), (2)

where K is an arbitrary scaling factor to map physical

conductance to the logical weight representation, gij is a

physical device conductance, and gij,ref is a reference

conductance. Since weights are signed values and conductance

is always positive, a differential signal is created by comparing the

changing conductance gij,ref to a reference value.

A parallel operation of the outer product in Eq. 1 is a pivotal

operation to accelerate the training procedure in RPU, and it is

achieved by using the stochastic pulsing scheme, namely, xi and δj
are encoded in time as a pulse train (Gokmen and Vlasov, 2016).

Figure 1C illustrates the corresponding pulse train and the device

at the cross-point where a row pulse and a column pulse coincide

sees the full bias and is updated. The pulse train consists of a fixed

bias and constant length pulses whose specific values are

determined by details of the device characteristics. The

stochastic pulsing scheme relies on a simple statistics of the

coinciding events of row and column pulses. This means that the

time-encoded pulse trains of x and δ can be sent for all the

relevant rows and columns at once and the corresponding weight

matrix w can be updated at a constant time. However, a caveat is

that performing the weight update in parallel is achieved at an

expense of the ability to check the status of the weights. In other

words, we are no longer able to rely on a write-and-verifymethod

for an update operation. This puts strict requirements on the

switching characteristics of the cross-point elements for a

successful SGD algorithm (Gokmen and Vlasov, 2016), which

seems to be unfeasible with currently available non-volatile

memory technology. A number of device non-idealities,

including non-linearity in update and variations of device

characteristics, have been discussed, and a symmetrical

bidirectional write capability has been identified as one of the

most important requirements (Gokmen and Vlasov, 2016). The

first plot of Figure 1D illustrates the symmetrical bidirectional

writing which requires the same amount of increase/decrease of

the conductance in the resistive elements for applied stochastic

pulses. However, the realistic devices show switching

characteristics far from the ideal. For example, the phase

change memory (PCM) exhibits unidirectional switching

behavior with highly nonsymmetric set/reset characteristics.

The resistive random-access memory (ReRAM) exhibits

bidirectional switching yet shows a highly nonsymmetric

update character (Haensch et al., 2019). Figure 1E describes a

typical ReRAM conductance (g) pulse response. The device

shows large changes for downward pulses when g is close to

its maximum, whereas small incremental changes for the upward

pulses in the same region. Such a nonsymmetric conductance

change, δg, is described in the right side panel of Figure 1E for the

entire conductance range and clearly illustrates that conductance

change is not equal for upward (red)/downward (blue) update

pulses.

Interestingly, there is a point, which we call as a symmetry

point (SP), where the device responses to upward/downward

pulses are identical. The SP can be also defined as a specific

conductance that reaches from arbitrary initial conductance

when the device is stimulated by a random number of equally

distributed upward/downward pulses (Kim et al., 2019a) (see

Supplementary Figure S2). When the device is operating near the

SP, the response to the upward/downward update pulse is nearly

symmetric, and thus the device may behave for SGD algorithm.

During the operation, however, the conductance will not

necessarily converge to the SP, rather its stationary value will

be determined by the competing requirements of reaching a

minimum of the network’s loss function. Let us assume that there

is a target weight at which an ideal symmetric device converges,

wt, which corresponds to a local minimum of the defined loss

function. When the device is operating far from SP, a stronger

update on one side tends to force the device fluctuating below/

above wt, thus hindering the device from learning the correct

algorithmic weight value, wt. A more detailed illustration is given

in Supplementary Figures S1A–C. Improvement in materials and

optimizing device stack has been made for better update

characters; however, challenges remain such as having limited

resistance range (Prezioso et al., 2015) or process maturity (Kim

et al., 2019b). Optimizing pulse sequence (Chen et al., 2015) or an

analog/digital hybrid system (Le Gallo et al., 2018) may mitigate

the non-idealities of the device; however, they come with a cost of

severe reduction in the training speed.

3 Algorithm optimization for
improved parallel update

The recent advances in training algorithms relax the criteria

for a device asymmetry (Gokmen andHaensch, 2020; Onen et al.,

2022) with a modified SGD algorithm, or Tiki-Taka algorithm.

The key advance is made by separating a gradient processing and

an error backpropagation into two coupled systems, A (WA) and

C (WC), respectively. Figure 2 describes the difference between

(a) the conventional SGD and (b) the Tiki-Taka algorithm.

Specifically, the modified update rule follows

wA ← wA − η δTx[ ],
wC ← wC + λ wA[ ] at every n th step, (3)
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where λ is the learning rate for system C and wA,C is the weight

representation of the systems A and C, respectively. The

important caveat is to utilize SP as gij,ref for system A. The

conductance of the reference device for wC does not need to be at

the SP of its active device, as we shall see in the following

paragraphs. The forward pass utilizes wC to compute

gradients, and the gradients are separately processed by wA.

Then, the processed gradients are transferred to wC with a

pre-defined rate (e.g., every nth training data). When the

desirable weight is not reached for wC, a biased gradient is

accumulated on wA which eventually drives wC toward the

desired local minima upon the scheduled transfer. Once the

desirable weight is reached for wC, the stimulus for system A

ideally becomes zero as there is no systematic information

generated by the gradient processing performed by the system

A. However, due to the device noise and non-idealities, a random

signal with (close to) equal upward/downward updates are

generated and accumulated in system A. This randomly

distributed upward/downward signal will drive the active

conductance in wA to the SP. It should be noted that we

intentionally put gij,ref of system A to SP, thus the resulting

signal from A is ideally zero. Of course, due to the device noise

and non-ideality, system A may fluctuate near zero, but more

importantly, such fluctuation is less likely to cause any significant

deviation of system C from its local minima as system A now

operates near SP. Consequently, the resulting weight of system A

will be nearly zero, and henceforth there will be no significant net

update for wC as well. This guarantees that the weights in wC will

reach the algorithmically determined target (see Supplementary

Figures S1E,F) for further illustration of an example where the

system reaches the desirable value through the feedback process

between wA and wC.

Tiki-Taka brings additional hardware complexity

compared to SGD. System A can be realized using two

devices, where one is used as a reference device that is

programmed to the symmetry point of the updated device.

In addition, system C requires one more additional device to

encode the logical C value. It should be noted that the same

reference device used for A can be used for C because the

symmetry point shifting is not required for system C. As a

result, Tiki-Taka requires three device arrays compared to the

two needed for SGD. However, one additional device array

required by Tiki-Taka is readily justifiable as Tiki-Taka

significantly reduces the critical device requirements that

the technology must deliver for successful training.

The benefit of having the coupled systems A and C is to

alleviate the requirement on the device symmetry by enabling

system A to operate near SP, thus providing a better convergence

toward minimizing the defined loss function. However, the noise

introduced during the transfer from system A to C often causes

an additional test error (Gokmen, 2021). The fluctuation can be

further mitigated by introducing an additional stage, H, as

illustrated in Figure 2C. Here, H is introduced between A and

C and wA is accumulated in H at a given rate. The H stage

performs the integration in a digital domain and outputs a single-

pulse update to wC when the integrated value is above a certain

threshold hth. The integration and thresholding act as a low-pass

filter, and the model parameter is updated at a slower rate with

higher confidence. This enables the algorithm to cope with

various hardware-related noise issues. The modified update

rule is

wA ← wA − η δTx[ ],
H ← H + λ wA[ ] at every nth step,

wC,ij ← wC,ij + sign Hij( )δwmin if |Hij|> hth,
(4)

wherewC,ij is the ith row and jth column element ofwC and δwmin

is the minimum update unit (e.g., corresponds to a conductance

change by a single-update pulse).

This improved version of the Tiki-Taka algorithm, referred

to as Tiki-Taka v2 (Gokmen and Haensch, 2020), requires more

hardware footprint to accommodate additional digital storage of

H. However, these additional costs are justifiable, as it also brings

additional robustness against key hardware issues (noise and the

limited number of states) while only causing modest

performance degradation (Gokmen and Haensch, 2020).

FIGURE 2
(A) Schematics for conventional SGD algorithm. (B) Schematics for Tiki-Taka algorithm. (C) Schematics for further improved Tiki-Taka v2
algorithm.
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4 Device demonstration

4.1 Discrete device demonstration, one-
variable task

We perform a one-variable learning task to show the

feasibility of the Tiki-Taka algorithm. We choose a target

slope value (equivalent to the target weight value, wt) and

learn the slope by using either SGD or Tiki-Taka algorithm.

The training dataset is generated from randomly sampled x

values that satisfy X0 ∈ [ − 1, 1] and the corresponding y

values that satisfy Y0 = wtX0 with a small Gaussian noise.

Then, the training input X0 is fed into the network, and the

L2 norm is calculated from the fitting result Y and the desirable

output Y0. The procedure is summarized as a flow

chart in Figure 3A, and an example outcome is described in

Figure 3B.

We utilize the two 20μm × 20 μm ReRAM devices. The

devices are prepared with a TiN/HfOx (5 nm)/TiN stack and

individually wired out to the external pads. The device is

formed and goes through multiple switching cycles to confirm

the reproducible switching characteristics. The detailed device

pulse response and conditions are described in Supplementary

Appendix S7. Figure 3C shows the SGD approach to learn the

slope value of wt = 0.5, which is close to the maximum

conductance value. In this case, device 2 is operating far

from the SP, and the updates are nonsymmetric. The

weight clearly fluctuates below wt for the reasons discussed

FIGURE 3
(A) Flow chart of a linear regression task. (B) Example plot describes the procedure explained in (A). Black circle symbols are training datasets (X0,
Y0). Solid line shows the learned weight from 0 to 5 epochs. During the training, the resultant conductance value has been converted to a logical
weight value by normalizing the conductance to the minimum (gmin) and maximum (gmax) values of each device, or w = (g − gSP)/(gmax − gmin + δ),
where δ is an arbitrary buffer value that ensures we address a weight range of [ − 0.5, 0.5]. (C–H) Weight evolutions for SGD and “Tiki-Taka”
algorithm. (C) Device 2 in Supplementary Figure S2 is utilized for SGD algorithm to learn wt = 0.5 (dashed line). The solid red line shows the weight
evolution as a function of epoch. The black thick solid line represents the moving average of the weight evolution with the average window of
0.5 epoch. Due to the nonsymmetric update nature of the device, w fluctuates belowwt. (D,E)wA andwC evolution for “Tiki-Taka” algorithm. Initially,
the upward gradient is accumulated in wA, leading to a monotonic increase in wC. Once wC reaches wt, wA fluctuates near the SP (or wA = 0). wA

remains slightly higher than 0 and drives wC to fluctuate near the target unlike SGD in (C). The same corresponding experiment is presented for
wt = −0.5 in (F) and (G,H).
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in Section 2. Once we adopt the Tiki-Taka algorithm, wA

accumulates the gradients and fluctuates near the SP (zero in

weight). It should be noted that in Figure 3E, wA shows that its

averaged weight remains slightly above 0. This is due to the

nonsymmetric update nature of the device, namely, from

more upward update requests accumulated to wA. This

positive wA drives wC toward a higher value than that in

SGD algorithm until it reaches the desirable value wt (see

Section 3 for more analysis). Figure 3F shows that wC now

reaches the target value of wt = 0.5 and fluctuates around it.

When the target slope is set close to the minimum

conductance value of wt = −0.5, Figures 3D–F show a

similar trend. This result shows that the nonsymmetric

device can now be applied to NN learning.

4.2 2 × 2 array demonstration, two-
variable task

After our trial on individual devices, we scale our

problem for a 2 × 2 array. The main motivation is to test

out the feasibility of the algorithm in a more realistic 1T1R

ReRAM array environment. The same linear regression task

is considered as described in Figure 3A, but now we fit for

both the slope and y-intercept. Figure 4A shows the ReRAM

stack in the 1T1R array. Four 200nm × 200 nm devices out of

a 32 by 20 array are selected. We found a common switching

condition of − 2.1V/2.0V with 1.6μs pulses. The gate is

controlled row-wise, and thus the half-bias is applied to the

unselected rows and columns. This allows us to implement

the stochastic pulse scheme described in Figure 1C, while

minimizing the disturbance of unselected rows and

columns. A clear response has been observed for a

selected device, whereas the devices in disturbance show

no evidence of systematic drift of the conductance state. For

more details, see Supplementary Appendix S8. Knowing the

minimal disturbance impact, we apply SGD and Tiki-Taka

for the linear regression task. To accommodate for the

device variations, we choose the bias conditions showing

reasonable responses for four devices. Therefore, the pulse

may not be ideally optimized for individual devices,

indicating higher fluctuations in weight values in

Figure 4C. In addition, the fluctuation in both the slope

and y-intercept results in the fitting results being worse,

FIGURE 4
2 × 2 array pulse/disturbance response. (A) Cross-sectional TEM image of 1T1R devices. (B) Row and column bias scheme for the half-selection
scheme. The gate is applied to the first row. The full bias is applied to the (1,1) device, and the half-bias is applied to (2,1) and (1,2) devices. (C–H) Two-
variable fitting results using the 2 × 2 array. The target slope (−0.25) and y-intercept (−0.25) are learned through (C) SGD algorithm, and the weight
evolutions are depicted for the (D) slope and (E) y-intercept. (F) Same task is performed using the optimized “Tiki-Taka” algorithm.
Corresponding wC values are plotted for the (G) slope and (H) y-intercept. (I) Simulation results using doubly stacked LSTM network trained on Leo
Tolstoy’s War and Peace (WP) novel. Open circles are the cross entropy test error of the training results with the floating point (FP). Orange closed
circles are SGD using the ideal (symmetric update, 1200 states, baseline 1x noise) device. Simulation results using baseline ReRAM stack characters
(nonsymmetric update, 15 states, 260x noise). Simulation results using improved ReRAM stack characters (nonsymmetric update, 50 states, 96x
noise). We observe the test error close to the FP using SGD for ideal symmetric device characteristics (rectangular symbols). However, the network
exhibits the degradation of the test error when we introduce the nonsymmetric typical ReRAM characteristics (black lines). The improvement is
observed by utilizing the “Tiki-Taka” training algorithm (Gokmen and Haensch, 2020) (magenta lines) and further improved by using the optimized
“Tiki-Taka” algorithm (Gokmen, 2021) (blue lines).
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indicated as gray individual lines in Figure 4C. SGD results

in an average learned slope and y-intercept which is not

exactly satisfying the desirable value due to the

nonsymmetric nature of the device response. In addition,

the high level of conductance fluctuation shows that the

multi-variable fitting is not feasible. To address the high

noise, we utilize the further modified SGD or Tiki-Taka v2

algorithm (Gokmen, 2021) which is effective in mitigating

various hardware noises as discussed in Section 3 and

Figure 2C. The fitting results shown in Figure 4F are now

more stable in terms of tolerating noise. The averaged

weight value reaches the desirable target values,

overcoming the nonsymmetric device nature. Figure 4F

illustrates the dramatic improvement in training by

carefully optimizing the learning algorithm.

5 Conclusion

We utilize our baseline device and project the model

accuracy of the long short-term memory (LSTM) network

through simulation. The details of the LSTM network and

dataset are described in Gokmen and Haensch (2020).

Figure 4I illustrates a significant reduction in the test error by

adopting Tiki-Taka v2 algorithm. The practical implementation

of the algorithm in a large-scale array still requires

improvements in device characteristics and variabilities,

especially having a common operation conductance range and

switching bias conditions is of importance for larger scale

demonstration of this algorithm. It is important to note,

however, that the modified and optimized algorithm not only

relaxes a requirement for symmetric update but also increases

noise robustness and reduces the required number of states

significantly. We demonstrate that the goal of realizing the

NN training accelerator maybe within the

reach by further co-optimizing the learning algorithm and

device.
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SUPPLEMENTARY FIGURE S1
Schematics for (A–C) SGD and (D–F) “Tiki-Taka” algorithm.

SUPPLEMENTARY FIGURE S2
(A) 20 μm × 20 μm ReRAM (device 1) conductance response to the
400 upward/400 downward pulses. The measurement is repeated for five
cycles (gray-filled circle), and averaged traces are plotted as a solid line.
Repeated two upward/two downward pulse sequence has been used to
measure the symmetry point (SP, open circle). The SP is obtained by
averagingmeasured conductance from half of the sequence up to the final
sequence (dashed line). (B) Differential conductance is obtained from
averaged traces from (A). SP agrees with the point where the differential
conductanceof up/down tracesmatcheswith eachother. SP is indicated as
a dashed linewith its rms as a shaded region.Weobserve that the SP extracted
fromupward/downward tracesdoesnot exactlymatchwith the SPextracted
fromalternatingpulsemeasurement results,which is causedby the inherent
device noise and cycle-to-cycle variation. (C) Samemeasurementwith (A) for
another device (device 2). (D) Corresponding differential conductance
measurement. The devices have been formed at 3 V. The 320-ns pulse is
used for −1.48 V (down)/1.28 V (up) for device 1 and −1.7 V (down)/1.15 V (up)
for device 2. We use device 1 as WA and device 2 as WC.

SUPPLEMENTARY FIGURE S3
(A) (row,column) = (1,1) device is selected, and full bias response for the
upward/downward pulse is clearly observed. (1,2) and (2,1) devices are half-
selected, respectively. A random fluctuation has been observed. The (2,2)
device is unselected, and no fluctuation has been observed. (B) Similar
experiment is carried out but by selecting the (2,1) device. The device has
been tested under five super cycles of upward/downward pulse
sequences, and the response is indicated as gray symbols. The averaged
upward/downward pulse responses are indicated as blue/red solid lines,
respectively.
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