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This work presents 2-bits/cell operation in deeply scaled ferroelectric finFETs (Fe-finFET)
with a 1 µs write pulse of maximum ±5 V amplitude and WRITE endurance above 109

cycles. Fe-finFET devices with single and multiple fins have been fabricated on an SOI
wafer using a gate first process, with gate lengths down to 70 nm and fin width 20 nm.
Extrapolated retention above 10 years also ensures stable inference operation for 10 years
without any need for re-training. Statistical modeling of device-to-device and cycle-to-
cycle variation is performed based on measured data and applied to neural network
simulations using the CIMulator software platform. Stochastic device-to-device variation is
mainly compensated during online training and has virtually no impact on training accuracy.
On the other hand, stochastic cycle-to-cycle threshold voltage variation up to 400mV can
be tolerated for MNIST handwritten digits recognition. A substantial inference accuracy
drop with systematic retention degradation was observed in analog neural networks.
However, quaternary neural networks (QNNs) and binary neural networks (BNNs) with Fe-
finFETs as synaptic devices demonstrated excellent immunity toward the cumulative
impact of stochastic and systematic variations.
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INTRODUCTION

The advent of convolutional neural networks (Lecun et al., 2015) has made machine learning or
neural network–based computation an inevitable choice for solving many complex tasks in recent
times. The real-time processing of the enormous amount of data generated from the internet search
engines, social networks, and edge devices in health care systems requires massive computing power
in conventional von-Neumann computing architecture. The memory-bandwidth bottleneck in von-
Neumann computing and the torrent of data generated on the internet every second have
reinvigorated the research in brain-inspired computing. Although modern data centers,
furnished by high-performance GPU or TPU, perform the data handling and classification task
precisely, the power-hungry nature makes them inappropriate for the end-user devices. Artificial
neural networks implemented in such a traditional von-Neumann computing system endure severe
bottlenecks during the data transfer between segregated memory and processing units.
Quintessentially, there are two pathways for implementing the artificial neural network (ANN).
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The first one is the computer science–based approach of ANN
(Fukushima, 1988; Riesenhuber and Poggio, 1999), which fails to
imitate the proper brain functions in terms of power
consumption and speed of operations. Therefore, a significant
interest in the area of emerging non-volatile memory based on
non-von-Neumann computing (Chen et al., 2015; Diehl et al.,
2015; Gokmen and Vlasov, 2016; Bae et al., 2017; Ambrogio et al.,
2018; Chang et al., 2018; Kim H. et al., 2018; Kim J. et al., 2018;
Ernoult et al., 2019; Fu et al., 2019) has grown. The pivotal
motivation of the present-day research on the neural network is
building dedicated hardware modules for implementing low-
power, fast-computing units without affecting the recent trend
of scaling.

CMOS-compatibility and low process temperature of hafnium
zirconium oxide (HZO) makes HZO-based ferroelectric (Fe)
finFETs an excellent candidate for logic, memory, and
neuromorphic devices. This property can be attributed to its
superior endurance and write speed as compared to Flash,
significantly higher on-to-off current ratio than MRAM, as
well as the negligible impact from random telegraphic noise
due to charge-based operation, unlike RRAM. The advantage
of HZO over other perovskite ferroelectric materials and Si-
doped hafnium oxides (HSO) has been mentioned in previous
reports, which involves ease of deposition by the ALD process,
scalability to thin film, and lower process temperature (Muller
et al., 2012; Jerry et al., 2017; KimH. et al., 2018; Ali et al., 2019; Ni
et al., 2019; Cheema et al., 2020). Recent reports have also shown
that low process temperature, superior interface quality, and
reducing the numbers of defect sites in HZO improve the
endurance of the HZO-based transistors (Dutta et al., 2020;
De et al., 2021a; De et al., 2021b; Khakimov et al., 2021).
Apart from the device structure, low process temperature and
interface properties, the pulse scheme, and bias-technique during
the WRITE operation also play an important role in determining
the WRITE-endurance limit of the device. However, the pivotal
issue lies in the increasing stochasticity with scaling as well as
inherent charge-trapping sites that may capture electrons or holes
from the channel side (CS) or gate side (GS) (Dunkel et al., 2017;

Alam et al., 2019). These effects create serious reliability issues in
terms of degradation of endurance (Dunkel et al., 2017) and
increased variation during program–erase (WRITE) operation in
deeply scaled HZO-based ferroelectric FET (Fe-FET) devices.

Ferroelectricity is a crystal structure–dependent property
engendered from the polarization catastrophe (Slater, 1950;
Kittel, 1951; Cochran, 1959; Cowley, 1965). The non-
centrosymmetric Pca21 orthorhombic phase is responsible for
ferroelectricity in HZO. The other phases, cubic or monoclinic
symmetry, do not show ferroelectricity. Therefore, it is essential
to form the orthorhombic phase in the HZO film to instigate the
ferroelectric switching. Usually, hafnium oxide is doped with
silicon, aluminum, or zirconium and subjected to thermal
annealing under various conditions to stabilize the metastable
ferroelectric orthorhombic phase (Frascaroli et al., 2015; Materlik
et al., 2018; Park et al., 2019; Sultana et al., 2019). Despite the
adoption of these stabilization techniques, atomic-layer-
deposited (ALD) HZO films exhibit non-uniform crystal
properties. There have been numerous efforts from the
scientific community to find the possible solutions to mitigate
these non-idealities for improving the performance of
ferroelectric FETs. However, the previous studies on the
variability of Fe-FETs have primarily focused on large
(>1 µm2) and planar MOSFET devices, in which the random
distribution of ferroelectric–dielectric domains and trapping are
the two primary sources of variation. Figure 1 provides a
qualitative overview of Fe-FET’s applicability as an artificial
synapse and the scaling trends toward implementing the
finFET-based neuromorphic computing platform from planar
CMOS technologies.

The feasibility of 28 nm technology node-based Fe-FETs was
successfully demonstrated with the fabrication of such synaptic
device in GlobalFoundries facilities (Soliman et al., 2020).
Figure 2A illustrates the 28 nm technology node-based FeFET
with the schematic and transmission electron microscopic (TEM)
image. The binary WRITE operation was conducted by 4.5 and
−5 V pulse of 500 ns pulse width. A reset pulse of opposite
amplitude preceded each WRITE pulse. Figure 2B shows

FIGURE 1 | (A) Transition from planar FeFET-based neuromorphic circuits to Fe-finFET-based neuromorphic circuit brings several challenges and promises.
Although the power consumption and area are reduced, the stochastic variation associated with the scaling will also increase. (B) Qualitative comparison of the critical
features of state-of-the-art memory cells highlights the advantage of FeFET as a synaptic device.
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pulse-driven binary switching capability among sixty devices.
Gradual increasing pulse-driven (step size 0.1 V) granular
switching capability in a single FeFET cell has been shown in
Figure 2C. However, this work focuses on ferroelectric finFETs
(Fe-finFETs) fabricated on silicon-on-insulator (SOI) wafers at
the Taiwan Semiconductor Research Institute’s nanofabrication
facility. The primary geometrical difference between a planar
MOSFET and a finFET is that the former is a planar structure,
and the latter is a non-planar structure. The process involved in
fin formation involves reactive ion etching (RIE) of the bottom
electrode (Si-fin), which is not required in planar MOSFETs. We
have observed that during RIE, the line edge roughness of the
sidewalls of the Si-fin is increased, and the RIE via H-Br plasma
creates a Si–Br bond at the interface (Bestwick and Oehrlein,
1990). The primary issues with the degradation in Fe-finFET’s
performance are three-fold. First, the random variation of the
ferroelectric and dielectric phase in gate-stack was reported by De
et al. (2021a) that long duration annealing could mitigate the
issues associated with the random distribution of the
ferroelectric–dielectric phase in HZO. The second is parasitic
charge clouds at the interface and fin line-edge-roughness (LER),
which increases the charge-trapping probability and inhibits fast
WRITE. Previous reports have shown that surface treatment can
alleviate the issues associated with the poor interface quality and
reduce the device-to-device variations up to a maximum 10%
deviation from the mean value (De et al., 2021a; De et al., 2021b).
The final and third one is systematic retention degradation, which
directly impacts the inference operation (Baig et al., 2021).

This work focuses on evaluating the impact of systematic
retention degradation and random device-to-device and cycle-to-
cycle variations on the training and inference accuracy of Fe-
finFET-based neural networks. In the first part of this article, we
describe the fabrication, characterization, and analysis of
variability in Fe-finFETs. The second part of this article
evaluates the impact of experimentally observed device-to-
device and cycle-to-cycle variation on training and inference
operation. Neural network simulation is performed using the
CIMulator (Le et al., 2020) software platform. Fe-finFETs may
also be used for online training, which requires constant updating
of weight coefficient (memory write) during training. With

endurance up to 109 demonstrated for HZO films (Chung
et al., 2018; De et al., 2021b), such application is possible. For
inference-only applications, Fe-finFETs form a memory array to
perform multiply-and-accumulate (MAC) tasks. It is
programmed only one time to store the weight coefficient of
the neural network and used for MAC operations by read-only
(READ) operations without changing weights (memory write),
which necessitates the stable data retention capability. Systematic
variations, such as retention degradation, are expected to play an
essential role in inference-only applications, whereas cycle-to-
cycle variation, physically originating from random telegraphic
noise, is expected to play a crucial role in both inference and
training applications. Based on our findings, we conclude that the
quaternary neural network (QNN) demonstrates higher
immunity than the analog neural network toward systematic
and random variation.

MATERIALS AND METHODS

The voltage-dependent partial switching mechanism in HZO-
based Fe-finFETs (Trentzsch et al., 2016; Jerry et al., 2017) can be
exploited to obtain analog synaptic behavior. However, the
infidelity in updating the conductance states of all the devices
in the memory array in a reliable manner during the weight
update process possesses a fundamental challenge in designing an
analog neural network using FeFET devices as a synapse. The
following section extends the investigation on such variation in
Fe-finFET devices and their applicability as synaptic devices in
neural networks’ training and inference operation.

Hf0.5Zr0.5O2-Based Ferroelectric FinFET
Fabrication, Characterization, and
Modeling
Nanoscale n-type and p-type tri-gate Fe-finFETs were fabricated
on an SOI wafer using a gate first self-aligned high-K and metal
gate process (De et al., 2021b). The devices under consideration
have a gate length (L) of 70 nm and finwidth (W) of 20 nm. The fin
height (H) for all devices was fixed at 30 nm, and the thickness of

FIGURE 2 | (A) Schematic illustration with the transmission electron micrograph of the FeFET cell fabricated in the GlobalFoundries’ 28-nm HKMG facility. (B)
Program-–erase operation conducted across sixty test devices using 1 µs pulse of amplitude ±5 V. (C) Analog program–erase operations in a single FeFET cell show the
impact of Vg

read on the number of different states and linearity (Soliman et al., 2020; Lederer et al., 2021).
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the ferroelectric (TFe) layer was 10 nm. Figure 3 schematically
illustrates the process flow. During the fabrication process, dry
oxidation was performed after fin formation by e-beam
lithography. This oxide layer was used as a sacrificial layer to
reduce fin line-edge-roughness engendered from lithography and
dry-etching process. This oxide layer was removed by diluted
hydrogen fluoride (DHF) solution, followed by chemical
oxidation via hydrogen peroxide (H2O2) solution to form a
relatively thinner interfacial oxide layer of thickness 0.8–1 nm.
This process reduces the interfacial trap densities by removing the
impurities from the surface of the silicon (Si) fin. The gate stack
consisting of HZO and TiN was formed by the atomic layer
deposition (ALD) and physical vapor deposition (PVD) method
on top of the interfacial layer. Figure 3 also displays the schematic
process illustration and transmission electron micrograph (TEM).

The electrical characterization of the devices was carried out by
an Agilent B1530A Arbitrary Waveform Generation and

Measurement unit. The program (WRITE-1) and erase (WRITE-
0) characteristics were analyzed to understand device-to-device
and cycle-to-cycle variation in fabricated devices. The devices were
subjected to 1-µs-wide pulses with positive or negative amplitudes
for characterizing their dynamic behavior, including their response
to WRITE operation, multilevel programming behavior,
symmetry, and linearity. The characterization of the multi-fin
Fe-finFET device was conducted by 1-μs-wide pulses. The low
threshold voltage (LVT) state was achieved by applying an +8 V
pulse at the gate terminal. On the other hand, a high-voltage state
(HVT) was achieved using a pulse of opposite (negative) polarity
with similar width and magnitude. To facilitate granular switching
and obtainmultilevel potentiation and depression characteristics in
a single device, we applied a 1-μs-wide pulse of increasing (3–8 V
with a step of 0.2 V) and decreasing (−0.8 to −5.4 V with a step of
−0.2 V) amplitudes to partially polarize the HZO stack in Fe-FET
(Figure 4A).

FIGURE 3 | Schematic illustration of the process flow along with the TEM image for the front end of line integration of the ferroelectric thin film with finFETs (De et al.,
2021a; De et al., 2021b).

FIGURE 4 | (A) LTP–LTD pulse scheme. During the potentiation, the amplitude of the pulse is increased by 0.2 V in each step, and during depression the amplitude
is reduced by −0.2 V. A full (±8 V) RESET pulse precedes each potentiation or depression pulse to ensure stable WRITE operation. (B) Threshold voltage modulation
curve shows the evolution of threshold voltage after each pulse during gradual potentiation and depression operation. (C)As the threshold voltage changeswith program
and erase operation, the channel conductance at a fixed gate voltage also varies. Variation of channel conductance is shown here. The number of conductance
state depends on the WRITE pulse numbers as well as choice of Vg

read.
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Although we have observed a ferroelectric domain
switching–assisted threshold voltage (Vth) shift upon the
application of WRITE pulse of much lower amplitude, the
WRITE scheme described in this work is suitable for wafer-scale
integration with higher linearity (Lederer et al., 2021). The drain
voltage was kept at 0 V during the WRITE operation. Each set
(potentiation or depression) pulse was preceded by a reset pulse
(±8 V) to drive the conductance back to the starting point. The
incrementingWRITE pulse amplitude in each step increments the
remnant polarization of the HZO film by a small amount, which
inevitably changes the Vth and channel conductance of the Fe-
finFETs (Faran and Shilo, 2010; Van Houdt and Roussel, 2018).

The READ of the memory state of the device was accomplished
100 μs after each WRITE pulse. The drain terminal was kept at a
constant 100mV during the READ operation, and a ramp voltage
was applied at the gate terminal. The ramp magnitude was varied
during the READ operations, similar to Lu et al. (2020), to eradicate
the trapping in the HZO film. The conductance was extracted from
the Id–Vg curve of potentiation and depression operations at a
specific gate voltage. We have used various gate voltages of values 0,
0.25, 0.5, 0.75, 1, and 1.25 V to extract the conductance. Figure 4B
shows the highly linear and symmetric threshold voltagemodulation
traits obtained by partial polarization of the ferroelectric stack in a
Fe-finFET with a gate length 70 nm. We have applied positive and
gradually increasing pulses for LTP and negative pulses for LTD.
Each pulse changes the remnant polarization of the HZO stack,
which changes the device’s threshold voltage, thus resulting in a new
memory state. We have obtained a maximum of 50 numbers of
memory states and a minimum of 26 numbers of memory states for
a single device. This variation in available conducting states can be
attributed to charge trapping, channel percolation, and nucleation
growth domain dynamics (Xiang et al., 2020; Xiang et al., 2021).
Figure 4C shows the gradual change in channel conductance during
potentiation and depression. The channel conductance is modeled
according to one of our previous publications (Lu et al., 2020):

G � KVgsteff

1 + UA(Vgsteff + Δ)
EU + Rds × K × Vgsteff + UD

Vgsteff+2kT
q

.

The model is based on the industry-standard BSIM4 model
(Dunga et al., 2007). The term “Vgsteff” denotes the effective gate

overdrive voltage. UA, EU, and Δ account for the vertical
field–dependent mobility degradation, whereas the drain-to-
source series resistance effects are implemented by the Rds
term. The term UD accounts for Coulomb scattering. The
details of this model have been described in (Lu et al., 2020),
and this model shows only 1.4% r.m.s error from the measured
data (Lu et al., 2020). Although the number of threshold voltage
states is constant with reading gate voltage (Vg

read), the number of
available conductance states highly depends on Vg

read. Primarily,
if Vg

read is too low, most of the operational ranges will fall within
the sub-threshold region (below 200 nA) and do not count as
distinct states. At the same time, however, the Ion–Ioff ratio will be
degraded whenVg

read is too high. Therefore, the optimal choice of
Vg

read is critical (Lederer et al., 2021).
Although the characterization of a single stand-alone device

depicts 26-different conducting states, the device-to-device
variation in WRITE operation inhibits 26-level operation in
memory arrays. Amid variation, the conductance states start
overlapping, and the numbers of available forms start
reducing. The root causes for device-to-device variation are
the ferroelectric switching process, random distribution of
coercive voltage, ferroelectric-dielectric domains, presence of
different trapping sites, and surface roughness at the interfaces
(De et al., 2021b). The impact of these variations becomes acute,
and the number of programming states gets limited to only two
when the device is further scaled down. We have obtained bi-
directionally programmable 2 bits/cell operation in the fabricated
finFET devices with 70 nm gate length and 20 nm fin width.
Figure 5A illustrates the pulse scheme used for WRITE
operations. Figure 5B demonstrates the 2 bits/cell operation
conducted among 12 devices of similar dimensions (L �
70 nm; W � 20 nm). The probability distribution of the
channel current, demonstrating the device-to-device variation
is shown in Figure 5C. The READ operation was carried out by
non-disturbing DC sweep at the gate, and the extraction of the
channel current was carried out at the 1 V value of Vg

read.
Figure 5D demonstrates cycle-to-cycle variation for WRITE
operation for four equi-distance current levels. The stability of
Vg

read is of utmost essential to implement 2 bits/cell operation.
Vg

read should not alter the programmed state, and it should be
high enough to avoid low-frequency noises.

FIGURE 5 | (A) Pulse scheme used to obtain 2 bits/cell operation among twelve Fe-finFET devices. (B) READ operation shows 2 bits/cell operation in 12 Fe-finFET
devices with a gate length 70 nm and fin width 20 and 10 nm ferroelectric layer. (C) Probability distribution shows four distinct current levels among the devices under
consideration. (D) Cycle-to-cycle variation also indicates the presence of four equi-distance current levels in a single cell.
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Apart from the multi-bit operation, linearity, and symmetry in
WRITE operation, device endurance and retention are two other
essential characteristics of neuromorphic applications. Typically,
endurance above 107 cycles is required for online training of a fully
connectedmulti-layer perceptron neural network (De et al., 2021b).
The endurance characteristics of the fabricated Fe-finFET devices
are measured by applying 1-μs-wide pulses of amplitude ±5 V.
Figure 6A illustrates the endurance characteristics along with the
pulse scheme. The endurance over 109 write cycles in fabricated Fe-
finFET devices makes them ideal for online training operations.
Once a neural network is successfully trained using online training,
the inference operation must be stable. As the online training of
neural networks requires high endurance in the synaptic devices, re-
training the neural network to compensate for accuracy loss during
inference is not a viable option. Therefore, the retention of the
synaptic devices plays an essential role in maintaining stable
inference accuracy. The conductance drift due to retention
degradation was measured by applying a ±5 V pulse of 1 µs
width (Figure 6B). The change of Gch for the intermediate states
was obtained by linear interpolation. The difference in Gch was

captured using a compact model to apply in system-level neural
network simulation. We observe that the impact of systematic
variations such as retention degradation has a more severe effect on
the system-level performance of neural networks than the random
variations. Finally, we have benchmarked the performance of the
fabricated finFET devices with other emerging non-volatile
memories (Table 1).

Fe-FinFET as a Synapse in Neuromorphic
Applications
To quantify the impact of variations in Fe-finFETs,
neuromorphic simulation has been performed. The modeled
LTP and LTD characteristics along with the experimentally
calibrated device-to-device and cycle-to-cycle variations or the
standard deviations (σD2D and σC2C) inVth distribution have been
used to train a Fe-finFET-based multilevel perceptron
(MLP)–based neural network with the MNIST data set (Lecun
et al., 1998). The layers of the neural network are illustrated in
Figure 7A. Figure 7B shows the implementation of ferroelectric

FIGURE 6 | (A) Endurance characterization conducted by ±5 V pulse of 1 µs width shows excellent performance up to 109 cycles. Further reduction of amplitude
and width ofWRITE pulses can improve theWRITE endurance (De et al., 2021b). (B) Endurance and retention characteristics are always counter complimenting.WRITE
pulses of lower amplitude and width always engender good endurance characteristics but they result in poor retention. Therefore, optimization of the pulse scheme is
necessary to create a balance between endurance and retention characteristics. The retention characteristics, measured at 85°C, show up to 104 s, illustrate
excellent extrapolated data retention over 10 years with the same pulse amplitude and width used to measure the endurance.

TABLE 1 | Device-level benchmarking.

Device Linearity # State σC2C GMAX/GMIN Training accuracy (%)

FeFET 0.67/−1.13 27 0.4% (Vth) 45 97.63 This work
1.75/−1.46 32 0.05% 45 90 Ambrogio et al. (2018)
1.22/−1.75 320 N/A ∼100 80 Kittel (1951)

RRAM 2.4/−4.88 97 3.5% 12.5 73 LeCun et al. (1998), Xiang et al. (2021)
1.85/−1.79 102 <1% 2 10 Hubara et al. (2018)
3.68/−6.76 50 <1% 6.84 10 Oh et al. (2017)
1.94/−0.61 40 5% 4.43 41 Hu et al. (2019)

PCM 0.105/−2.4 100–200 1.5% 19.8 87 Peng et al. (2019)
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devices as a pseudo-crossbar synaptic memory array (Jerry et al.,
2017) for the neuromorphic simulation in our CIMulator
platform (Le et al., 2020). The CIMulator platform is used to
estimate classification accuracy for given device’s characteristics
and statistical distribution. Two scenarios are considered. The
first scenario is online training, wherein 60,000 MNIST image
samples are used to train the hardware neural network, as
illustrated in Figure 7. The back-propagation algorithm was
adopted for training, with a batch size of 600. In the online
training scenario, each device-to-device variation (ΔVth) is fixed
at the beginning of training and remains unchanged throughout
the training process. For cycle-to-cycle variation, on the other
hand, ΔVth changes randomly during READ or WRITE
throughout the training process for each device in each cycle.
The second scenario is offline training, wherein neural network
weight coefficients are pre-trained in software (without
considering hardware-related variation). The weights are
subsequently written into hardware. Such hardware neural
networks will operate differently from software with errors due
to device-to-device variation. In this case, there is no chance for
the neural network to have its weight adjusted to compensate for
hardware-related device-to-device variation.

RESULTS

The online training simulation of Fe-finFET–based synaptic
arrays shows that the continuous weight adjustment can avoid
the accuracy drop due to device-to-device variations during the

training process. While online training is completed, there is
minimal accuracy degradation (Figure 8A) due to the sole impact
of the device-to-device variation in the WRITE process.
Figure 8A highlights that the online training is beneficial
toward the robustness of neural networks in the presence of
device-to-device variation. For example, for a device with 10%
higher intrinsic maximum conductance, the training algorithm
automatically adjusts it to have a higher Vth, reducing the
conductance by 10% to compensate for the higher intrinsic
conductance. This is not the case for offline training. The
accuracy drops below 90% when the device-to-device variation
exceeds 250 mV.

Unfortunately, the online training cannot fully compensate for
cycle-to-cycle variation, as this variation source changes from one
cycle to another (Figure 8B). The accuracy quickly degrades as
cycle-to-cycle becomes larger. A 400 mV cycle-to-cycle variation
brings down the accuracy to 90% during the training process.
Fortunately, our hardware measurements show that cycle-to-
cycle variation is only 17.7 mV in Vth, so accuracy degradation
is minimal. Figure 8C shows the cumulative impact of the device-
to-device and cycle-to-cycle variation. The degradation in
performance in terms of accuracy becomes acute in the offline
training scenario. The accuracy was dropped from 97.46 to
90.26% by the device-to-device variation alone. The
cumulative effect of the device-to-device and cycle-to-cycle
variation deteriorates the recognition accuracy down to
46.81%. Such non-linear behavior is a distinct characteristic of
neural networks. When variability is small within a certain
threshold, added cycle-to-cycle variation has little impact. On

TABLE 2 | Cumulative impact of variations on inference accuracy.

Scenario A Binary NN Scenario B QLC Scenario C Analog NN

Baseline 96.4% 97.6% 95.9%
Device-to-device Gch variation 96.1% [ΔGch � 15%] 97.3% [ΔGch meas.] 94.7% [ΔGch � 15%]
Device aging Gch(t) � −23 to −74% 96.1% 95.9% 10.0%
C2C variation (σId � 1.2%) 96.0% 95.4% 10.0%

FIGURE 7 | (A) Multi-layer perceptron architecture considered during neuromorphic simulation in the CIMulator platform. The network consists of an input layer
with 784 nodes, one hidden layer with 200 nodes, and an output layer with 10 nodes. (B) Deploying Fe-FET as an analog synaptic memory array in a simple single layer
perceptron.
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the other hand, once such threshold is reached, the slight
randomness of 17.7 mV has a significant effect on degrading
neural network classification accuracy.

It is worth noting that in CIMulator, we have adopted the
accumulated weight updated method (Hubara et al., 2018) to
train the neural network. It is a methodology similar to the Σ-Δ
modulation method in communications, which saves the weight
residue for each training cycle to compensate for the insufficient
weight resolution. It provides good immunity for neural networks
with low-weight precision, or low number of states. The
downside, however, is the necessity of additional circuits
(digital memory) to store the residue portion of the weights,
which are not yet written to hardware.

In Figure 9A, we compare the accumulated update mode and
the conventional linear update mode, where the weight is
rounded to the nearest quantization value with residue
discarded. The inference accuracy for linear update mode is
near 10% (no recognition capability) until the weights have 6
bits or more (>90% accuracy). On the contrary, the accumulated
weight update method requires much lower precision, where 97%
inference accuracy can be achieved with only two states or 1 bit.
As low Vg

read is a pre-requisite for low-power applications of

neural networks, the accumulated weight update method is a
promising algorithm to train Fe-FET with relaxed requirements
for high Vg

read (more number of states). Although previous
researchers have shown multilevel programming in HZO-
based Fe-FETs [40–43], this is the first testament to the
number of conducting states on gate voltage for read, Vg

read.
Therefore, the impact of theVg

read on inference accuracy has been
investigated. Figure 9B shows the effect of Vg

read for a specific
number of bits. Vg

read as 1 V, it turns out to be the most optimal
solution for all four cases shown in the figure. As discussed in the
previous section, this Vg

read dependency results from different
on–off ratios of channel conductance at different gate voltages
during READ operations.

Finally, we evaluate the cumulative impacts of device
variation, retention degradation (assuming Gch drops to 22.6%
for HRS and 74.3% for LRS, with intermediate states linearly
interpolated), and cycle-to-cycle read variation for inference
accuracy (Table 1). Scenario A is the case for the binary
neural network (BNN), where all non-ideal-effects-induced
accuracy degradation is minimal due to a more significant
noise margin. Scenario B is where four-level states are
programmed (as in Figure 5), displaying excellent immunity

FIGURE 8 | (A) Impact of device-to-device variations is significant only for offline-trained neural networks. (B) Impact of cycle-to-cycle variations cannot be
compensated by online training. Hardware suggests its effect is negligible. (C) Effect of variations on training accuracy is minimal for hardware-calibrated variability for the
online training scenario but is significant for the offline training scenario.

FIGURE 9 | (A) Accumulation mode operation requires less number of bits to achieve high accuracy compared to the trivial weight update mechanism. However,
this accumulated weight update method requires an extra high precision volatile memory block. (B) Vg

read optimization for recognition accuracy.
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toward such variations. Scenario C is the case where we have
considered analog synaptic weights described in Figure 4C.
Severe degradation of inference accuracy is observed with
retention degradation–induced synaptic weight alteration.

CONCLUSION

The overall performance of a neuromorphic system is the outcome
of the confederated performance of the device, peripheral circuits,
network architecture, and algorithm. In this work, we fabricated a
nanoscale HZO FeFET device and analyzed the physical reasons for
two primary variation sources: 1) paraelectric/ferroelectric phase
mixture due to incomplete or insufficient crystallization, which
results in the device-to-device variation and 2) random
telegraphic noise due to trapping and de-trapping events, which
causes the apparent variation from cycle-to-cycle. Experiments are
underway to mitigate such variability, especially for small devices.
We then translate the observed variability to non-ideality in neural
network applications. If online training is possible, 96.34% for
MNIST handwritten digits recognition in the presence of
variations is achievable. However, offline training may be
required due to system constraints, in which case even a
moderate device-to-device variation becomes alarming and must
be mitigated through further material optimization. We concluded
that the impact of experimentally observed variations on system-
level accuracy could be negligible by manipulating the neural
network algorithm and architecture. Quaternary and binary
neural networks both demonstrated excellent immunity toward
the cumulative impact of stochastic and systematic variations,
whereas the hardware neural network with analog weights shows
vulnerability to variation and retention degradation (Table 2).
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