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Controlled release systems of agrochemicals have been developed in recent years.
However, the design of intelligent nanocarriers that can be manufactured with
renewable and low-cost materials is still a challenge for agricultural applications.
Lignocellulosic building blocks (cellulose, lignin, and hemicellulose) are ideal candidates
to manufacture ecofriendly nanocarriers given their low-cost, abundancy and
sustainability. Complexity and heterogeneity of biopolymers have posed challenges in
the development of nanocarriers; however, the current engineering toolbox for biopolymer
modification has increased remarkably, which enables better control over their properties
and tuned interactions with cargoes and plant tissues. In this mini-review, we explore
recent advances on lignocellulosic-based nanocarriers for the controlled release of
agrochemicals. We also offer a critical discussion regarding the future challenges of
potential bio-based nanocarrier for sustainable agricultural development.
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INTRODUCTION

The development of environmentally friendly tools that can produce crops or livestock without
negative impact on humans and the environment is central to the Sustainable Development Goals.
Nowadays, with the development of nanotechnology, researchers are obtaining good outocomes
using nanomaterials (NMs) (Mattos et al., 2017; Guo et al., 2021; Sikder et al., 2021). For instance,
engineered nanoparticles (ENPs) are capable of improving the efficiency of pesticides and
fertilizers through the controlled release of agrochemicals, as well as by providing enhanced
plant performance or by enabling plants to act as real-time sensors, actuators, or electronic
devices (Baker et al., 2017; Saleem and Zaidi, 2020; Agathokleous et al., 2020; Acharya and Pal,
2020; Usman et al., 2020; Singh et al., 2021; Grillo et al., 2021a). The increased surface area to
volume ratio of the ENPs enables a greater control of interfacial interactions with a given cargo to
act on demand or specific stimuli as well as many other features. Besides, several factors such as
surface charge, particle size, composition, solubility, and manufacturing methods can be exploited
to control the interaction of ENPs with specific plants and organisms (Jogaiah et al., 2021), with the
goal of developing targeted systems. Although most of the current nanopesticides or nanocarriers
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are developed from synthetic (e.g., polymers) building blocks,
several systems have been developed using biopolymers as tools
for the controlled release system of agrochemicals (Mattos et al.,
2017). Lignocellulosic-based nanopesticides are biodegradable
and offer an interesting platform to produce safe-by-design
nanopesticides as they can be non-toxic (Chamundeeswari et al.,
2019; Zhang et al., 2019; Bhattacharyya et al., 2020; Shrestha
et al., 2021; Ur Rahim et al., 2021) (Figure 1). Moreover,
lignocellulosic material can be obtained from agriculture side
streams, which is ideal to reduce costs during the production of
nanopesticides, which are intended to be applied in large scale
agricultural operations. This strategy also indicates a from plant-
to-plant effort, ideal for a circular bioeconomy landscape.

There are mainly three non-edible lignocellulosic biopolymers
that have been used in the development of materials: cellulose,
lignin, and hemicellulose, along with pectin, tannins, acids, and
proteins (Okolie et al., 2021). Even though the manipulation of its
feedstock is challenging to engineer, lignocellulosic materials
have low-cost production and eco-friendly properties (Li et al.,
2021a). Although lignocellulosic-based nanocarriers are still
under development for the agricultural sector, several advances
have been achieved thus making this technology useful for nano-
enabled agriculture. The increased use of lignocellulosics in nano-
enabled agriculture is expected to take place because there are
new technologies that can 1) increase the extraction efficiency of
lignocellulosic materials; 2) modify lignocellulosic structures for
desired properties; and 3) design hybrid nanostructures with
controllable shape and size. Nonetheless, the application of
lignocellulosics in nano-enabled agriculture is currently related
to the controlled delivery and release of pesticides and nutrients
(Worrall et al., 2018; Papadopoulos et al., 2019; Chen et al., 2020a;
Teo and Wahab., 2020). However, lignocellulosic nanomaterials
could potentially stabilize emulsions (such as those used in oil

borne pesticides) instead conventional surfactants in multiphase
systems (Tardy et al., 2021). In this review we summarize and
discuss the recent advances in lignocellulosic nanocarriers for
agricultural applications; in addition, we offer a critical discussion
regarding the future challenges of lignocellulosic nano-enabled
materials for sustainable agricultural development.

TYPES OF LIGNOCELLULOSIC-BASED
NANOPESTICIDES FOR AGRICULTURE

Cellulose-Based Nanopesticides
Cellulose is a linear polymer composed of several hundreds of
glucose units linked by β-1,4-glycosidic bonds (Figure 2A).
Cellulose is highly abundant, being sourced from agro-
industrial biomass (from 1st generation to wastes and
residues), marine biomasses, and microorganisms. (Kaya and
Tabak., 2020; Siqueira et al., 2020; Teo andWahab., 2020; Bahloul
et al., 2021). Cellulose nanomaterials have been marketed in
several sectors of the economy, including agriculture.
However, cellulose intra- and intermolecular hydrogen
bonding interactions hinder its dissolution in water although
being highly hydrophilic (Credou and Berthelot, 2014; Shatkin
and Kim, 2015). Therefore, several studies have focused on the
chemical modification of cellulose using a variety of routes to
modify its physicochemical properties, enable dissolution, and
therefore to facilitate the conception of nanocarriers that can be
applied for improving agrochemical efficacy (Rop et al., 2020;
Machado et al., 2021). For instance, dialdehyde carboxymethyl
cellulose (DCMC) and carboxymethyl cellulose (CMC) were
conjugated with zein (a protein from corn) to develop
nanocarriers for avermectin (Chen et al., 2020b; Hao et al.,
2020). In both cases, the resulting nanopesticides showed high

FIGURE 1 | Schematic representation of a (A) lignocellulosic building blocks matrix, (B) advantages to produce, and (C) different types of nanopesticides that can
(D) enhance pest management (e.g., weeds, viruses, bacteria, fungi, and insects) as well as display unique properties such as (E) targeting wood-destroying pests.
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leaf adhesion as well as efficient protection of the active ingredient
against ultraviolet light (UV) when compared to its conventional
form. Avermectin has been also encapsulated in CMC-grafted
polyethyleneglycol (PEG) nanoparticles (Zhu et al., 2020) and in
CMC grafted poly 2,2,3,4,4,4-hexafluorobutyl methacrylate
(PHFBA) (Su et al., 2021a); both showed enhanced insecticidal
activity against fall webworm (Hyphantria cunea) and an
improved of the release profile of the active ingredient for
95 h, respectively. Additionally, glycine methyl ester (GLY)
and glycidyl methacrylate (GMA) were used as intermediate
and organic nitrogen sources, respectively, to modify CMC
during the synthesis of a nanopesticide containing emamectin
benzoate. Such nanopesticide and nanofertilizer increased the
insecticidal activity against the diamondback moth insect
(Plutella xylostella) and showed a potential system to be used
as organic nitrogen fertilizer without toxic effect on seed
germination (Zhao et al., 2021a).

On the other hand, nanoparticles crosslinked by cellulose
have received an increased attention in the agricultural sector
due to their good stability under environmental conditions
(Sun et al., 2020). For instance, stimuli-responsive
nanocapsules based on cellulose modified with fatty acid
(undec-10-enoic) loaded captan and pyraclostrobin were
developed against apple canker (Neonectria ditissima), and
the results showed that the active ingredients were released
when triggered by the presence of cellulolytic fungi (Machado
et al., 2021). Another study showed the fabrication of

carboxymethylcellulose sodium salt and hydroxyethyl
cellulose-based biodegradable hydrogels using citric acid
(CA) as a crosslinker; good water uptake and a sustainable
release profile were observed (Das et al., 2021).

A mixture of (nano)cellulose with inorganic (nano)materials
(for example clays) opens up strategies for the design of
nanopesticides with a widened pallet of biological, thermal,
and structural properties. For instance, carboxymethyl
cellulose hydrogels filled with nanocellulose and nanoclays
(Bauli et al., 2021) or cellulose-g-poly (ammonium acrylate-co-
acrylic acid)/nano-hydroxyapatite (Rop et al., 2020) showed good
efficiency on hydrogel nutrient release and improved the
moisture retention around the plant in the soil. Furthermore,
a hybrid nanopesticide composed of hollow mesoporous silica/
hydroxypropyl cellulose was reported to control rice blast fungus
(Magnaporthe oryzae), and a dual-responsive release profile of
the active ingredient was observed when in presence of cellulase
(enzyme) or under acid conditions (Gao et al., 2021a). Moreover,
layered double hydroxides (LDH) were mixed with CMC to
fabricate polymeric nanocomposite able to mitigate the
downside effect of herbicides in paddy cultivation (Sharif
et al., 2021). In addition, they observed high adhesion of
nanocellulose towards hydrophilic surfaces has led to the
development of biogenic nanohybrids containing biogenic
silica and cellulose nanofibers for the encapsulation of various
molecules including a biopesticide (thymol) (Mattos and
Magalhães, 2016; Mattos et al., 2018).

FIGURE 2 | (A) Types of lignocellulosic materials (cellulose, hemicellulose (e.g., xylan) and lignin) pointing out their main advantages (black) and disadvantages (red).
(B1) Representation of a formulation containing lignin nanoparticles. (B2) Transmission electron microscopy image of pyraclostrobin-loaded lignin nanoparticles in the
range of 100—300 nm. (B3) Effect of empty lignin (gray bars) and fungicide-loaded lignin (red bars) NPs on Esca leaf symptoms in four Portugieser grapevine plants
monitored yearly from 2015 to 2019. (B4) Transmission electron microscopy image of fungicide-loaded lignin NPs. (B5) Lignin-based fungicide-loaded NPs being
applied in a grapevine plant to target Esca. (B2,B3) were reproduced with permission from Machado, 2020, Copyright (2020) American Chemical Society, and (B4,B5)
were reproduced with permission fromMachado, 2020, Copyright (2019) JohnWiley and Sons. Further permissions related to the material excerpted should be directed
to the ACS and John Wiley and Sons.

Frontiers in Nanotechnology | www.frontiersin.org December 2021 | Volume 3 | Article 8093293

Lima et al. Lignocellulosic-Based Nanopesticides for Agricultural Applications

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


The difficulty of promoting dissolution of cellulose, in
parallel with the current regulation on bioplastics that defines
cellulose derivatives as plastics, will accelerate the development
of nanocarriers from cellulose colloids, such as cellulose
nanofibers, which have unique physicochemical properties
such as higher surface area, nanodimension, high-
temperature resistance, and biocompatibility (Shahi et al.,
2021; Tardy et al., 2021). Cellulose nanofibers (CNFs) have
been reported as potential high performers in nanoformulations
of fertilization (do Nascimento et al., 2021), as well as cellulose
nanocrystals (CNC) with chitosan to control tomato bacterial
speck disease (Schiavi et al., 2021), among others (Table 1). For
its diversity and abundance, cellulose is an outstanding material
with a list of properties yet to be explored as a nanopesticide
thus, understanding better its composition and potential
interactions with agrochemicals and non- target and target

organisms is essential to the future design of sustainable
nano-enabled agriculture.

Lignin-Based Nanopesticides
Lignin is a three-dimensional and complex aromatic biopolymer
that is bound to cellulose and hemicellulose within the plant cell
wall microstructure (Figure 2A). Furthermore, it has attracted
great attention due to its availability at large scales (Lizundia et al.,
2021). In the last years, lignin-based nanoparticles (LNPs) have
been used in agriculture against fungus, and insects due to their
eco-friendly properties, low cost, and good encapsulating
properties; however, this formulation is insoluble in the
aqueous environment, which raises some technical difficulties
when producing nanocarriers or promoting cargo delivery.
Nevertheless, production of LNPs has been demonstrated to
be possible for upscaling at reasonable cost (Abbati de Assis

TABLE 1 | Examples of lignocellulosic-based nanopesticides.

Lignocellulosic-
based
materials

Composition Size
(nm)

Agrochemical Findings References

Cellulose Sodium carboxymethyl cellulose grafted
by styrene/methyl methacrylate and
butyl acrylate

180–280 Avermectin Anti-ultraviolet photolysis ability of the active
ingredient was improved and the release time was
prolonged

Chen et al.
(2018)

Cellulose Myrtenal-based nanocellulose/
diacylhydrazine

— Boscalid and
chlorothalonil

Complexes exhibited comparable or better
antifungal activity than the commercial one against
several fungi

Li et al. (2021c)

Lignin Sodium lignosulfonate/poly (vinyl
alcohol)-valine

∼10 Emamectin
benzoate

Higher bioactivity of nanogels compared to non-
nanoformulations

Zhang et al.
(2021b)

Lignin Sodium lignosulfonate 162 Pyraclostrobin
cyclohexanone

Nanocapsules improved control efficacy on tomato
crown and root rot compared to micro- and other
nanoformulations

Luo et al.
(2020)

Lignin Sodium lignosulfonate/epoxy resin 150 Abamectin Higher efficiency to control root-knot nematodes
(Meloidogyne incognita) compared to conventional
agrochemicals

Zhang et al.
(2020b)

Lignin Sodium lignosulfonate 150–250 Emamectin
benzoate

Nanopesticide improved the photostability of the
active ingredient, as well enhanced the insecticidal
activity against Prodenia. Litura (leafworm) when
compared to the commercial formulation.
Nanopesticide also exhibited pH-mediated release
property

Cui et al. (2019)

Xylan Lignin/xylan 166–210 Avermectin Lignin–xylan hybrid nanospheres showed well-
defined core-shell structures with encapsulation
efficiency above 57%. Nanopesticide also showed
enzyme-mediated release property

Jiang et al.
(2020)

Tannic Acid Fe3+/tannic acid 141–160 Tebuconazole Nanocapsules showed high fungicidal activities
against rice sheath blight (Rhizoctonia solani) and
wheat head blight (Fusarium graminearum)
pathogenic fungi

Dong et al.
(2021)

Tannic Acid Mesoporous silica nanoparticles/
copper/tannic acid

137 Pyraclostrobin The complexes coating could improve the
photostability of the active ingredient, as well
enhanced deposition efficiency on rice leaves with
good antifungal activity against Rhizoctonia solani

Liang et al.
(2021)

Abietic acid Carboxymethyl celulose/glycidyl
methacrylate/rosin

167 Avermectin Nanopesticide displays enhanced dispersibility and
stability of the active ingredient, and improves the
affinity and light stability on cucumber leaf,
maintaining good insecticidal activity against
Plutella xylostella

Zhao et al.
(2021b)

Salicylic acid p-amino salicylic acid-modified
polysuccinimide

155–290 Avermectin Aqueous nanopesticides showed a cumulative
release rate of 70% with a pH-responsive profile. It
was also reported to have good insecticide activity
against Plutella xylostella

Su et al.
(2021c)
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et al., 2018; Bangalore Ashok et al., 2018). For instance, stem
lignin nanoparticles have been used as matrix in the controlled
release of the herbicide diuron (Yearla and Padmasree, 2016).
Chemical modifications in lignin to control their interactions
with water and solubility (Balakshin and Capanema, 2015;
Agustin et al., 2019; Falsini et al., 2019; Ma et al., 2020;
Machado et al., 2020), also facilitate their use in nano-enabled
strategies for agriculture. For instance, sodium lignosulfonate can
electrostatically interact with other polymers [e.g., chitosan (Li
et al., 2019)], and cationic surfactant [e.g., dodecyl dimethyl
benzyl ammonium chloride (Zhang et al., 2021a),
cetyltrimethylammonium bromide (Peng et al., 2020)] by self-
assembly to form stimuli-responsive nanopesticides (Table 1).
Kraft lignin (KL) has a tunable amphiphilic nature due to the
abundant phenolic hydroxyl groups capable of forming a stable
double-layered nanomaterial with ionic surfactants (Ela et al.,
2020), nanocapsules with olive oil (Falsini et al., 2020), and is also
able to chelate cationic metals (Sipponen et al., 2017). Other
nanopesticides have also been synthesized with alkali lignin (AL)
(Yin et al., 2020), organosolv lignin (Zhang et al., 2020a), and
methacrylate lignin (Yiamsawas et al., 2021).

In this regard, some interesting studies have been using
lignin nanoparticles for the controlled release of fungicide to
target Esca (a type of grapevine trunk disease that negatively
impacts grape yields and the wine industry around the world).
For instance, Machado et al. (2020) developed several
fungicide-loaded lignin nanocarriers (Figure 2B1,2) to be
applied in a single injection into Vitis vinifera
(“Portugieser”) plants, and the results showed successfully
inhibition of lignase-producing fungi (e.g., Phaeomoniella
chlamydospora and Phaeoacremonium minimum) as well as
fungicide efficiency for at least 4 years against Esca
(Figure 2B3). Furthermore, two other stimuli-responsive
lignin-based nanocarriers were developed for the treatment
of Esca (Fischer et al., 2019; Peil et al., 2020). In both studies,
the fungi associated with Esca degraded lignin through
secretion of ligninolytic enzymes (e.g., laccases and
peroxidases) and, thus, released fungal spores (Trichoderma
reesei) (Peil et al., 2020) and the hydrophobic fungicide
pyraclostrobin (Fischer et al., 2019) loaded in lignin
nanocarriers (Figure 2B4,5). Moreover, another triggered
strategy is based on the controlled release of micronutrients
, such as copper and iron, to fertilize and protect plants against
various pathogens (Gazzurelli et al., 2020; Li et al., 2021b).

Despite the development of numerous lignin-based
nanocarriers for agriculture, the great challenge of these
nanoformulations is still the complexity and variability of
chemical structure of this resource given the batch-to-batch
variations in the extraction process. In this context, studies
such as those by Beckers et al. (2021) have been important as
it is possible to synthesize lignin-like monomers (e.g.,
phenylcoumaran and β-O-4-aryl ether) able to comprise
linkages found in native lignin with promising results.
Nevertheless, lignin-first biorefining approaches have recently
been proposed to produce well-defined lignin structures that can
be further utilized in a more systematic way (Lourencon et al.,
2019).

Hemicellulose-Based Nanopesticides
Hemicellulose is a biopolymer with a degree of polymerization
of ca. 50–200 and molecular weight below 90 kDa, thus a much
smaller building block when compared to cellulose or lignin
(Ye et al., 2021). Hemicelluloses represent 15–25% of the wood
cell-wall but can reach up to 45% in annual, seasonal plants.
Such biopolymers include xyloglucans, xylans (Figure 2A),
mannans and glucomannans, and beta-glucans. A wide range
of applications has been associated with hemicellulose, such as
the generation of chemical products, packaging materials, drug
delivery systems, and more recently as pesticide delivery
systems (Naidu et al., 2018; Wijaya et al., 2021). The
extraction of hemicellulose comes from lignocellulosic
biomass, wood, foliage, grass, and agricultural residues and
can be carried out using organic solvent but more commonly
with hydrothermal extractions (Naidu et al., 2018).

Due to the low water solubility of hemicelluloses, there are
still some challenges to produce stable hemicellulose-based
nanocarriers for the controlled release of agrochemicals.
However, several examples have been demonstrated in
recent years. Beckers et al. (2020a) described the first
synthesis of nanocarriers built from xylan extracted from
corn cobs to contain the fungicide pyraclostrobin, by
interfacial polymerization method of diisocyanate of toluene
(TDI) in an inverse emulsion. Hence, such nanopesticide was
colloidally stable in water and cyclohexane for several weeks as
well as it was efficient against phytopathogenic fungi (Botrytis
cinerea) as the biocide release from the xylan nanocarriers was
stimulated by the fungi. In another study, xylan-based
nanoparticles (without active ingredients) were fabricated
and their antifungal effect was studied on corn husk fiber
and on the high-density polyethylene (HDPE) composite. Such
nanoparticles prevented the formation of hyphae in wood as
well as increased the strength of the composite (Gao et al.,
2021b). Additionally, lignin sulfonate-based nanocarriers
containing hemicellulose residues showed potential for
controlled delivery of agrochemicals such as the fungicides
pyraclostrobin or prothioconazole (Beckers et al., 2020b). In
addition, xylan-based nanoparticles are advantageous for their
biocompatibility, biodegradability, and low-cost biological
material (Beckers et al., 2020b). Recently, lignin-xylan and
arabinoxylan nanoparticles were also reported as an
enzymatic-responsive for pesticides release (Jiang et al.,
2020) (Table 1) as well as a gene delivery system for
CRISR-Cas9 DNA (Sarker et al., 2020), respectively.

β-Glucan is a homopolymer, an abundant class of
polysaccharides in plants, fungi, and bacteria. Most recently,
ß-Glucan-based nanocarriers have been extensively studied as
drug delivery systems (Su et al., 2021b). For instance, Kaziem
et al. (2022) developed a smart-delivery formulation based on
carboxymethylated-β-glucans on the mesoporous silica
nanoparticles (MSNs) surfaces after loading chlorothalonil
(CHT) fungicide, with bioactivity against phytopathogens
better than commercial formulation and lower toxicity to
manure worm (Eisenia fetida) and zebra fish (Danio rerio). In
another study with the same formulation, the authors observed
that CHT@MSNs-β-glucans showed 2.6 times lower toxicity to
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the planktonic crustacean (Daphnia magna) and also exhibited
lower effects on soil microbial abundance than commercial
chlorothalonil (Kaziem et al., 2021), which improves its use as
a nano-enabled agrochemical.

Other Lignocellulosic Materials-Based
Nanopesticides
Other lignocellulosic materials, even in minor quantities, are
rising in agriculture as compounds of nanocarriers. Pectin
(Pec), a structural compound present in the primary cell walls
of higher plants has been applied for the development of
nano-enabled delivery systems for agrochemicals. Pectin has
been used to configure an intelligent stimuli-responsive
carrier triggered by pectinase, an enzymes produced by
plants, filamentous fungi, bacteria, and yeasts. Moreover, a
hybrid system comprising mesoporous silica nanoparticles
and pectin (MSN-Pec) could delivery prochloraz (a
fungicide) slowly, showing potential to be used in rice
crops (Abdelrahman et al., 2021). Pectin-based
nanocarriers showed promising behavior to mitigate
drought stress in plants of arid and semi-arid
environments (Sharma et al., 2017). Carbendazim-loaded
chitosan-pectin nanoparticles showed a good response
against pathogenic fungi Fusarium pxysporum and
Aspergillus parasiticus (Kumar et al., 2017). Composite
systems, such as chitosan/tripolyphosphate/pectin
nanoparticles, were reported as a delivery system for
paraquat herbicide to reduce the toxic behavior to alveolar
and mouth cell lines, as well as to enhance the herbicidal
activity against maize and mustard plants (Rashidipour et al.,
2019). Thus, the nanoencapsulation of paraquat improves its
herbicidal activity and reduces its toxic and mutagenic effects
(Grillo et al., 2015; Pontes et al., 2021; Rashidipour et al.,
2021).

Tannins, especially tannic acid, have been used in
nanopesticide formulations (Table 1) as an additive to
promote better foliage adhesion of particulates (Yu et al., 2019;
Zhi et al., 2020). The ability of tannins to promote multiple and
diverse secondary interactions towards virtually any surface has
warranted their utilization to modify nanocarriers surfaces while
adding UV protection and antioxidant properties (both useful to
increase the lifetime of the active ingredient) (Guo et al., 2016).
Finally, acids such as rosin (abietic acid) and salicylic acid are
used in the attempt to create efficient nanocarriers (Table 1)
(Zhao et al., 2021b; Su et al., 2021c).

CONCLUDING REMARKS AND
CHALLENGES AHEAD

Current research on the smart nano-enabled delivery systems for
pesticides has opened a new way to view the stimuli-responsive
controlled release of crop protectants and to the development of
novel agro-technological products. Despite the complexity of
biomolecules and the challenges on generating stable
nanoformulations, lignocellulosic-based nanocarriers have shown
promising features that can be further explored in advanced, and
renewable nanocarriers for agriculture. These carriers display unique
properties (e.g., targeting wood-destroying pests), low cost, and good
biodegradability rate. However, the number of studies on the
mechanism of action of these nanopesticides as well as their
toxicity impacts in the environment is still very limited (Grillo
et al., 2021b). Moreover, little is known about the biodegradation
of biopolymers after their modification or compositing, which still
restricts their wider utilization in large-scale platforms such as crop
protection. Therefore, further research on lignocellulosic
nanomaterials is necessary in order to improve the efficient use
of biomass resources as well as achieving environmental
sustainability in agriculture.
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