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Resistive random-access memory (RRAM) devices have drawn increasing interest for the
simplicity of its structure, low power consumption and applicability to neuromorphic
computing. By combining analog computing and data storage at the device level,
neuromorphic computing system has the potential to meet the demand of computing
power in applications such as artificial intelligence (AI), machine learning (ML) and Internet
of Things (IoT). Monolayer rhenium diselenide (ReSe2), as a two-dimensional (2D) material,
has been reported to exhibit non-volatile resistive switching (NVRS) behavior in RRAM
devices with sub-nanometer active layer thickness. In this paper, we demonstrate stable
multiple-step RESET in ReSe2 RRAM devices by applying different levels of DC electrical
bias. Pulse measurement has been conducted to study the neuromorphic characteristics.
Under different height of stimuli, the ReSe2 RRAM devices have been found to switch to
different resistance states, which shows the potentiation of synaptic applications. Long-
term potentiation (LTP) and depression (LTD) have been demonstrated with the gradual
resistance switching behaviors observed in long-term plasticity programming. A Verilog-A
model is proposed based on the multiple-step resistive switching behavior. By
implementing the LTP/LTD parameters, an artificial neural network (ANN) is
constructed for the demonstration of handwriting classification using Modified National
Institute of Standards and Technology (MNIST) dataset.
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INTRODUCTION

With the rapid development of artificial intelligence (AI), machine learning (ML) and Internet of
Things (IoT), novel computing technology for information processing is becoming crucial (Moh and
Raju, 2018; Mohanta et al., 2020; Zhu et al., 2020). Conventional circuits based on von Neumann
architecture are facing challenges including physical separation of computing units andmemory, and
low density of on-chip memories, which in turn lead to high energy consumption and low operation
efficiency (Du Nguyen et al., 2017; Zidan et al., 2018; Amirsoleimani et al., 2020; Sebastian et al.,
2020). Therefore, neuromorphic computing, which is inspired by the operation of human brains, has
been proposed as a promising computing paradigm to overcome the bottleneck of von Neumann
architecture (Kuzum et al., 2013). To physically realize the design of neuromorphic computing
circuits, development of novel devices that can directly mimic brain-like long-term potentiation and
depression (LTP/LTD) behaviors therefore arise significant interest.

Resistive random-access memory (RRAM), also known as memristors, is one of the most
competitive candidates for the application of neuromorphic computing (Hong X. et al., 2018).
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The operation of RRAM devices is based on the non-volatile
resistive switching (NVRS) phenomenon of the active layer,
typically a bulk metal-oxide film, such as SiO2 or HfO2, in a
metal-insulator-metal (MIM) stacking structure (Chang et al.,
2016; Lin et al., 2017). By applying external electrical bias,
repeatable resistive switching behavior between high resistance
state (HRS) and low resistance state (LRS) can be observed in the
device and can be subsequently sustained without power supply
(Wong et al., 2012). In recent years, two-dimensional (2D)
materials have been investigated and applied in the
development of the next generation nanoelectronics,
optoelectronics, flexible electronics, and biosensors. Various
2D materials, including graphene oxide, solution-processed
transitional metal dichalcogenides (TMDs), degraded black
phosphorus and multilayer hexagonal boron nitride (h-BN),
have been reported to exhibit NVRS phenomenon and applied
in RRAM devices (Bai et al., 2015; Han et al., 2017; Ge et al., 2018;
Wu et al., 2019). It has been reported in our previous work that
monolayer chemical vapor deposition (CVD)-grown rhenium
diselenide (ReSe2) shows intrinsic NVRS phenomenon in a
vertical MIM configuration (Wu et al., 2021). The structure
holds promise for practical integration with smaller die space
and 3D stacking capability.

Analog resistive switching has been realized in metal-oxide-
based as well as 2D-material-based RRAM devices in the early
work (Shen et al., 2020; Cao et al., 2021). Compared with the
conventional binary switching with only two stable resistance
states, RRAM devices with analog switching property can
potentially mimic the function of biological synapse, making
them feasible to be implemented in brain-inspired
neuromorphic computing systems (Li et al., 2017; Zhang et al.,
2019; Wang et al., 2021). When designing circuits with RRAM
devices, Verilog-A provides a good platform for compact analog
modeling as a de facto standard language widely used in
semiconductor industry (Jiang et al., 2014; Mcandrew et al.,
2015). By fitting the experimental data into functions of
resistance and voltage, resistive switching behaviors can be
described by a well-designed Verilog-A model.

In this work, RRAM devices in vertical MIM structure based
on monolayer ReSe2 were fabricated. Raman and
photoluminescence (PL) spectra have been conducted to
characterize the 2D material used in the devices. DC and pulse
measurements are used to demonstrate the electrical properties of
the ReSe2 RRAM devices including resistive switching, retention,
endurance, and LTP/LTD behaviors. A Verilog-Amodel has been
established based on the experimental data. To study the
interference to a neuromorphic computing system brought by
the ReSe2 RRAM device, an artificial neural network (ANN) is
simulated for pattern recognition using Modified National
Institute of Standards and Technology (MNIST) dataset.

EXPERIMENTS

Device Fabrication
The monolayer CVD-grown ReSe2 films on mica substrate
were produced by Sixcarbon Technology. All the fabricated

devices in this work make use of the crossbar MIM structure.
The 2D RRAM devices are fabricated with continuous CVD-
grown monolayer ReSe2 film sandwiched between Au top and
bottom electrodes in the vertical MIM structure. The active
device area is defined as the overlapped region between the
crossbar electrodes. Figures 1A,B show the schematic and
top-view optical image of the ReSe2 RRAM devices,
respectively. The active layer thickness is below 1 nm for
the monolayer ReSe2. Gold, which is an inert metal, is used as
the electrode material in this work to avoid the possible
formation of metal oxides at the metal-ReSe2 interface.

The bottom electrodes (BE) were patterned by e-beam
lithography and deposited by e-beam evaporation (2 nm Cr/
80 nm Au) on a 285 nm SiO2/Si substrate.
Polydimethylsiloxane (PDMS) pick-and-place water
assisted transfer method was used to transfer the
monolayer ReSe2 film from mica to the target substrate
with BE (Ma et al., 2017). In this method, the ReSe2 film
contacts with the PDMS stamp conformally. Then, the mica-
ReSe2-PDMS system was soaked into deionized water for
30 min. During this process, water can diffuse into the
interface between ReSe2 and mica due to the hydrophilic
surface of mica. The ReSe2-PDMS film was separated from
the mica substrate and brought into contact with the target
substrate. The PDMS stamp was peeled off subsequently and
the ReSe2 film was left on the target substrate with BE. After
the completion of transfer, top electrodes (TE) were
patterned and deposited with the same method as BE. The
overlapped region between TE and BE is defined as the device
area with a typical size of 1 × 1 and 2 × 2 μm2 in this work.

Material and Electrical Characterization
Raman spectroscopy and photoluminescence (PL) were
performed on a Renishaw in-Via system with 532 nm
wavelength source to evaluate the ReSe2 film before
transferring. The DC and pulse characteristics of the devices
were taken on a Cascade probe station under ambient conditions.
An Agilent B1500A semiconductor parameter analyzer was used
for DC and pulse measurements. During the DC measurements,
electrical bias was applied on TE and BE was grounded. By
involving one additional probe for pulses on TE, voltage pulses
were injected to the device for pulse measurements.

Verilog-A Model
To describe the analog switching behavior of ReSe2 RRAM
devices, a compact Verilog-A model was constructed based on
the data from DC and pulse measurements. By fitting the analog
switching data into functions of resistance and voltage, the model
was then used to simulate analog resistive switching and LTP/
LTD behaviors when implemented in HSPICE.

Artificial Neural Network Simulation
A fully connected multi-layer perceptron ANN model was
designed for supervised learning with the MNIST database. To
demonstrate the potential application of the ReSe2 RRAM
devices, LTP/LTD characteristics were implemented in the
stochastic gradient descent (SGD) optimizer of the ANN model.
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RESULTS AND DISCUSSIONS

Material characterizations have been conducted on the samples to
confirm the material used in the device. Raman spectra of the
monolayer ReSe2 films (Figure 2A) has been used to confirm the
quality of material. The two characteristic peaks for ReSe2, were
observed at ∼190 cm−1 and ∼140 cm−1, corresponding to the
Ag-like mode and Eg-like mode of 2H ReSe2. The peak

distance of ∼50 cm−1 is in a good agreement with the reported
value, suggesting a high-qualify uniform monolayer crystalline
film (Jiang et al., 2018; Apte et al., 2019). Figure 2B shows the PL
of the monolayer ReSe2. The PL peak position for the ReSe2 is
located at ∼1.5 eV, consistent with the reported optical band gap
(Hong M. et al., 2018; Qiu et al., 2019).

DC electrical measurements were performed on as-fabricated
crossbar MIM RRAM devices and revealed nonvolatile resistive

FIGURE 1 | RRAM device based on monolayer ReSe2. (A) 3D schematic and (B) optical image of fabricated ReSe2 vertical MIM crossbar device with Au
electrodes.

FIGURE 2 | Material characterization of monolayer ReSe2. (A) Raman shift spectra and (B) photoluminescence.

FIGURE 3 | Electrical characteristics of ReSe2 RRAM devices. (A) I-V characteristic under cycling DC sweep, indicating low cycle-to-cycle variation. (B) Endurance
of ReSe2 RRAM devices for over 200 cycles. (C) The retention behavior of ReSe2 RRAM devices for over 6 h at ambient condition.
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switching in monolayer ReSe2 active layers. Figure 3A shows a
typical I-V curve of resistive switching. The device generally starts
from a HRS. Without any forming process, the current shows a
sudden increase as voltage sweeps to ∼3 V, indicating a transition
from HRS to LRS (SET). For bipolar operation, the device will
start a multi-step analog transition to HRS from −0.5 V (RESET)
when a reverse voltage sweep is applied, which shows the
potential for neuromorphic applications. A compliance current
of 1 mA is applied at SET process to prevent irreversible
breakdown, while no compliance current is applied at RESET
process. The grey curves in Figure 1A illustrates a low cycle-to-
cycle variation. After each SET and RESETmeasurement process,
a read process is applied to acquire the resistance of the device.
The LRS of the device is around 50Ω, while the HRS can reach up
to over 1 × 106Ω, highlighting a promising ON/OFF ratio of over
4 orders of magnitude. Manual endurance data shown in
Figure 3B demonstrates over 200 DC cycles, which is similar
to the endurance data of metal oxide-based RRAM devices.
Retention of nonvolatile states tested up to 6 h (Figure 3C)
without obvious resistance change, which is sufficient for
certain neuromorphic applications involving short term
plasticity.

Based on our previous studies on 2D TMD-based RRAM
devices, a “conductive-point” model was proposed to illustrate
the resistive switching mechanism (Wu et al., 2020; Wu et al.,
2021). When applying external voltage bias, metal ions/atoms
from TE can be dissociated triggered by the electrical field and
adsorbed into the chalcogen defects in the ReSe2 layer. As
electrons transport through the metallic conductive point at
the vacancy site, the device would go into a lower resistance
state. During the RESET process, the Joule heating effect induced
by the high current in the device would move the metal ions/
atoms out of the vacancies, resulting in a transition to a higher
resistance state. Atomic resolution STM measurement with the
evidence of Au moving in and out from the vacancy site after SET

and RESET process supports the model. Figure 4 shows the
schematics of the conductive-point model with metal adsorption.

After the DC characterization, variable pulses are applied to
the ReSe2 devices to access its capability of emulating LTP and
LTD. In this work, the selected pulse setup for SET is 100 ns in
width and 3.2 V in height after a series of tuning. While for
RESET, the pulse setup is 100 ns in width and −0.8 V in height. A
DC read process was applied after each pulse to acquire the
resistance state. By applying the optimum SET/RESET pulses, the
conductance of the ReSe2 device shows gradual increase/decrease.
Figure 5 presents the LTP/LTD. The device exhibits a resistive
transition from HRS to LRS after receiving 25 SET pulses
(Figure 5A). While after 40 RESET pulses, the conductance
gradually decreases from ∼2.4 mS to 1.8 mS (Figure 5B).
Based on the conductive-point model, Au ions/atoms would
be gradually driven into the active layer, leading to a multi-
step conductance increase after a series of pulses. While in the
pulse RESET process, the dissociation of Au ions/atoms from the
active layer is relatively slower than DC RESET due to the low
amount of power injected into the device by RESET pulses,
resulting in a decrease of conductance after a larger number of
pulses. In this way, we can mimic the synaptic responses of
depression and potentiation by changing the polarization. As is
shown in Table 1, among RRAM devices based on different types
of low-dimensional materials including graphene oxide, hBN,
metal dichalcogenides and quantum dots, ReSe2 RRAM
demonstrated in this work is highlighted by its small pulse
width, and relatively high ON/OFF ratio, which shows the
potential in the large scale applications of neuromorphic
computing system.

With the acquisition of DC and pulse experimental data, a
compact Verilog-A model is constructed. Based on the I-V
characteristics from DC measurements, the LRS can be fitted
with Ohmic conduction model, which illustrates the linear
relation between voltage and current. For the analog RESET

FIGURE 4 | Schematics of the conductive-point model with metal adsorption. Starting from HRS, Au ions or atoms from the electrodes will be driven by external
voltage bias and diffuse to Se vacancies in the active layer (SET), leading the device to LRS. While applying RESET voltage, the Au ions or atoms will be moved out of the
vacancies by current-induced Joule heating effect, resulting in a transition to a higher resistance state.
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process, resistance states are fitted by Schottky emission model.
This is consistent with our previous work. The following
simplifications and functions are used in the construction of
the Verilog-A model:

• The resistance states are continuous as the maximum
voltage (Vmax) in the RESET process increases.

• The resistance of LRS is controlled by a metallic Ohmic
conduction function as is shown in Function 1, where the
parameter A1 reflects the current and B1 is affected by the
intrinsic resistance of measurement tools.

R � A1.V + B1 . (1)

• The resistance of HRS is derived from the Schottky emission
model:

J ∝ApT2 exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−q(ϕB −

������
qE

4πεrε0

√ ⎞⎠
kT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2)

R � V

A2 · exp(B2 ·
��
V

√ + C2) . (3)

• The parameter A2, B2 and C2 in function (3) is defined by
the maximum voltage (Vmax) in the RESET process.

• The resistance of the RRAM device under LTP/LTD follows
an exponential degradation function:

R � Rinit ·αn . (4)

Here, J is the current density, Ap is the effective Richardson
constant, T is the absolute temperature, q is the elementary
charge, ϕB is the Schottky barrier height, E is the electrical
field across the dielectric, k is the Boltzmann’s constant, εr is
the optical dielectric constant, Rinit is the initial resistance when
LTP/LTD begins, α is the degradation rate during LTP/LTD, and
n is the number of pulses. The α is ∼0.85 for LTP and ∼1.01 for
LTD, which shows good linearity. The fitting is performed by
Python 3.7 with the SciPy library. The continuous curves in
Figures 6B,C illustrate a good consistency between the
experimental and simulation results.

By implementing the LRS and HRS function fitted by data
extracted from 20 resistive switching cycles, an analog
Verilog-A compact model for the ReSe2 RRAM device is
constructed. Figures 6A,B displays the HSPICE simulation
result based on the Verilog-A model when applying DC
sweep. The results obtained from the simulation indicate
that the resistance switching occurs when the input voltage
sweep across threshold voltage for SET and RESET, which are
3 V and −0.5 V, respectively. Further function
implementation has been conducted based on the basic
analog resistive switching model. The degradation rate
fitted by function (4) enables the model to have LTP/LTD
behavior when a series of pulse with the same height and
width is input into the RRAM device in a HSPICE simulation.
Figures 6C,D shows the simulated LTP/LTD results. The grey
plots are the resistance output from the simulation. The blue
and red curves are the calculated conductance states after
each pulse, which shows similar behavior as the experimental
results.

FIGURE 5 | Demonstration of synapse behavior of the ReSe2 RRAM device. (A) Long-term potentiation (LTP) with 25 SET pulses. (B) Long term depression (LTD)
with 40 RESET pulses.

TABLE 1 | Comparison of the device characteristics of low-dimension material-based synapse devices.

Material Vset/Vreset ON/OFF ratio Endurance Pulse width Ref.

ReSe2 3 V/−0.5 V 104 >200 100 ns This work
Graphene oxide 1.5 V/−1.5 V < 100 120 1 ms Sahu et al. (2021)
Multilayer hBN 1.5 V/−0.7 V 102 N. A 20 μs Shi et al. (2018)
WS2 0.6 V/−0.3 V 102 N. A 250–750 ns Yan et al. (2019b)
PbS QD / Ga2O3 0.8 V/−0.8 V 106 N. A 200 ns Yan et al. (2019a)
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FIGURE 6 | Simulation results of ReSe2 RRAM Verilog-A compact model using HSPICE. Simulated I-V curve of (A) RESET and (B) SET under DC sweep. No
current compliance was applied to the simulation, causing an increasing current response after passing the threshold voltage of SET. Simulated (C) long-term
potentiation, and (D) long term depression.

FIGURE 7 | Application of ReSe2 RRAM for handwriting number recognition with MNIST dataset. (A) Schematic illustration of the ANN structure designed for the
simulation. Comparison of (B) accuracy and (C) loss between models with standard and ReSe2 RRAM-based SGD optimizers.

Frontiers in Nanotechnology | www.frontiersin.org November 2021 | Volume 3 | Article 7828366

Huang et al. ReSe2 RRAM for Neuromorphic Computing

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


To demonstrate the potential of our synaptic ReSe2 RRAM
devices, a training simulation based on ANN is performed. A fully
connected two-layer perceptron neural network for supervised
learning with the MNIST dataset for handwriting number
recognition. As is shown in Figure 7A, the two-layer
perceptron neural network consists of 784 neurons on the
input layer, 200 neurons on the hidden layer, and 10 output
neurons. The 784 input neurons correspond to 28 × 28 MNIST
image data, and the 10 output neurons correspond to 10 types of
numbers (0–9).

In the simulation learning process, a customized SGD
optimizer is designed to demonstrate the interference brought
by the implementation of ReSe2 RRAM devices. After each epoch
of training, the optimizer will calculate the gradient of the current
weights. After that, the weights will be updated following Eq. 5.

Wnew � W − lr × g . (5)

Here Wnew is the updated weight, W is the weight after one
epoch of training, lr is learning rate, and g is the gradient. When
the gradient is positive, the weight will decrease, which goes into
the process of LTD.While the gradient is negative, the weight will
go through the process of LTP. Taking the effect of LTP/LTD into
consideration, Eq. 5 will be modified as:

Wnew � W − lr × g × |kLTD|, g> 0 . (6)

Wnew � W − lr × g × ∣∣∣∣kLTP∣∣∣∣, g< 0. (7)

Here we consider the LTP/LTD processes are linear. The kLTD
and kLTP are the slope of the conductance curve under a linear
fitting, which follows Eq. 8. Here, Gfin is the normalized final
conductance, Ginit is the normalized initial conductance, and P is
the number of pulses.

k � Gfin − Ginit

P
. (8)

The ANN with customized SDG optimizer is trained for 50
epochs. An ideal ANNwith no customization is trained under the
same conditions as a benchmark. After 50 epochs of training, the
ANN based on ReSe2 RRAM devices achieved high recognition
accuracy of 91.3%, which is comparable to the 95.71% accuracy of
the ideal ANN model (Figure 7B). The loss of each model shows
that neither of them exhibits over-fitting issue, which is desirable
in the training process (Figure 7C). Note that the recognition
accuracy of the ideal model used in this work is not as high as that
in previously reported works. Themain reason is that themodel is
not optimized for the specific application of handwriting
recognition with MNIST dataset. By comparing the model
with default parameters with the model implementing
customized SDG optimizer, we can quickly assess the
performance of the ANN using ReSe2 RRAM devices.

CONCLUSION

In summary, vertical crossbar MIM structure RRAM devices
based on 2D ReSe2 have been found to exhibit excellent
characteristics, e.g., stable multiple-step RESET when
different levels of DC bias are applied. Furthermore, with
the analog switching characteristic of the ReSe2, essential LTP
and LTD behaviors are successfully mimicked. By
implementing the physical properties, a Verilog-A compact
model is designed to provide a standard method for future
design of neuromorphic computing systems. In addition, the
demonstration of a high handwriting recognition accuracy
with ANN simulation shows the potential of the ReSe2 RRAM
devices. The findings from our work provide additional
insights into the application of 2D ReSe2 RRAM devices in
the construction of brain-inspired neuromorphic computing
systems.
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