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Chemotherapy is one of the most widely used strategies to fight cancer, although it has
disadvantages such as accumulation in healthy organs and lack of specificity by cancer
cells (non-targeted molecules), among others, resulting in adverse effects on patients that
limit the dose or follow-up with the same. However, the treatment can also fail due to the
resistance mechanisms that cancer cells have to these agents. Because of these
limitations, smart drug delivery strategies have been developed to overcome treatment
challenges. These smart drug strategies are made with the aim of passively or actively
releasing the drug into the tumor environment, increasing the uptake of the
chemotherapeutic agent by the cancer cells, thus reducing the adverse effects on
other vital organs. Also, these strategies can be guided with molecules on their surface
that interact with the tumor microenvironment or with specific receptors on the cancer cell
membrane, thus conferring high affinity. This mini review summarizes advances in the
development of drug delivery techniques for cancer treatment, including different smart
nanocarriers with single or multifunctional stimuli responsiveness. At the same time, we
highlight the toxicity and delivery of these strategies in in vivomodels. Despite innovation in
smart delivery techniques, there are still biodistribution and customization challenges to be
overcome in future research.
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INTRODUCTION

Chemotherapy agents are often administered intravenously and are hence distributed all through the
body and adsorbed by serum proteins, erythrocytes, or by other cells that also have a high division
rate (Bagnyukova et al., 2010; Shields, 2017; O’Halloran et al., 2019), such as gastrointestinal
epithelial cells, hair follicles, etc., leaving a minimum effective concentration delivered in the tumor
site (Aslam et al., 2014; Bryer and Henry, 2018; Zia et al., 2018; Dewhirst et al., 2019; Haslam and
Smart, 2019). In consequence, the treatment complications implicate a decrease in the patient’s
quality of life (Nurgali et al., 2018). In addition, drug characteristics can develop treatment failures,
such as a lack of specificity by cancer cells (non-targeted molecules), accumulation in healthy organs,
and the resistance mechanisms that tumor cells acquire, e.g., apoptosis suppression, altering drug
metabolism, epigenetic regulation, alteration of drug targets, and enhanced DNA repair and gene
amplification (Mansoori et al., 2017; Zugazagoitia et al., 2016).

To overcome these limitations, strategies based on drug delivery systems (DDSs) have been
created. These techniques are based on organic, inorganic, and polymeric materials resulting in
nanocarriers (NC) like liposomes, micelles, nanoparticles (NPs), dendrimers Tiwari et al., 2012;
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Fonseca et al., 2015; Mu et al., 2020. Using them in a simplistic
manner, these strategies only depend on the passive delivery, such
as the intravenous administration, enhanced permeability and
retention effect (EPR), and response of the carrier in the tumor
microenvironment. Nevertheless, with the advances in materials
technology, these strategies can be improved by chemical or
physical functionalization, active targeting of cancer cell
biomarkers, design, and engineering for single or
multifunctional stimuli–responsive NCs.

However, the resulting NCs have limitations and
disadvantages when the in vitro to in vivo transition occurs.
These challenges involve the initial or latter size of the carrier
when it interacts with the systemic fluids and molecules, tumor
microenvironment, the physiological barriers, the cell uptake
pathway, and the complexity of the design (chemical
conjugation, core, shell, multifunction) thinking in great scale
manufacturing.

This mini review focuses on the fundamentals of strategies of
the DDS, and the advantages and disadvantages of single or
multifunctional stimuli and the challenges.

Drug Delivery Systems
The DDSs (Figure 1A) are platforms at the micro- and
nanometer scale whose design allows to contain and release
substances (drugs, imaging dyes, stimuli sensitizers, and
macromolecules) with greater efficacy than regular treatment
and to decrease adverse effects on other healthy organs or
tissues, as well as improve pharmaceutical adherence and the
quality of life of patients. The administration of a DDSs in in

vivo cancer models has been used in intravenous, intra-tumor,
and localized manner (Patra et al., 2018; Sharma, 2019). These
strategies are based on organic, inorganic, and polymeric
materials (Kamareddine et al., 2019). The organic NCs are
composed by phospholipids, carbohydrates, and nucleic
acids, forming, e.g., micelles and liposomes, which can
encapsulate drugs or activate molecules depending on their
charge or their hydrophobic or hydrophilic behavior (López-
Dávila et al., 2012).

Inorganic material DDSs include metallic core or metallic
core-shell gold NPs, quantum dots, superparamagnetic iron-
oxide NPs (SPIONs), mesoporous silica particles, and
nanovaccines (Kumar et al., 2020a; Machhi et al., 2021).
Unlike organic based NCs, an intrinsic antineoplastic effect,
although the effect can also be enhanced by loading drugs
inside them, in their pores, or adsorbed on to their surface
(Ghosn et al., 2019; Shi et al., 2020a). Hydrogels, NPs, fibers,
dendrimers, and micelles can be made based on polymers
(synthetic and natural). These are carriers of hydrophobic
molecules, as are many of the chemotherapeutic agents, and
biodegradable polymers that can have responsive
characteristics to stimuli such as pH difference, redox
environment, or being thermolabile at low temperatures (Wen
et al., 2018). The combinations of these materials or delivery
systems can be processed to change the administration or to load
other types of molecules that their initial chemical nature
restricts.

The investigation in this field of NCs is limited to in vitro and
in vivo studies. Future sites of bioaccumulation of metallic NCs

FIGURE 1 | Smart drug delivery strategies, (A) devices, (B) passive, and (C) active delivery, and (D) single and (E) multifunctional stimuli.
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and nonbiodegradable polymers can develop even more toxicity
or immunogenicity than the carried molecule itself.

Types of Strategies
To improve the DDS, the composition inside and outside of them
needs to be functionalized, thus adsorption of new molecules will
increase delivery to the tumor sites, the cellular uptake, and the
controlled release of the substances. Firstly, the DDS can be
delivered to the tumor site in two patterns: passive and active
(Figures 1B,C; Senapati et al., 2018; Kumar et al., 2020b).

Passive Delivery (Enhanced Permeability and
Retention Effect)
Passive delivery requires EPR that includes two phenomena.
Firstly, the tumor mass starts to grow in a localized spot and
needs new blood vessels that can provide it with nutrients and
oxygen, so the cancer cells release growth factors and hormones
to build them; this process is called angiogenesis. The
consequence of the rapid construction of these blood vessels
are the leaky holes (100–800 nm), through which the delivery
systems can pass by an extravasation process. Secondly, the tumor
environment has a deficient lymphatic system, thus the
accumulation of the delivery systems has more concentration
here than in healthy organs or tissues, and as a result of this, there
is an increased cellular uptake and release into the cellular
cytoplasm having enhanced toxicity in cancer cells (Alavi and
Hamidi, 2019; Kalyane et al., 2019; Shi et al., 2020b). The weak
spot in passive delivery is the implication of the retention only in
tumor sites it implicates only the retention in tumor sites (solid
tumors); however, there is a lack of such an affinity when liquid
tumor or metastasis cancer cells tend to be treated. To overcome
this issue, a better approach is required, with the solution being
active delivery.

Active Delivery (Ligand–Receptor)
Active delivery stands for modifications made to delivery
strategies on their surfaces (Fang et al., 2011). Molecules
adsorbed on the carrier’s surface provide higher affinity
because of the differences at the plasmatic membrane level in
the number of receptors that are overexpressed, expressed, or
absent in cancer cells that can lead to enhanced cellular uptake
(Danhier et al., 2010; Bazak et al., 2014; Kumari et al., 2015; Nag
and Delehanty, 2019; Zhao et al., 2020). Despite this, it has been
observed that these systems are more efficient in in vitro assays
than in vivo, and this phenomenon can be explained by two
mechanisms; firstly, the tumor environment has reduced
permeation that can exist in the central parts of the tumor,
such that their activity is only observed in the places closest to
the deficient veins, although because the administration is
systemic, but active delivery NCs can trace metastatic cancer
cells if this are in the blood circulation or lymph nodes (Pearce
and O’Reilly, 2019), and secondly, the aggregation of the spectra
of molecules and macromolecules in the vascular system
(complement proteins, albumin, etc.) in the in vivo model that
can bind to the surface making a corona, increasing their size,
hiding the target particles, or being easily cleared by their
diminishing the affinity for the receptors in the cancer cells.

The molecules that have helped guide the DDS are divided in a
general way as small molecules and biomolecules. Conforming to
the small molecule group is folic acid, lectin, glucophosphamide,
argininyl-glycinyl-aspartic acid (RGD) (Sundararaj et al., 2016).
The biomolecules, that can be attached by functionalization of the
NC surfaces are antibodies, transferrin, peptides, aptamers
(single-chain nucleotide sequences) (Sun et al., 2014; Kue
et al., 2016; Li et al., 2020). The disadvantages found in the
active delivery are the corona formation in in vivomodels and the
lysosome or endosome escape that could lead to an inactivation of
the drugs or macromolecules in the carriers. Therefore, the
efficacy of the strategies’ delivery, when administered
intravenously, will depend on passive delivery and further
enhanced performance of internalization of the systems due to
the interaction with ligands (active).

Single Function or Multifunction
Another way to improve the delivery strategies is by adding
functions, and these will depend on the chemical nature of the
components and how they react with the environment, whether
in the bloodstream, the tumor environment, tissues, or organs.
The single function and multifunction DDS (Figures 1D,E) rely
on the behavior of the materials specifically designed to react to
the chemical and biological changes that exist in the tumor
environment (Montaño-Samaniego et al., 2020).

Single Function
The DDS with a single functional release depends on internal
stimuli (e.g., redox potential pH, enzymes), which means the
influence of the different characteristics of the tumor
microenvironment in contrast to a healthy tissue or organ
environment (Mi, 2020) that will dissolve or collapse the NCs.
The changes in pH in the tumor microenvironment (pH, 6.5–6.8)
and in the lysosomes/endosomes (pH, 4–6) can be applied to
control the release of drugs in The differences, in contrast of
healthy cells, the lower pH in tumor microenvironment.,
moreover, the oxidation-reduction reactions (redox) are
enhanced, attributed to the higher concentration of reduced
glutathione (GSH) in cancer cells (0.5–10 mM) than in healthy
cells (2–20 Um) (GSH) has higher levels inside cancer cells
(0.5–10 mM) in contrast to healthy cells (2–20 μM). Disulfide
(S-S) and diselenide (Se-Se) bonds are functionalized in the NC
surface to be cleaved by GSH. In addition, some DDSs respond to
H2O2 concentrations to treat hypoxic and multidrug-resistant
tumors (Hirata and Sahai, 2017; Wu and Dai, 2017; Qiao et al.,
2019; Arneth, 2020).

Moreover, some ligands are responsive to enzymatic reactions
like activation, degradation or dissociation of hydroxyl bonds,
direct cleavage of the carrier and controlled release, due to higher
concentration of oxiderectuctases, transferass and hydrolases. (Ji
et al., 2019).

Multifunction
The DDSs that already have a single function can be conjugated
with sensitive molecules that react to external stimulus, creating a
multifunctional strategy. The external stimuli include magnetic,
electric, ultrasound, and infrared light. These stimuli help the
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DDS have greater accumulation at the tumor site (magnetically
guided), controlled release, thermal damage, and imaging (Cheng
et al., 2013; Yao et al., 2016; Lee and Thompson, 2017; Li et al.,
2019; Zhang et al., 2019). The major advantage of using a DDS
with multifunction is to precisely control the release according to
the intensity and time of the external stimulus (Singh et al., 2017).
Ultrasound works through high-frequency waves, which serves
for imaging purposes (frequencies <20 Hz) or to break the DDS
or increase cell membrane permeability (frequencies >20 Hz)
(Alsawaftah et al., 2021).

Temperature-sensitive materials as the DDS and therapy.
They are usually made to have their effect at a normal body
temperature of 37°C and are sensitive at higher temperatures
(>40°C) with significant changes leading to drug release. Thermo-
responsive polymers (Pluronic F-127, poly (N-
isopropylacrylamide) and molecules that react to hyperthermia
treatment (NH4HCO3) (Wang et al., 2016) can be used.

It is also possible to design a DDS responsive to an induced
magnetic field, which can be active targeted as well as having the
property to perform hyperthermic therapy in response to the
exertion of the magnetic field. exerting a magnetic field. They are
mostly made with SPIONs, magnetite (Fe3O4), and maghemite
(Fe2O3) that are often conjugated for this purpose (Gomes et al.,
2019; Liu et al., 2020). Finally, molecules in a DDS can be

stimulated by UV-Vis radiation, less used because of clinical
implications, and near infrared spectrum (NIR) light, NIR is used
for four reasons: 1) depth of tissue penetration (∼1 cm); 2) to
avoid unexpected absorption of energy by tissues, blood
hemoglobin, or water; 3) strong absorption of gold, carbon, or
CuS materials for photothermal or photodynamic therapies, and
4) minimal phototoxicity therefore appropriate for clinical use
(Bao et al., 2016; Fatima et al., 2021). In addition, it controls the
release of drugs and can generate the oxygen singlet (O2

1), leading
to the production of reactive oxygen species (ROS) and thus
tumor damage (Guerrero-Florez et al., 2020; Wang et al., 2020).

The examples of devices made to rely on a single or
multifunctional stimuli are listed in Table 1.

Multifunction DDSs can be combined to be sensitive to more
than two stimuli. A multifunction DDS (Lu et al. (2020)) based in
pH, GSH and NIR stimuliresponsive MSNPs, such as, pH, GSH
and NIR, MSNPs coated with carbon NPs for drug delivery of
Doxorubicin and photothermal therapy which in 15 days the
DDS exhibited superior antitumor effect with the NIR pulses and
safety than de free DOX group, although the DDS had low drug
loading capacity (Chen et al., 2018). The disadvantages are
presented in the case of metastatic lesions, where the
metastatic tumor foci are not completely localized, therefore,
the systems sensitive to stimuli from the tumor

TABLE 1 | Single and multifunctional strategies for intravenous administration in in vivo models.

Device Load Target molecule Single function
or multifunction

Results References

High-density
lipoprotein like

DCA
p53

Anisamide Single (pH) Tumor volume decreased in a 6.7 factor. Human pulmonary
adenocarcinoma

Shirata et al. (2017)
ApoA-I

Gold NP DOX — Single (pH) Decrease of tumor volume in a 1.5 factor, less variation of mice
weight, thus, security in major organs

Lee et al. (2017)

Polymeric NP DOX GA Single (pH) Greater intake of the NPs with both targeting ligands, no damage in
the kidney and heart

Arafa and
El-sherbiny (2020)Lactobionic acid

Polymeric micelle DOX CREKA (Cys-Arg-
Glu-Lys-Ala)

Single (pH) Breast cancer metastatic model, greater concentration in the lung
metastatic foci of tumor, although the device had agglomeration in
the liver too. No damage to major organs suggesting security

Gong et al. (2020)
VR

Polymeric micelle PTX Hyaluronic acid Single (redox) The micelles distribution is in the heart, lungs, kidneys, and tumor,
the last with the major amount. Tumor volume decreased 40 times its
size. The weight of the mice didn’t change with the treatment with the
micelles, indicating lack of damage in major organs

Zhang et al. (2016)
Vit E Folic acid

Hemiporous silica NP DOX Poly-L-lysine Multi (pH/redox) Tumor weight decreased in a factor of 5.6, mice weight showed no
variations; although, the device had more half a lifetime

Yang et al. (2020)

Graphene oxide
nanoplatform

DOX — Multi (ROS/PT) In the MDR tumor model, the major concentration of the DOX
released by the device was in the tumor tissue and kidneys
(excretion). When the affected area was irradiated, the tumor growth
inhibition was 97.4%, in contrast to the control group. In the
histological essay, the treatment with the device had normal tissue
without damaging other tissues

Chen et al. (2020)
ICG

Polymeric NP DTX Chondroitin sulfate Multi (redox/
enzyme)

Lung metastasis model in B16F10 mice, the distribution at 12 h was
major in the liver, but in comparison to free DTX, the amount of device
DTX was higher in the lungs and tumor tissue. It led to a growth
inhibition of 85% and a reduction of metastatic nodules by 51%

Wang et al. (2018)

Gold nanorods DOX — Multi (pH, PT) The device with laser stimulation had a tumor decrease starting at
day 2, from 130 mm3 to almost 0 mm3 for the 15 days of treatment,
recovering from the disease without tumor recurrence in 60 days
after treatment. Free DOX tumor treatment increased in volume to
700 mm3

Liu et al. (2018)

NP, Nanoparticle; DCA, dichloroacetate; DOX, Doxorubicin; VR, Vinorelbine; PTX, Paclitaxel; VitE, Vitamin E; ICG, indocyanine green; DTX, Docetaxel; GA, 18 β- glycyrrhetinic acid; PT,
photothermal; MDR, multidrug resistance.
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microenvironment will not be able to function correctly because
of the mistaken place of the external stimuli. Furthermore,
multifunctional strategies have a higher level of complexity in
the design, process, and manufacturing developments.

CONCLUSION

The design of smart drug delivery strategies has proven to be
effective against solid and metastatic tumors in in vivo models.
Carriers with active delivery enhance the affinity and cellular uptake,
in addition, single function or multifunction DDS exhibits an

enhanced effect of controlled release, with fewer or no adverse
effects observed in healthy major organs, in contrast to regular
chemotherapeutic agents. Despite innovations, there are still
challenges that include endosome escape, lysosome degradation,
corona formation, complex design and engineering which can
impact in the cost of the therapy, which have to be overcome in
future research to be evaluating in clinical trials.
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