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Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key
virulence factor in various pathogenic microorganisms, thereby posing a serious threat to
human health. It has been estimated that around 80% of hospital-acquired infections are
associated with biofilms which are found to be present on both biotic and abiotic surfaces.
Antibiotics, the current mainstream treatment strategy for biofilms are often found to be
futile in the eradication of these complex structures, and to date, there is no effective
therapeutic strategy established against biofilm infections. In this regard, nanotechnology
can provide a potential platform for the alleviation of this problem owing to its unique size-
dependent properties. Accordingly, various novel strategies are being developed for the
synthesis of different types of nanoparticles. Bio-nanotechnology is a division of
nanotechnology which is gaining significant attention due to its ability to synthesize
nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich
biodiversity of various biological components which are biocompatible for the synthesis of
nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and
relatively less toxic when compared to chemically or physically synthesized alternatives.
Biogenic synthesis of nanoparticles is a bottom-top methodology in which the
nanoparticles are formed due to the presence of biological components (plant extract
and microbial enzymes) which act as stabilizing and reducing agents. These
biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such
as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review
will provide an insight into the application of various biogenic sources for nanoparticle
synthesis. Furthermore, we have highlighted the potential of phytosynthesized
nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial
and antibiofilm mechanism.

Keywords: metal oxide nanoparticles, green synthesis, phyto-synthesis, anti-biofilm activity, biofilm related
complications

INTRODUCTION

The discussion regarding biofilms was first initiated in the 17th century by Antonie Van
Leeuwenhoek when he reported the presence of microbial aggregates in the plaque scraped from
his teeth (Gebreyohannes et al., 2019). In 1978, Costerton and his fellows coined the term bacterial
biofilm and described it as an organized community of microorganisms that remain adhered to a
surface and enclosed by an extracellular matrix (Costerton et al., 1978). Numerous bacterial and
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fungal species are known to exhibit twomodes of development i.e.
free-living/planktonic mode and the sessile, surface-adhered
mode within biofilms (Oshiro et al., 2019) (Rumbaugh and
Sauer, 2020). Biofilm can be defined as “A microbially derived
sessile community characterized by cells that are irreversibly
attached to a substratum or interface or to each other are
embedded in a matrix of extracellular polymeric substances
that they have produced, and exhibit an altered phenotype
with respect to growth rate and gene transcription”
(Gebreyohannes et al., 2019). The extracellular polymeric
substance (EPS) of biofilm is generally composed of cellulose,
proteins, nucleic acids, lipids, extracellular DNA, alginates, poly-
N-acetyl glucosamine, polysaccharides, extracellular teichoic
acid, and other organic molecules (Costa et al., 2018). EPS has
several crucial functions within the biofilm, like developing
physical and social interactions, enhancing the rate of gene
transfer, and protection from antimicrobials (Flemming et al.,
2016). Biofilm is one of the prominent causes of most chronic
infections (Lahiri et al., 2021). The microbes present within the
biofilm varies from their planktonic equivalents with respect to
phenotypic behavior, antimicrobial resistance, and gene
regulations. The central role of biofilm is to safeguard the
microorganisms present within it from external hostile factors
such as temperature, UV, biocides, desiccation, host’s immune
system, antibiotics, nutrient deficiency, thereby making them
resistive to stressful conditions (Yin et al., 2019). Moreover,
biofilms form an essential part of the human body, having
both constructive and destructive effects on human health
depending upon the microbial species and its localization
(Macfarlane and Dillon, 2007). Mucosal microflora can exist
in both planktonic as well as in sessile forms within biofilms.
They play a crucial role in maintaining homeostasis and act as a
bacterial reservoir. Various diseases, including inflammatory
bowel diseases, are caused by dysregulation or disturbance in
the mucosal biofilm of healthy bacteria (IBD) (Xavier and
Podolsky, 2007). Further, a microbial biofilm of the gut helps
in water retention and prevents any microbial infection (Dunne,
2002) (von Rosenvinge et al., 2013). Moreover, Lactobacillus
biofilms on vaginal or intestinal epithelia may play an essential
role in protecting healthy people from sexually transmitted
diseases and intestinal or urinary infections (Watters et al.,
2016) (Santos et al., 2016) (Emanuel et al., 2010).

Apart from rendering protection to microbial cells, biofilms
can implement various tactics to escape the defense mechanism of
the host. Microorganisms within a biofilm can survive in anoxic
conditions with limited nutrition due to alteration in metabolism,
protein synthesis, and gene expression which lead to reduced
metabolic activity and a low rate of cell proliferation (Donlan and
Costerton, 2002) (Hall-Stoodley and Stoodley, 2009).
Furthermore, these changes make the bacteria more resistant
to antimicrobial drugs due to the inactivation of the antimicrobial
targets or lowering the cellular function that antimicrobials tend
to obstruct. Neither innate nor active immune responses are
capable to eradicate the biofilm completely, rather it stimulates
the process of the collateral damage of tissue. As a consequence,
biofilm facilitates the establishment of chronic infections (Vestby
et al., 2020).

According to the reports of the U.S. National Institutes of
Health, 80% of all microbial infections within the human body are
caused due to biofilms (Khatoon et al., 2018). Microbial biofilms
can affect different parts of the body like the respiratory system,
reproductive organs, oral cavity, and urinary tract; also, it may
develop infections on implanted medical devices (Ramage and
Williams, 2013) (Mohammad Reza, 2018). Further, studies have
suggested that fungal infections, in particular, caused by the
genera Candida, Cryptococcus, and Aspergillus are responsible
for more than a million deaths per year (Janbon et al., 2019). With
the increased cases of immunocompromised patients and
augmented application of medical implants, which forms the
potential substrate for biofilm development, people are becoming
more susceptible to such infections (Cauda, 2009), (Lebeaux et al.,
2014). The bacteria which are commonly associated with biofilm-
associated infections include Pseudomonas fluorescens,
Pseudomonas aeruginosa, Vibrio cholera, Escherichia coli
among Gram-negative bacteria. Among Gram-positive,
Staphylococcus aureus, Staphylococcus epidermidis, and
enterococci are the common biofilm producers which are the
leading cause of nosocomial infections (Barbosa et al., 2016).
Apart from providing resistance against the antibiotic, biofilms
play an important role in the pathogenicity of different bacteria.
For example, in P. aeruginosa, there is upregulation of various
virulence factors during biofilm formation (Landini et al., 2010).
Apart from the hospital environment, biofilm also affects various
other sectors such as water treatment (microbial population of
active silt can be destroyed by biofilm), and food manufacturing
industries (biofilm formation by spoilage and pathogenic
microorganism), and textiles industries (Borzenkov et al., 2020).

Antibiofilm approaches which are currently being applied to
combat biofilms are the application of biofilm degrading agents,
anti-adhesion compounds, or disruption of biofilm development
at initial stages. Typically, infections transmitted via medical
equipment are cured using traditional antimicrobial agents.
These standard antimicrobials are generally susceptible to
planktonic cells but often fail to treat sessile counterparts
within the biofilm, thereby necessitates surgical elimination of
implants (Nadell et al., 2009). Moreover, the application of
disinfectants and sanitizers is ineffective against biofilm
(Sharahi et al., 2019) (Malhotra et al., 2015). Several
approaches, such as maintaining appropriate hygiene and
applying antibiotic prophylaxis, are commonly used to manage
and prevent biofilm development onmedical equipment. Further,
incorporation of antimicrobial agents (antiseptics, antibiotics, or
metals) on the surface or development of extremely smooth
surfaces are some of the techniques to develop biofilm resistive
medical equipment (Camargo et al., 2009). Most of them could
not fulfill the criteria for long-term application. Also, to prevent
biofilm development on catheters, a new approach called the
Antimicrobial lock technique (ALT) has been established, in
which antibacterial agents are incorporated on the catheter
surface profusely. But this technique has certain drawbacks
like toxicity and the development of secondary infections
which obstruct its effective applications (Banerjee et al., 2020).

Antibiotics are the primary approach to treat a bacterial
infection, but due to the rapid increase in bacterial resistance
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against antibiotics, the search for new tools has become a hot
research topic worldwide. The conventional therapy for treating
bacterial biofilm includes the cocktail of different antibiotics
which has various killing mechanisms. However, with the
increase in resistance against the antibiotic, traditional
treatments are collapsing in their efforts to combat biofilm.
Likewise, the prime anti-mycotics which are used to treat
fungal infections include azoles (e.g., fluconazole), polyenes
(e.g., amphotericin B), echinocandins (e.g., caspofungin),
allylamines (e.g., terbinafine) (Tits et al., 2020); among these,
only liposomal formulations of amphotericin B and
echinocandins can be used to treat biofilm-based infections
(Kuhn et al., 2002) (Uppuluri et al., 2011). Further, the EPS
matrix inhibits the penetration of antibiotics within the biofilm
(Pinto et al., 2020). Also, the modifications in the microhabitat
within biofilm lead to a change in nutrition supply, development
of anoxic conditions, reduced water accessibility, temperature
modification. As a result, adaptive stress responses in bacterial
cells are enhanced. Consequently, the bacterial cells transform
into persisters, which are highly protected spore-like structures,
which promotes the emergence of drug resistance (Lahiri et al.,
2021).

With the failure of the traditional approach to eliminate
biofilm, it is now imperative to explore the possibilities of new
drugs and approaches to combat biofilm. The application of
nanotechnology in the field of medicine has shown promising
results in recent years due to its multidisciplinary approach
thereby giving rise to a new arena called “nanomedicine.”
Lately, The use of various nanoparticles is emerging as a
potentially promising alternative to antibiotics for combatting
and treating biofilm-producing pathogens, as nanoparticles
follow different mechanisms of action to target, against which
the bacteria are unable to develop resistance. Nanoparticles
impart antibiofilm activity via various mechanisms such as
generation of ROS, EPS destruction, inhibition of quorum
sensing, etc (Baptista et al., 2018). Even though numerous
outstanding research has been published in this area, to the best
of our knowledge, no comprehensive review of the current
developments has been published yet. To this end, this
literature reviews the various biogenic approaches employed for
the fabrication of nanoparticles. Herein, this review offers an
update on the phyto-synthesized nanoparticles and their role in
combatting microbial biofilms. This survey might open the way for
further progress in this area and we can expect that the application
of phyto-synthesized nanomaterials will expand the spectrum of
new possibilities for metal oxide nanomaterials and widen the
research domains of combating harmful bacteria and biofilms.

DEVELOPMENT OF BIOFILM

The event of biofilm formation is a multistep mechanism
involving series of biological, chemical, and physical changes
depending upon different external stimuli such as extreme pH,
excessive temperature, high pressure, increased salt
concentration, desiccation, UV radiation, limited nutrition,
and antimicrobial agents (Galié et al., 2018). The formation of

biofilm takes place with a reversible adhesion of microbial cells to
the substratum, followed by the irreversible attachment, which is
facilitated by adhesive components of bacteria and short-range
interactions. This process of attachment is progressed further
with the secretion of EPS. Subsequently, the bacterial cells develop
into a systematized structure enclosed within the EPS matrix. The
bacterial cells can leak out from the mature biofilm and get
disperse into the environment and colonize new sites. This overall
event can be classified into five different phases, viz. 1) reversible
attachment 2) Irreversible adhesion 3) microcolonies formation
4) biofilm maturation, and 5) dissemination (Figure 1;
Kirmusaoglu, 2016).

Typically, the reversible attachment is initiated with adherence
of microbial cells to the preconditioned substrate in a way that
bacteria continue to be in 2D-Brownian motion and can get easily
separated from the surface either due to bacterial motion or
shearing effects of a fluid flowing over the surface. This initial
attachment is aided by various interactions like hydrophobic
forces, electrostatic forces, Lifshitz-van der Waals interactions,
and microbial cell surface appendages like flagella, fimbriae, pili,
and curli-fibers. The second stage is characterized by
immobilization and irreversible attachment of microbial cells
and thereby monolayer formation of microbial cells due to the
involvement of several interactions like hydrophobic interactions,
dipole-dipole interactions, hydrogen, covalent and ionic bonding.
Subsequently, in the third stage, irreversible adhesion is
proceeded by EPSs secretion which forms the vital component
of biofilm’s extracellular matrix. Further, the development of
microcolonies via rapid cell proliferation characterizes this phase.
EPS plays vital roles in biofilm development, surface attachment,
water retention, nutrition entrapment, exchange of genetic
material, and protection of microbial cells. As the width of
biofilm increases, the fourth stage is reached i.e. maturation
which is facilitated by quorum sensing. This stage is
characterized by the development of an intricate 3D structure
with water-filled channels which circulate nutrients to different
cells and remove unwanted waste material. The terminal step of
biofilm development is the detachment process or the dispersal
process. In this stage, due to the dynamic instability of the biofilm
matrix, the microbial cells detach either passively or actively and
enter into the surroundings as planktonic cells. These released
cells can also propagate to another surface where they may get
adsorb and develop new environmental niches. The detachment
process is aided by the secretion of numerous saccharolytic
enzymes which facilitate the release of microbes from the EPS
surface. For example, alginate lyase secreted by Pseudomonas
aeruginosa and Pseudomonas fluorescens, N-acetyl-heparosan
lyase secreted by Escherichia coli, hyaluronidase secreted by
Streptococcus equi, causes lysis of EPS and thereby facilitate
detachment (Renner and Weibel, 2011) (Ramasamy and Lee,
2016) (Kirmusaoglu, 2016) (Muhammad et al., 2020).

INFECTIONS ASSOCIATED WITH BIOFILM

With the ability to grow on both living and non-living surfaces,
biofilm forms one of the primary causes of chronic as well as
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hospital-acquired infections. These include both, device- and
non-device-associated infections (Lewis, 2001).

Device-Associated Infections
Biofilms are generally found to be present on or inside indwelling
therapeutic devices like mechanical heart valves, central venous
catheters, prosthetic joints, peritoneal dialysis catheters, contact
lenses, pacemakers, voice prostheses, and urinary catheters
(Donlan, 2001). Its microbial composition depends upon the
type and the duration of action of residing devices (Donlan,
2002).

Microbial cells tend to adhere to both soft and hard varieties of
contact lenses. The extent of adherence depends on various
criteria vis. the nature of substrate, electrolyte concentration,
water content, bacterial strain involved, and the material used in
contact lenses. The microorganism commonly affecting contact
lenses includes E. coli, Staphyloccocus aureus, Pseudomonas
aeruginosa, Staphylococcus epidermidis, Proteus, Serratia,
Candida species, and so forth (Donlan and Costerton, 2002).
Prosthetic valve endocarditis is another biofilm-related
complication in which biofilms are developed on mechanical
heart valves and nearby organs (Mrsic et al., 2018). A wide range
of microorganisms which include Staphylococcus epidermidis,
Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas
aeruginosa, Klebsiella pneumoniae, Propionibacterium acnes,
Enterococcus, Escherichia coli, Candida species, and yeasts, is
known to infect different cardiac implants such as pacemakers,
defibrillator, prosthetic valves, coronary artery bypass grafts,
which gradually forms denser biofilms in vivo as compared to

in vitro (Viola and Darouiche, 2011). These cardiac devices
associated with biofilms lowers the rate of blood flow and
promote hematogenous spread thereby infecting and
developing biofilms in other organs (Bosio et al., 2012).
Urinary catheters which are generally constructed of latex or
silicone are utilized to accumulate urine during operation,
prevent urine retention, and measure urine generation, in
ICU. These catheters are generally administered up to the
urinary bladder via the urethra. Bacterial contamination due
to periurethral skin colonization results in bladder migration
of the microbial cells thereby leading to biofilms establishment on
these catheters (Kokare et al., 2009). Pseudomonas aeruginosa,
Klebsiella pneumoniae, Enterococcus faecalis, Streptococcus
epidermidis, Proteus mirabilis, and other Gram (−ve) bacteria
are among the microorganisms that develop biofilms on these
devices (Pelling et al., 2019). Further, these microbes develop an
alkaline condition by increasing the pH which facilitates the
formations of struvite biofilms inside these catheters
(Neethirajan et al., 2014). Moreover, Biofilm formation on
central venous catheters is quite frequent, although the
location and intensity of biofilm formation are both dependent
on the duration of action of these catheters. Patients with bone
marrow transplants are at higher risk of biofilm infections as they
require long-term vascular catheters. The development of the
bacterial community depends on the fluid composition which is
being administered through these catheters. For instance, gram-
positive bacteria like Staphylococcus epidermidis and
Staphylococcus aureus, show poor development in the
intravenous fluids, while gram-negative aquatic bacteria, such

FIGURE 1 | A model showing the typical step-wise development of biofilm (1) Reversible attachment, (2) Irreversible attachment (3) Microcolonies formation (4)
Biofilm maturation (5) Dissemination (Kirmusaoglu, 2016).
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as Klebsiella sp., Enterobacter sp., and P. aeruginosa, can grow
well in such liquids (Raad et al., 1993) (Jamal et al., 2018). Many
research reports have indicated that biofilm infections have been
related to aseptic loosening of joint prostheses. Further, infections
in prosthetic joints caused by Propionibacterium acnes or
Staphylococcus epidermidis can lead to serious problems and a
high death rate, post joint replacement operation (Del Pozo and
Patel, 2009). Moreover, numerous studies have reported that
microorganisms like Staphylococcus aureus, Bacillus species,
Klebsiella pneumoniae, Escherichia coli, Pseudomonas
aeruginosa, etc. are found to contaminate and develop biofilms
in endotracheal tubes (Vandecandelaere and Coenye, 2015). Also,
different bacteria of breast ducts and tissue lead to biofilm
development on breast implants (Pajkos et al., 2003).

Non-Device Associated Infections
Most of the chronic infections are related to biofilms, as microbial
cells present within the biofilms are resistive to the host defense
system, antibiotics, and other therapies. Some of the non-device-
related bacterial infections are periodontitis, osteomyelitis, cystic
fibrosis, otitis media, and chronic wounds (Vestby et al., 2020).

Periodontitis is the infection of gums, generally caused due to
poor oral health. Injury of soft tissues, damage to the bones
supporting the teeth, and occasional tooth loss are the common
characteristics of this infection (Guiglia et al., 2010). It is caused
by biofilm-forming bacteria such as P. aerobicus and
Fusobacterium nucleatum which colonize the teeth surface
followed by mucosal cell invasion (Jamal et al., 2018). They
may also alter the calcium flow within epithelial cells as well
as release toxins. This may lead to the development of plaque
within few weeks which can be mineralized with phosphate and
calcium ions, thereby leading to the development of calculus or
tartar (Overman, 2000). Also, Candida albicans are known to
form biofilms on the mucosal layer of the oral cavity. And the
synergistic relationship between C. albicans and Streptococcus
mutans within the biofilm of oral plaque facilitates bacterial
colonization and thereby promotes the formation of dental
caries (Ponde et al., 2021). In addition, Osteomyelitis is the
disease of bones caused by fungal or bacterial cells. Bacteria
invade the bone via blood vessels, injury, or prior infections,
thereby causing infection in the bone’s metaphysis. This leads to
infiltration of WBCs at the site of infection which attacks the
invading bacteria via phagocytosis or secretion of lytic enzymes
thereby resulting in the formation of pus and further spread
through bone blood vessels. This leads to blockage of proper
blood flow and thereby tissue damage in the infected site of the
bone (Goodrich, 2019). Cystic fibrosis is one of the most studied
biofilm-associated infections which primarily affects the
respiratory and the digestive system and is characterized by
the generation of viscous mucus and chronic infections (Ciofu
et al., 2015). In earlier stages, the airways are primarily colonized
by Staphylococcus aureus and Haemophilus influenzae, while at
later stages Pseudomonas aeruginosa dominates (Hector et al.,
2016). Large numbers of polymorphonuclear leukocytes (PMNs)
are being recruited to the infected site in response to the presence
of biofilm, thereby causing persistent inflammation, airway
blockage, loss of lung function, and tissue damage. Further,

the anaerobic condition developed due to the metabolic
activity of bacteria facilitates the biofilm mode of P.
aeruginosa even more (Rada, 2017). Otitis media (OM) is a
condition in which the middle ear chamber gets inflamed,
commonly affecting pre-school-aged children (DeAntonio
et al., 2016). OM can further be classified into chronic
supportive OM (CSOM), OM with effusion (OME), and acute
OM (AOM) (Schilder et al., 2017). Generally, biofilm develops in
the middle-ear mucosa and middle-ear fluid in case of chronic
otitis media (COM) patients. The microbial community
consisting of Escherichia coli, Haemophilus influenzae,
Staphylococcus aureus, Pseudomonas aeruginosa, and
Moraxella catarrhalis as well as other pathogenic bacteria is
responsible for the biofilm formation (Homøe et al., 2009).
Any damage to living tissue is generally referred to as wounds
which can be caused due to various reasons like burns, abrasions,
cuts, and surgery or due to other underlying conditions like
diabetes (Fijan et al., 2019). Recent studies have indicated that the
biofilm mode of bacterial growth is the prime cause of chronic
wound infections. Chronic wounds are generally colonized by
several bacterial communities among which Staphylococcus
aureus is found in majority (Brackman et al., 2013). Aerobic
bacteria such as Staphylococcus aureus, Staphylococcus
epidermidis, and Pseudomonas aeruginosa are generally
isolated from the surface of chronic wounds whereas
anaerobic bacteria such as Bacteroides sp., Clostridium sp.,
Peptostreptococcus sp., and Fusobacterium sp. are generally
found in deeper tissue (Percival et al., 2012).

DIFFERENT METHODS OF
NANOPARTICLES SYNTHESIS

In the last decade, nanoparticle research activities grew
dramatically, with a primary focus on the synthesis of
nanoparticles. The synthesis of nanoparticles is important to
understand the particulate formation process, fine-tune the
physicochemical characteristics of the nanoparticles, and
enable specific functionalities and applications (Jeevanandam
et al., 2016). For the synthesis of nanoparticles, a variety of
physical, chemical, and biological techniques are available.
These three methods can further be classified into two
categories: 1) the top-bottom approach and 2) the bottom-top
approach (Yadi et al., 2018) (Figure 2).

In top-bottom approaches, the bulk counterpart of the
compound is broken down systematically thereby leading to
the synthesis of fine nanostructures (Dhand et al., 2015).
Although this approach is easier to carry out; it is not
appropriate to generate informal shaped and very minute
particles (Jamkhande et al., 2019). Some of the typically
applied top-bottom methods for bulk production of
nanoparticles are electron beam lithography, photolithography,
thermal/laser ablation, electro explosion, sputtering, anodization,
ion and plasma etching, and milling techniques (Ovais et al.,
2017). The most significant drawback of the top-bottom method
is surface structure imperfections, which impose significant
limitations since a material’s surface structure has a crucial
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role in surface chemistry and the physical characteristics of the
material. For example, lithographed nanowires are not necessarily
smooth and may have many impurities and structural defects on
their surface (Mittal et al., 2013).

The bottom-top approach is an alternative that has the merit
to produce less waste and hence is more economical. The
synthesis process in bottom-top methods begins with the
amalgamation or amassing of atoms and molecules into
nuclei, followed by the fabrication of a diverse range of
nanoscale particles (Mukherjee et al., 2001). Self-assembly of
monomer/polymer molecules, sol-gel processing, chemical
vapor deposition (CVD), chemical or electrochemical
nanostructural precipitation, laser pyrolysis, plasma or flame
spraying synthesis, and biosynthesis are some of the
techniques which fall under the bottom-top approach (Daraio
and Jin, 2012).

Among the physical, chemical, and biological modes of
synthesis, the most effective are the ones that utilize
environment-friendly techniques. Even though these
nanoparticles have enormous applications in numerous fields,
they tend to impart severe toxic effects which nullify the benefits
of the material itself. Further, in the field of medicine where
sustainability and safety have a vital role to play, the application of
green nanotechnology would be more preferred. A green
nanotechnology is a multidisciplinary approach that aims to
manufacture nanomaterials in an efficient, responsible, and
sustainable way thereby holding great potential in biomedicine
with special importance on the environment, health, and safety
(Kumar et al., 2015). To overcome the issue of toxicity,
nanotechnology and green chemistry amalgamate to develop
environment-friendly nanoparticles (Lateef et al., 2016). The

crucial parameters for the synthesis of nanoparticles are the
selection of an eco-friendly solvent, a harmless stabilizing
agent, and an effective material for reduction (Jadoun et al.,
2021). Biosynthesis is a division of chemistry called “Green
Chemistry” which designs and develops chemical components
and processes that minimize or exclude the application of
hazardous substances (Anastas and Warner, 1998).
Biosynthesis fabricates nanoparticles by utilizing the benefits
of nature and the environment via non-toxic, clean, eco-
friendly green chemistry methods which include the use of
organisms such as bacteria, plants, fungi (Duan et al., 2015).

Physical Method
Physical methods used for the synthesis of nanoparticles include
lithography techniques, mechanical milling, sputtering,
electrospinning, physical vapor deposition (PVD), and so on
(Khodashenas and Ghorbani, 2014). Although physical
techniques are relatively quicker and do not require the use of
hazardous chemicals, they have certain major limitations like the
requirement of expensive equipment and infrastructure,
maintenance of high pressure, and temperature (Thakkar
et al., 2010).

Chemical Method
Among chemical methods, the most widely applied methods for
nanoparticles synthesis include chemical vapor deposition, sol-
gel process, hydrothermal, sonochemical, wet chemical reduction,
microemulsion/colloidal, pyrolysis, chemical etching, thermal
ablation, laser ablation, photoreduction, and electrodeposition
(Nam and Luong, 2019). The composition and the size of the
produced nanoparticles depend on the reducing agents

FIGURE 2 | Various approaches available for the synthesis of metal nanoparticles (Patra and Baek, 2014).
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employed, reaction time, temperature, and the length of the
surfactant molecule (Simeonidis et al., 2007). The use of
inorganic and organic salts as reducing agents is one of the
most common methods which is frequently employed due to
simple procedures and minimal equipment requirements
(Vijayaraghavan and Ashokkumar, 2017). The incorporation
of hazardous chemicals in the synthesis, as well as the disposal
of these reagents, is a key drawback of chemical techniques
(Khodashenas and Ghorbani, 2014).

Biological Method
The biological method employs the use of various biological
agents for the synthesis of nanoparticles, such as bacteria,
fungus, yeast, virus, protozoan, microalgae, macroalgae, and
plant biomass/extract (Shah et al., 2015) (Singh et al., 2016c).
Although the biological method takes a longer time to produce
nanoparticles compared to chemical and physical methods; the
biological synthesis of nanoparticles has the benefits of low
toxicity, cost-effectiveness, quick synthesis, ease of scaling up,
and simple synthesis procedure (Sharma et al., 2019). One of the
prime advantages of plant-mediated biosynthesis is that no
hazardous residue products are left on the particles. When
people consume them directly, such as through creams or
clothing, even minute quantities of hazardous residues can
make their safe application unfeasible (Sau and Rogach, 2010)
(Fakhari et al., 2019) (Bhattacharya et al., 2019). Also, chemical
and physical methods of nanoparticles synthesis are exorbitant
due to the fixed price of reagents and apparatus. Moreover, the
enormous amount of secondary products produced offers a safe
disposal issue (Mirzaei and Darroudi, 2017). Unlike
microorganism-assisted nanoparticle synthesis, phyto-synthesis
procedures do not involve isolation of microorganisms,
identification, optimization of growth conditions, culture
preparation, and preservation, which are all complicated and
tiresome processes (Patil and Kim, 2017). Rather, plant-assisted
green synthesis is quick and straightforward, thereby offers a
shorter production time, which indicates potential for scaling-up
(Shankar et al., 2004) (Song and Kim, 2009) (Salunke et al., 2014).
Due to these advantages, numerous research work has been done
to explore the potential of biological materials for the production
of metallic nanoparticles. These biologically synthesized
nanomaterials have the potential to be applied in various fields
like therapeutics, diagnostics, surgical nanodevice development,
and commercial product production (Kuppusamy et al., 2015).
Among the biological approaches of nanoparticles synthesis, the
methods based on plants and microbes have been extensively
reported in the literature (Gardea-Torresdey et al., 2003) (Kaler
et al., 2011) (Dhillon et al., 2012) (Singh et al., 2016c). Microbial
synthesis of nanoparticles is, of course, easily scalable, ecologically
friendly, and compatible with the product’s usage in medicinal
applications, but is often more expensive than nanoparticles
synthesis from plant extract (Mittal et al., 2013).

Synthesis of Nanoparticles Using Microorganisms
Although the employment of microorganisms to synthesize
nanoparticles is a modern technique; the interaction between
metallic ions and microorganisms has been known for years such

as the ability of microbial cells to extract and accumulate metals in
bioleaching and bioaccumulation procedures (Lombardi and
Garcia, 1999). Microorganisms are significant nano factories
with enormous potential as they can store and detoxify heavy
metals due to a variety of peptides, proteins, organic materials,
reducing cofactors, and reductase enzymes that not only convert
metallic ions to metal nanoparticles but also provide a natural
capping to the synthesized nanoparticles and thereby improving
its polydispersity and stability (Singh et al., 2016c). Further, the
microorganism-assisted synthesis of nanoparticles is an
environment-friendly and cost-effective approach, avoiding the
use of harmful, hazardous chemicals as well as the high energy
demands of physiochemical synthesis.

Microorganisms can synthesize nanoparticles both intra- and
extracellularly via various mechanisms (Mandal et al., 2006). The
intracellular synthesis of nanoparticles initiates with electrostatic
interaction of the positively charged metallic ions with negatively
charged cell wall followed by the entry of the metal ion inside the
cell via a special ion transporter. The ions then undergo
enzymatic reduction thereby leading to the formation of
nanoparticles, which are then dispersed out through the cell
wall (Hulkoti and Taranath, 2014). While the extracellular
nanoparticle synthesis involves the accumulation of metallic
ions on the cell surface followed by its reduction to
nanoparticles in the presence of microbial enzymes. The
extracellular synthesis is way more advantageous as compared
to intracellular methodologies as it eliminates the downstream
processing steps which include multiple centrifugation and
washing steps, sonication, and so on which make the
intracellular synthesis time-consuming and cumbersome
(Zhang et al., 2011).

Bacteria are unicellular living creatures that belong to the
prokaryotes family and are found in soil, water, and as symbionts
in other species (Lemfack et al., 2020). The following genus
includes some of the most significant bacteria investigated for
the biosynthesis of nanoparticles: Bacillus (Saravanan et al.,
2011), Pseudomonas (Husseiny et al., 2007), Klebsiella
(Fesharaki et al., 2010), Escherichia (Gurunathan et al., 2009),
Enterobacter (Karthik and Radha, 2012), Aeromonas (Jayaseelan
et al., 2013), Corynebacterium (Gowramma et al., 2015),
Lactobacillus (Mohammed et al., 2021), Weissella (İspirli et al.,
2021), Rhodobacter (Bai et al., 2011), Rhodococcus (Otari et al.,
2012), Brevibacterium (Kalishwaralal et al., 2010b), Bhargavaea
(Singh et al., 2015), Streptomyces (Bukhari et al., 2021),
Desulfovibrio (Gong et al., 2018), Shewanella (Kimber et al.,
2018), Rhodopseudomonas (He et al., 2007), Pediococcus
(Moodley et al., 2018) and others.

Fungi are easy to culture and pose higher bioaccumulation
capability thereby forms an efficient, low-cost with simple
downstream processing approach for nanoparticles
biosynthesis (Pal et al., 2019). Three probable methods have
been proposed to elucidate the mycosynthesis of metal
nanostructures i.e. electron shuttle quinones, nitrate reduction
action, or both (Gahlawat and Choudhury, 2019). Some of the
most important fungi studied for the biosynthesis of
nanoparticles belong to the following genera: Fusarium (Shafiq
et al., 2016), Aspergillus (Jain et al., 2011), Neurospora (Castro-
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Longoria et al., 2011), Mucor (Sathishkumar et al., 2015),
Pestalotia (Raheman et al., 2011), Hypocrea (Bhimba et al.,
2011), Trichoderma (Prameela Devi et al., 2013),
Colletotrichum (Suryavanshi et al., 2017), Lecanicillium
(Namasivayam and Chitrakala, 2011), Rhizopus (AbdelRahim
et al., 2017), and others. Yeast, which belongs to the fungus
class Ascomycetes, has shown promising potential for the
production of nanoparticles. Yeasts, like other microbes, have
been extensively studied for large-scale extracellular nanoparticle
production with simple downstream processing. Yarrowia
(Agnihotri et al., 2009), Rhodosporidium (Seshadri et al.,
2011), Candida (Rahimi et al., 2016), Saccharomyces
(Korbekandi et al., 2016), Rhodotorula (Cunha et al., 2018),
etc. are the genera that include some of the most studied yeast
for nanoparticles biosynthesis.

Further, algae are excellent candidates for nanoparticles
production since they can accumulate metals and reduce metal
ions. They also offer several benefits, like low-temperature
nanoparticles synthesis, ease of handling, and low toxicity
(Priyadarshini et al., 2019). Algae can generate nanoparticles
from different metal salts by using enzymes and functional
groups found in their cell walls; even edible algae can make
metallic nanoparticles (H Madkour, 2017). The following genera
contain some of the most significant algae investigated for
nanoparticle biosyntheses such as Ulva (Ishwarya et al., 2018),
Sargassum (Azizi et al., 2014), Caulerpa (Kathiraven et al., 2015),
Spirulina (Kalabegishvili et al., 2012), Galaxaura (Abdel-Raouf
et al., 2017), Sargassum (Kumar et al., 2012), Padina (Bhuyar
et al., 2020), Chlorella (Arsiya et al., 2017), Scendesmus (Aziz et al.,
2014), Chlorococcum (Jena et al., 2013), Bifurcaria (Abboud et al.,
2014), Gracilaria (de Aragão et al., 2019), Turbinaria
(Rajeshkumar et al., 2013), and others.

The protozoan-mediated biosynthesis of nanoparticles has
been least studied. Tetrahymena (Mortimer et al., 2011) and
Leishmania (Ramezani et al., 2012) are the two genera that have
been studied extensively for the biosynthesis of nanoparticles.

Microorganisms mediated synthesis of nanoparticles can
occur via two methods i.e extracellular or intracellular. In the
case of extracellular synthesis, the microbial cells are cultured in a
rotating shaker under optimal conditions for 1–2 days, followed
by centrifugation for the removal of biomass. The supernatant
obtained is then again incubated with a filter-sterilized metal salt
solution which leads to the synthesis of nanoparticles which is
indicated by a change in color of the reaction mixture.
Subsequently, the reaction mixture is centrifuged at high
speed, washed thoroughly several times with water or solvent
(ethanol/methanol) and the synthesized nanoparticles are
collected as a pellet. In the intracellular synthesis, the
microbial culture is incubated for an optimum amount of
growth period, followed by its centrifugation and washing with
sterile water. The microbial mass is again incubated in a water
medium along with the filter-sterilized solution of metal salt.
Alike extracellular synthesis, the synthesis of nanoparticles is
monitored by a change in color of the reaction mixture. Followed
by the incubation period, the nanoparticles are obtained by
removal of the biomass with the help of repeated
ultrasonication, subsequent washing, and centrifugation which

promotes cell wall disruption and thereby a collection of the
released nanoparticles (Singh et al., 2016c). However, most
microorganism-based nanoparticles synthesis is slow and low-
productive, and nanoparticle recovery involves tedious
downstream processing. Additionally, limitations with
microorganism-based nanoparticle production include difficult
procedures including microbiological samples isolation, culture,
and maintenance.

Synthesis of Nanoparticles Using Plants
Phytonanotechnology, which employs plant-based compounds
for the synthesis of nanoparticles, has recently opened up new
opportunities in the field of biomedicine, attributed to its superior
biocompatibility, scalability, and simple synthesizing method
(Noruzi, 2015). Plants can be used either in their live or dead/
inactive form for nanoparticle biosynthesis. Different plants are
recognized for their ability to collect metals, which are then
reduced to nanoparticles within the cell (Kuppusamy et al.,
2016). Numerous research work has been done utilizing
different parts of plants as a reductant for nanoparticles
synthesis such as leaf, stem, fruit, latex, root, flower, seed, and
seed coat (Bhati-Kushwaha and Malik, 2013). The reduction of
metal ions into nanoparticles is aided by different plant
biomolecules that include organic acids, proteins, vitamins,
amino acids as well as secondary metabolites like flavones,
ketones, alkaloids, terpenoids, phenolics, saponins, aldehydes,
tannins, and polysaccharides. As per numerous reports, these
plant-derived metabolites can prevent the agglomeration and
aggregation of metallic nanoparticles by reducing and
stabilizing the reaction in a non-toxic manner (Nath and
Banerjee, 2013) (Duan et al., 2015) (Kuppusamy et al., 2016).
Numerous studies have shown that polyphenols derived from
plants impart a prominent anti-inflammatory response as well as
can be used as potential immunonutrient supplements against
inflammatory and autoimmune diseases (Campbell et al., 2019).
Carbonyl, methoxide, amino, and hydroxyl are some of the prime
functional groups which reduce the metal ions into metallic NPs
via electrostatic interaction (Küünal et al., 2018).
Phytosynthesised nanoparticles are diverse in shapes and sizes
due to variation in concentration and composition of these
bioactive molecules among different plants and their
consequent interaction with an aqueous solution of metal ions
(Li et al., 2011). Plants have several benefits over other biological
systems in terms of nanoparticles synthesis: they facilitate large-
scale nanoparticles production, no requirement of culture
maintenance, provide natural capping agents, have a wider
array of secondary metabolites, safe to handle, are cheap, and
readily accessible (Küünal et al., 2018). The actual mechanism
and components that cause plant-mediated synthesized
nanoparticles are still unknown (Drummer et al., 2021).
Popular plant genera studied extensively for the biosynthesis
of nanoparticles are Euphorbia (Elumalai et al., 2010), Ginkgo
(Elumalai et al., 2010), Panax (Singh et al., 2016b), Cymbopogon
(Ajayi and Afolayan, 2017), Azadirachta (Ahmed et al., 2016),
Nigella (Amooaghaie et al., 2015), Cocos (Roopan et al., 2013),
Catharanthus (Ahmad et al., 2020), Pistacia (Sadeghi et al., 2015),
Nyctanthes (Sundrarajan and Gowri, 2011), Anogeissus (Kora
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et al., 2012), Abutilon (Mata et al., 2015), Pinus (Iravani and
Zolfaghari, 2013), Artocarpus (Manik et al., 2020), Citrus (Sujitha
and Kannan, 2013), Lawsonia (Naseem and Farrukh, 2015),
Gardenia (Karade et al., 2019), Allium (Velsankar et al., 2020),
Averrhoa (Isaac et al., 2013), Sinapis (Khatami et al., 2015),
Cucurbita (Hu et al., 2019), Santalum (Swamy and Prasad,
2015), Carissa (Joshi et al., 2018), Avena (Amini et al., 2017),
Piper (Paulkumar et al., 2014), Onosma (Doğan Çalhan and
Gündoğan, 2020), and others.

Briefly, phytosynthesis of nanoparticles is initiated by the
addition of plant extracts (root, leaf, flower, or seed) to metal
salt solutions in specific ratios. To obtain plant extract, the plant
part is properly washed using distilled water to make sure there is
no dust or other contaminants, it is then followed by drying and
cutting them into small pieces. Subsequently, the pieces are
converted into a fine paste using a mixer blender. The paste is
diluted using Milli-Q water and heated/boiled for a specific
period. Alternatively, the same procedure can be followed
using plant extract obtained from dried powdered plant parts.
The plant extract is then centrifuged and filtered using filter paper
to obtain pure supernatant which is then stored in a refrigerator
for further experimental use. Various ratios and concentrations of
metal salt solution, the plant extract is used for developing
nanoparticles. The reaction mixture is incubated for a longer
duration of time and the synthesis of nanoparticles is indicated by
the color change of the reaction mixture. Following incubation,
the reaction mixture is centrifuged, washed, and collected for
further characterization (Singh et al., 2016c) (Dwivedy et al.,
2018).

The overall bioreduction process of nanoparticles synthesis
utilizing plant extract can be categorized into three stages. The
process starts with the activation step characterized by nucleation
and reduction of the metal ions. This is followed by the growth
phase which involves the coalescence of very tiny particles to form
large size nanoparticles with enhanced thermodynamic stability.
With the progression of the growth phase, nanoparticles
accumulate to form a diverse range of morphologies like
spheres, cubes, hexagons, triangles, pentagons, wires, rods, and
so on. Finally, in the termination phase, the plant extract stabilizes
the nanoparticles and determines its most thermodynamically
favorable morphology (Akhtar et al., 2013) (Makarov et al.,
2014). The characteristics like quality, morphology, size of the
fabricated nanoparticles depend on various parameters like
concentration of plant extract, reaction mixture pH, reaction
time, metal salt concentration, and temperature (Dwivedi and
Gopal, 2010) (Mittal et al., 2013).

PLANT SYNTHESIZED NANOPARTICLES
AGAINST BIOFILMS

Different plants and their parts have been exploited for the
phytogenic synthesis of various metal/metal oxide
nanoparticles. These phytofabricated nanoparticles have shown
excellent antibacterial properties which have paved the way for
future research work assessing its antibiofilm properties.
Regarding this, various phytosynthesized nanoparticles (Ag,

Au, ZnO, CeO2, Fe2O3, TiO2, CuO, Pd, Se, NiO) have been
evaluated for their antibiofilm potential which is discussed below
(Table 1). Table 2 represents the list of microbially synthesized
nanoparticles exhibiting anti-biofilm activity for comparative
analysis.

Silver Nanoparticles
Silver nanoparticles are the most widely studied nanoparticles for
their broad-spectrum antimicrobial properties against a wide
variety of pathogens. They are known to impart antibacterial
properties via several mechanisms such as cell wall and
membrane rupture and intracellular biomolecules damage,
oxidative stress, etc (Tang and Zheng, 2018). Among various
routes employed, plant-mediated synthesis of AgNPs is most
preferred due to its several advantages. Numerous research has
been carried out using different plants and their parts to study the
antibiofilm properties of phytosynthesised AgNPs.

Regarding this, Malaikozhundan et al. have synthesized silver
nanoparticles using Momordica charantia fruit extracts (Mc-
AgNPs) and evaluated their antibiofilm efficacy against
Aeromonas hydrophila and Enterococcus faecalis. Light
microscopy and CLSM observations revealed that Mc-AgNPs
exhibited significant biofilm inhibitory properties (100 μg/ml)
against E. faecalis when compared to that of A. hydrophila.
Further, the application of Mc-AgNPs reduced the
hydrophobicity index by 76% and 88% in A. hydrophila and
E. faecalis respectively as compared to untreated bacteria
(Malaikozhundan et al., 2016).

A similar study done by Arya et al. indicated that AgNPs
prepared using aqueous leaf extract of Acacia nilotica inhibited
biofilm formation by 70% and 53% in Pseudomonas aeruginosa
and Staphylococcus aureus respectively at a concentration of
0.25 µg (Arya et al., 2018).

Accordingly, Choi et al. screened the antibiofilm and
antifungal properties of phytofabricated silver nanoparticles
(AgNPs) synthesized using Lycopersicon esculentum extracts
against Candida species. SEM analysis revealed the biofilm
inhibitory effect of the fabricated AgNPs. They suggested that
binding of Ag ions to cell surface resulted in membrane
abnormalities, reduced biofilm development, and inhibited
growth (Choi et al., 2019). Further, it has been well-
established that quorum sensing plays a pivotal role in the
development of biofilm. Several studies have reported
inhibition of biofilm development via anti-QS agents.
Regarding this, Ravindran et al. assessed the potential of
Vetiveria zizanioides root extract-mediated silver nanoparticles
(VzAgNPs) as a promising antibiofilm and anti-QS agent against
S. marcescens. The results revealed that VzAgNPs inhibited the
production of various QS-mediated virulence factors such as
protease, swarming motility, lipase, prodigiosin, EPS
productions, and biofilm formation in S. marcescens, thereby
reducing its pathogenicity. Further, the genomic studies
supported that VzAgNPs target and remarkably inhibit the
expression of genes involved in virulence such as flhD, fimC,
and bsbB (Ravindran et al., 2018).

Accordingly, Shah et al. evaluated the anti-QS property of
Piper betle leaf extract (Pb) mediated AgNPs (Pb-AgNPs)
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TABLE 1 | List of phytosynthesized nanoparticles exhibiting antibiofilm activity

Nanoparticles Plants source Plant tissue Size (nm) Concentration for
anti-biofilm

activity

Biofilm producing
microorganisms

References

Ag NPs Momordica charantia Fruit extracts 16 100 μg/ml Enterococcus faecalis and Aeromonas
hydrophila

Malaikozhundan
et al. (2016)

Ag NPs Mimusops elengi Fruit extract 10 0.125 mg/ml Escherichia coli Korkmaz et al.
(2020)

GO-Ag NPs Lagerstroemia speciosa Floral extract 60–100 24 and 12 μg/ml Enterobacter cloacae and
Streptococcus mutans

Kulshrestha et al.
(2017)

Ag NPs Punica granatum Fruit fleshy
pericarp

5–30 - P. aeruginosa Govindappa et al.
(2021)

Ag NPs Rhododendron ponticum Leaf extracts 12–19 1.0 mg/ml Biofilm producing bacteria Nesrin et al. (2020)
Ag NPs Carum copticum Seed extract 21.48 10, 20, and 30 μg/

ml respectively
C. violaceum, S. marcescens, and P.
aeruginosa

Qais et al. (2020)

Ag NPs Mespilus germanica Leaf extract 17.60 6.25–100 μg/ml Klebsiella pneumoniae Foroohimanjili et al.
(2020)

Ag NPs garlic Clove extract 10–50 100 μg/ml Methicillin-resistant S. aureus and P.
aeruginosa

Vijayakumar et al.
(2019)

Ag NPs Acacia nilotica Leaf extract 10–20 0.25 μg/ml P. aeruginosa and S. aureus Arya et al. (2018)
Ag NPs Moringa oleifera Leaf extract 30 50 μg/ml P. aeruginosa and S. epidermidis Gokul Brindha et al.

(2020)
Ag NPs Prosopis juliflora Leaf extract 10–20 - Bacillus subtilis and Pseudomonas

aeruginosa
Arya et al. (2019)

Ag NPs Psidium guajava Leaf extract 60 250 mM S. aureus, E. coli and C. albicans Gupta et al.
(2014b)

Ag NPs Nigella sativa Seed extract 55 12.5 μg/ml Enterococcus faecalis, E. coli,
Klebsiella pneumoniae,
Staphylococcus aureus, and
Pseudomonas aeruginosa

Almatroudi et al.
(2020)

Ag NPs Nardostachys jatamansi Rhizome
extract

10–15 64 µM P. aeruginosa and S. aureus Muthuraman et al.
(2019)

Ag NPs Semecarpus anacardium,
Glochidion lanceolarium,
and Bridelia retusa

Leaf extract 62.72, 93.23,
and 74.56
respectively

- Pseudomonas aeruginosa,
Escherichia coli, and Staphylococcus
aureus

Mohanta et al.
(2020)

Ag NPs Cordia dichotoma Fruit extract 2–60 100 μg/ml S. aureus and E. coli Bharathi et al.
(2018)

Ag NPs Citrus macroptera Fruit extract 16 260 nM Bacillus subtilis and Pseudomonas
aeruginosa

Majumdar et al.
(2020)

Ag NPs Thymus serpyllum Leaf extract 25.2 100 μg/ml S. aureus Erci and Torlak,
(2019)

Ag NPs Eucalyptus globulus Leaf extract 5–25 30 μg/ml S. aureus and P. aeruginosa Ali et al. (2015)
Ag NPs Dodonaea viscosa and

Hyptis suoveolens
Leaf extract 40–55 10 μg/ml Candida spp. Muthamil et al.

(2018)
Ag NPs Azadirachta indica Latex 17.4–40.9 4.12–3.25 μg/ml Candida tropicalis Al Aboody (2019)
Ag NPs Rosmarinus officinalis Leaf extract 20 - Parachlorella kessleri Velgosova et al.

(2021)
Ag NPs Styrax benzoin Gum 18.7 ± 1.2 - E. coli Du et al. (2016)
Ag NPs Acorus calamus L Plant extracts 20 350 μg/ml Helicobacter pylori Prasad et al. (2019)
Ag NPs Lycopersicon esculentum Fruit extracts 108.5 8 μg/ml Candida species Choi et al. (2019)
Ag NPs Vetiveria zizanioides Root extract 20–60 2 μg/ml Serratia marcescens Ravindran et al.

(2018)
Ag NPs Piper betle Leaf extract - - Chromobacterium violaceum and P.

aeruginosa
Shah et al. (2019)

Ag NPs Syzygium cumini Leaf extract 10–20 250 μg/ml P. aeruginosa, S. aureus, and C.
albicans

Gupta et al. (2014a)

Ag NPs Piper betle Leaf extract 156.4 16 and 32 μg/ml S. marcescens and P. mirabilis Srinivasan et al.
(2018)

Ag NPs Curcuma longa Plant extracts 20–40 - S. aureus and S. pneumoniae Kamble and
Shinde (2018)

Ag NPs Lilium lancifolium Leaf extract 45 25–50 μl S. pneumoniae and P.aeruginosa Al-Ansari et al.
(2019)

Ag NPs Ludwigia octovalvis Leaf extract 28–50 100 μg/ml P. aeruginosa and S. epidermidis Sarathi Kannan
et al. (2021)

Ag NPs Holarrhena pubescens Bark extracts 13.15 20–25 μg/ml P. aeruginosa Ali et al. (2018)
Ag NPs Artemisia scoparia Plant extracts 26.68 12.81–8.45 μg/ml Methylation-dependent restriction

system (MDRS) strain
Moulavi et al.
(2019)

(Continued on following page)
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TABLE 1 | (Continued) List of phytosynthesized nanoparticles exhibiting antibiofilm activity

Nanoparticles Plants source Plant tissue Size (nm) Concentration for
anti-biofilm

activity

Biofilm producing
microorganisms

References

Ag NPs Zataria multiflora Aerial parts 25.5 4 μg/ml S. aureus Barabadi et al.
(2021)

Au NPs Tinospora cordifolia Stem extract 16.1 150 μg/ml Pseudomonas aeruginosa PAO1 Ali et al. (2020)
Au NPs Nigella sativa Essential oil - - Staphylococcus aureus and Vibrio

harveyi
Manju et al. (2016)

Au NPs Musa paradisiaca Peel extract 50 100 μg/ml Enterococcus faecalis Vijayakumar et al.
(2017)

Au NPs Capsicum annuum Fruit extract 19.97 - Pseudomonas aeruginosa andSerratia
marcescens

Qais et al. (2021)

Au NPs Trachyspermum ammi Seed extract 16.63 16 and 32 μg/ml S. marcescens and L. monocytogenes Perveen et al.
(2021)

ZnO NPs Artemisia Leaf extract 17 - P. aeruginosa Galedari and
Teimouri (2020)

ZnO NPs Plectranthus amboinicus Leaf extract 20–50 8–10 μg/ml Methicillin-resistant Staphylococcus
aureus

Vijayakumar et al.
(2015)

ZnO NPs Veronica multifida Leaf extract 10–100 10–50 μg/ml P. aeruginosa and S. aureus Doğan and
Kocabaş (2020)

ZnO NPs Artemisia haussknechtii Leaf extract 50–60 100 μg/ml S. epidermidis and P. aeruginosa Alavi et al. (2019)
ZnO NPs Costus igneus Leaf extract 26.55 75–100 μg/ml S. mutans, L. fusiformis, P. vulgaris,

and V. parahaemolyticus
Vinotha et al.
(2019)

ZnO NPs Musa balbisiana Pseudostem
extract

45–65 100 μg/ml P. aeruginosa Basumatari et al.
(2021)

ZnO NPs Eucalyptus globulus Essential oil 40 100 μg/ml S. aureus and P. aeruginosa Obeizi et al. (2020)
ZnO NPs Withania somnifera Leaf extract 15.6 100 μg/ml E. faecalis and S. aureus Malaikozhundan

et al. (2020)
ZnO NPs Myristica fragrans Leaf ester 48.32 ± 2.5 - MDR-Escherichia coli (E. coli-336),

Methicillin-resistant Staphylococcus
aureus (MRSA-1)

Cherian et al.
(2019)

ZnO NPs Ochradenus baccatus Leaf extract 50 - Chromobacterium violaceum,
Escherichia coli, P. aeruginosa,
Klebsiella pneumoniae, Serratia
marcescens, and Listeria
monocytogenes

Al-Shabib et al.
(2018)

ZnO NPs Nigella sativa Seed extract 24 128–512 μg/ml L. monocytogenes, E. coli, C.
violaceum, and P. aeruginosa PAO1

Al-Shabib et al.
(2016)

CuO NPs Cassia fistula and Meia
azedarach

Leaf extract - 1 μg/ml K. pneumoniae and H. pylori Naseer et al. (2021)

Cu NPs Cochlospermum
gossypium

Gum
Kondagogu
extract

15 - Klebsiella Pneumoniae Suresh et al. (2016)

CuO NPs Thymbra spicata Leaf extract 26.8 100–200 μg/ml S.aureus Erci et al. (2020)
CuO NPs Cymbopogon citratus Leaf extract 14.5 ± 2.0 2000 μg/ml E. coli-336 and MRSA-1 Cherian et al.

(2020)
Cu NPs Cardiospermum

halicacabum
Leaf extract 30–40 100 μg/ml P. aeruginosa, S. aureus, and E. coli Punniyakotti et al.

(2020)
CuO NPs Eucalyptus globulus Leaf extract 16.78–22.5 125–2000 μg/ml E. coli-336, P. aeruginosa-621 and

MRSA-1
Ali et al. (2019)

TiO2 Withania somnifera Root extract 247 - P.aeruginosa, E.coli, Listeria
monocytogenes, MRSA, serratia
marcescens, and Candida albicans

Al-Shabib et al.
(2020)

TiO2 Ocimum sanctum Leaf extract 90–100 250–650 μg/ml P. aeruginosa, E. coli, S. aureus and C.
albicans

Dan and Khan
(2019)

TiO2 Rosa davurica Leaf extract 146 ± 3 15.62 μg/ml S. aureus, B. cereus, S. enterica, and
E. coli

Jin et al. (2021)

TiO2 Ochradenus arabicus Leaf extract - - P. aeruginosa Zubair et al. (2021)
TiO2 Aloe barbadensis Leaf extract 20 31.25 μg/ml P. aeruginosa Rajkumari et al.

(2019)
TiO2 Ficus benghalensis,

Azadirachta indica twigs,
and Syzygium aromaticum

Twigs and bud
extract

10–33 100 μg/ml Citrobacter freundii, Streptococcus
mutans and, Candida albicans

Achudhan et al.
(2020)

Fe2O3 NPs polyherbal ayurvedic drug
formulation, Liv 52

Plant extract - - MRSA, MDR P. aeruginosa and C.
albicans

Ansari and Asiri,
(2021)

(Continued on following page)
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against Chromobacterium violaceum and further studied the
potential effect of Pb-AgNPs on QS-regulated phenotypes
in PAO1 Pseudomonas aeruginosa. The data revealed that
the phytofabricated Pb-AgNPs remarkably inhibited the
QS-mediated virulence factors such as violacein of C.
violaceum, elastase, and pyocyanin of P. aeruginosa. Moreover,

these nanostructures imparted significant antibiofilm activity
against P. aeruginosa, thereby suggesting their potential role in
overcoming bacterial resistance against conventional antibiotics
(Shah et al., 2019). In a similar study done by Srinivasan et al., the
anti-QS and antibiofilm potential of Piper betle leaf extract
mediated silver nanoparticles (PbAgNPs) against S. marcescens

TABLE 1 | (Continued) List of phytosynthesized nanoparticles exhibiting antibiofilm activity

Nanoparticles Plants source Plant tissue Size (nm) Concentration for
anti-biofilm

activity

Biofilm producing
microorganisms

References

FeO NPs Avicennia marina Leaf extract 10–25 200 μg/ml Escherichia coli, Staphylococcus
aureus, and Pseudomonas aeruginosa

Ramalingam et al.
(2019)

FeO NPs Thymbra spicata Leaf extract 93.9 100 μg/ml S. aureus Erci and Cakir-Koc,
(2020)

CeO2-NPs Acorus calamus Plant extract 22.03 - Biofilm producing bacteria Altaf et al. (2021)
Sn-CeO2NPs Pometia pinnata Leaf extract 15–20 512 μg/ml S. aureus and Listeria monocytogenes Naidi et al. (2021b)
Zr/Sn-
CeO2 NPs

Pometia pinnata Leaf extract 12–17 512 μg/ml S. aureus and Listeria monocytogenes Naidi et al. (2021a)

Ti-CeO2 Phoenix dactylifera Fruit extract 7–9 1000 μg/ml P. aeruginosa Ahmed et al. (2020)
Pd NPs Orthosiphon stamineus Leaf extract 110 15.25 ±

0.012 μg/ml
Methicillin sensitive staphylococcus
aureus (MSSA) strain

(N et al., 2021)

Se NPs Psidium guajava Leaf extract 30–50 25 mg/ml Enterococcus faecalis Miglani and
Tani-Ishii (2021)

NiO NPs Eucalyptus globulus Leaf extract 10–20 0.1–1.6 mg/ml ESβL (+) E. coli and P. aeruginosa and
methicillin-sensitive and resistant S.
aureus

Saleem et al. (2017)

TABLE 2 | List of microbially synthesized nanoparticles exhibiting antibiofilm activity.

Nanoparticles Microbial source Size (nm) Concentration for anti-
biofilm activity

Biofilm producing microorganisms References

Ag NPs Lactobacillus fermentum 6 7.8 mg/L P. aeruginosa Zhang et al. (2014)
Ag NPs Escherichia coli 33.6 10 mM E. coli, S. aureus, P. aeruginosa, K. pneumoniae Neihaya and Zaman

(2018)
Ag NPs Klebsiella oxytoca - - S. aureus, P. aeruginosa Cusimano et al.

(2020)
Ag NPs Weissella oryzae 10–30 5–6 μg/ml S. aureus and P. aeruginosa Singh et al. (2016a)
Ag NPs Sporosarcina forensis 102 3–6.9 μg/ml S. aureus, P. aeruginosa, E. coli Singh et al. (2016d)
Ag NPs Pseudomonas

deceptionensis
10–30 5 μg/L S. aureus and P. aeruginosa Jo et al. (2016)

Ag NPs Streptomyces sp. 11 3.9–31.25 lg/ml P. aeruginosa Bakhtiari-Sardari et al.
(2020)

Ag NPs Pseudomonas sp. 10–40 10 μg/ml S. aureus, P. aeruginosa Singh et al. (2018a)
ZnO NPs Pseudomonas putida 25–45 10 μg/ml Pseudomonas otitidis, Pseudomonas oleovorans,

Acinetobacter baumannii, Bacillus cereus, and
Enterococcus faecalis

Jayabalan et al.
(2019)

ZnO NPs E. faecalis 16–96 2–128 μg/ml E. coli, K. pneumoniae, P. aeruginosa Ashajyothi et al.
(2016)

Selenium NPs Bacillus sp 80–220 0–100 μg/ml Staphylococcus aureus, Pseudomonas aeruginosa, and
Proteus mirabilis

Shakibaie et al. (2015)

TiO2 NPs Bacillus sp. 10–30 - Environmental aquatic strains Dhandapani et al.
(2012)

Cu NPs E. faecalis 12–90 2–128 μg/ml E. coli, K. pneumoniae, P. aeruginosa, S. flexneri, S.
aureus, E. faecalis

Ashajyothi et al.
(2016)

Au NPs Caldicellulosiruptor
changbaiensis

1.03, 2.43,
and 20

- S. aureus, P. aeruginosa Bing et al. (2018)

Au NPs Acinetobacter baumannii 15 0.002 mol/L P. aeruginosa, V. cholera, Brevibacterium linens Rajput and Bankar
(2017)
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and P. mirabilis was evaluated. The data revealed PbAgNPs
mediated inhibition of QS-related virulence factors such as
protease, prodigiosin, exopolysaccharides, biofilm formation,
and hydrophobicity productions in uropathogens. Further, the
genomic analysis reported downregulated expression of flhD,
flhB, and rsbA genes in P. mirabilis and fimC, fimA, flhD, and
bsmB genes in S. marcescens respectively (Srinivasan et al., 2018).

Ali et al. have developed biogenic silver nanoparticles (AgNPs)
employing aqueous leaf extract of Eucalyptus globulus (ELE) and
evaluated their antibiofilm and antibacterial potential. After 24 h
of treatment, biofilms produced by S. aureus and P. aeruginosa
were shown to be inhibited by 82 ± 3% and 81 ± 5%, respectively,
at 30 μg/ml (Ali et al., 2015). In 2018, research was done by
Muthamil et al., phyto-synthesized silver nanoparticles (AgNPs),
prepared using methanolic leaf extracts of Dodonaea viscosa and
Hyptis suoveolens were assessed for their antibiofilm properties
against Candida spp. AgNPs obtained from both the extract
showed significant biofilm inhibitory properties with about
88% of biofilm reduction at a concentration of 10 μg/ml, as
evidenced by microscopic analysis and in vitro virulence assays
(Muthamil et al., 2018).

Sarathi Kannan et al. demonstrated the potential biofilm
inhibitory activity of Ludwigia octovalvis leaf extracts derived
silver nanoparticles (AgNPs) against Staphylococcus epidermidis
and Pseudomonas aeruginosa. It was noticed that at 100 μg/ml,
AgNPs imparted the highest antibiofilm activity of 62.42 and
50.62% against S. epidermidis and P. aeruginosa respectively
(Sarathi Kannan et al., 2021). Moreover, Ali et al.
biofabricated silver nanoparticles using bark extract of
medicinal plant Holarrhena pubescens (HP-AgNPs) and
screened their antibacterial and antibiofilm activity against
imipenem-resistant Pseudomonas aeruginosa clinical isolates.
The HP-AgNPs exhibited antibacterial and antibiofilm activity
in a dose-dependent fashion as confirmed by the confocal laser
scanning microscopy (Ali et al., 2018).

Also, Vijayakumar et al. prepared silver nanoparticles using
garlic clove extract (G-AgNPs) and evaluated its broad-spectrum
therapeutic activity including antibiofilm properties. They
demonstrated that G-AgNPs (100 μg/ml) imparted significant
antibacterial as well as anti-biofilm activity against clinically
relevant pathogens like methicillin-resistant S. aureus and
Pseudomonas aeruginosa (Vijayakumar et al., 2019). Arya et al.
fabricated bio-inspired AgNPs utilizing aqueous leaf extract of
Prosopis juliflora and evaluated its biofilm inhibitory properties.
The data obtained from congo red agar (CRA) plate assay showed
the synthesized AgNPs exhibited significant antibiofilm activity
against Bacillus subtilis and Pseudomonas aeruginosa (Arya et al.,
2019).

Moreover, Bharathi and her coworkers reported that silver
nanoparticles synthesized using fruit extract of Cordia dichotoma
(Cd-AgNPs) lead to a significant reduction in S.aureus and E.coli
biofilms by 92 percent and 95 percent, respectively, at100 μg/ml
concentration (Bharathi et al., 2018). Also, Majumdar et al.
developed silver nanoparticles (CM-AgNPs) using fruit extract
of Citrus macroptera (CM) and explored their antibiofilm
potential. The biosynthesized CMAgNPs efficiently inhibited
the development of biofilm in a dose-dependent manner with

70 and 80 percent of biofilm inhibition in Bacillus subtilis and
Pseudomonas aeruginosa respectively, at the highest
concentration (260 nM) (Majumdar et al., 2020). Interestingly,
Eric and Torlak synthesized Ag nanoparticles (AgNPs) by using
the aqueous leaf extract of Thymus serpyllum. The antibiofilm
data revealed that AgNPs (100 μg/ml) inhibited the biofilm
formation by 73% in S. aureus (Erci and Torlak, 2019).

Juan et al. synthesized silver nanoparticles by using extract of
benzoin gum as bioreductant and capping agent and studied their
antibiofilm activity against biofilm-producing E. coli strain. At 1,
2, 5, and 10 μg/ml concentrations, treatment for 24 h resulted in a
reduction in biofilm development of about 10.9, 44.1, 54.0, and
65.5 percent, respectively thereby indicating that the AgNPs were
capable to inhibit the biofilm development in E. coli (Du et al.,
2016). Further, Prasad and his coworkers reported phytogenic
synthesis of silver nano bactericides by utilizing Acorus calamus
L. extracts. The biofilm inhibitory activity was evaluated against
Helicobacter pylori clinical isolates. The synthesized NPs
exhibited significant antibiofilm activity at concentration
350 μg/ml, as evidenced by crystal violet and ruthenium red
assays (Prasad et al., 2019).

Interestingly, Gupta and his coworkers showed silver
nanoparticles synthesized using methanolic leaf extract of
Syzygium cumini have the potential to impede biofilm
development of P. aeruginosa, S. aureus, and C. albicans in a
concentration-dependent manner. At 250 μg/ml, AgNPs
inhibited more than 90% biofilm formation, while at 125 μg/
ml concentration, 85% biofilm inhibition was recorded (Gupta
et al., 2014a). Moreover, Al-Ansari et al. reported the antibiofilm
and antibacterial activity of Lilium lancifolium leaf extract
mediated silver nanoparticles against Streptococcus pneumonia
and Pseudomonas aeruginosa. Treatment with 25 μl of AgNPs
imparted antibacterial activity while treatment with 50 μl showed
significant antibiofilm properties, as evident from crystal violet
assay and confocal micrographic images (Al-Ansari et al., 2019).

Interestingly, Barbadi et al. compared the antibiofilm activity
of Zataria multiflora aerial extract-mediated silver nanoparticles
(P-AgNPs) and commercial silver nanoparticles (C-AgNPs)
against Staphylococcus aureus ATCC 25923 bacteria. The data
showed dose-dependent biofilm inhibitory activity, with excellent
inhibition at concentration ≥8 μg/ml for both P-AgNPs and
C-AgNPs. Further, they showed that plant-derived AgNPs
(P-AgNPs) imparted higher biofilm inhibitory properties at
lower concentrations as compared to C-AgNPs (Barabadi
et al., 2021). Similarly, Moulavi et al. stated that
phytofabricated AgNPs using Artemisia scoparia as
bioreductant imparted relatively more antibiofilm activity as
compared to commercial AgNPs against methylation-
dependent restriction system (MDRS) strains. The mean MIC
value for the commercial and biosynthetic AgNPs was found to be
12.81 and 8.45 μg/ml respectively, on MDRS isolates. Also, the
biofabricated AgNPs exhibited superior antibiofilm activity
against MDRS via unknown mechanisms (Moulavi et al., 2019).

Further, Gupta et al. showed that silver nanoparticles (AgNPs)
obtained via green synthesis using leaf biomass of Psidium
guajava have a remarkable ability to inhibit biofilm
development of S. aureus, E. coli, and C. albicans by 96, 90,
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and 75% respectively, as evident from crystal violet assay (Gupta
et al., 2014b). Recently, Almatroudi et al. assessed the antibiofilm
activity of silver nanoparticles (Ns-AgNPs) biosynthesized using
seed extract of Nigella sativa. They showed that at concentration
12.5 μg/ml, Ns-AgNPs limited the biofilm development by
84.92% for E. coli, 88.42% for Enterococcus faecalis, 81.86% for
Klebsiella pneumonia, 82.84% for Staphylococcus aureus, and
49.9% for Pseudomonas aeruginosa, respectively (Almatroudi
et al., 2020).

Interestingly, Kulshrestha et al. developed a bioinspired
graphene oxide-silver nanocomposite (GO-Ag) by employing
an eco-friendly route using Lagerstroemia speciosa (L.) Pers
floral extract. It was observed that at concentrations 24 and
12 μg/ml, GO-Ag resulted in 90 and 49% biofilm reduction
respectively, in Enterobacter cloacae. Similarly, 89 and 34%
biofilm declination was observed in Streptococcus mutans
when exposed to 47 and 24 μg/ml of GO-Ag respectively
(Kulshrestha et al., 2017). Accordingly, Korkmaz et al. have
synthesized silver nanoparticles (AgNPs) with the help of
Mimusops elengi liquid fruit extract. According to their results,
AgNPs (1250 μg/ml ) inhibited 86.36% of the biofilm formation
in Escherichia coli (Korkmaz et al., 2020).

In a recent study, Nersin et al. evaluated the antibiofilm
activity of biosynthesized AgNPs prepared using aqueous leaf
extracts of Rhododendron ponticum. They found that almost at
each concentration AgNPs imparted biofilm inhibitory activity in
a dose-dependent manner. The highest concentration of AgNPs
which showed maximum antibiofilm activity was 1.0 mg/ml
(Nesrin et al., 2020).

Accordingly, biogenic silver nanoparticles (Ag@CC-NPs)
were fabricated using aqueous extract of Carum copticum seed
by Qais et al. The synthesized Ag@CC-NPs imparted biofilm
inhibitory activity with 86.3%, 77.6%, and 75.1% biofilm
inhibition of S. marcescens, P. aeruginosa, and C. violaceum
respectively. Further at sub-MIC, Ag@CC-NPs inhibited the
production of virulence factors such as pyoverdin, pyocyanin,
swimming motility, elastase activity, exoprotease activity, and
rhamnolipid in P. aeruginosa by 49.0, 76.9, 89.5, 53.3, 71.1, and
60.0% respectively. Moreover, virulence factors of S. marcescens
viz. swarming motility, exoprotease activity, and prodigiosin
production was reduced by 90.7, 67.8, and 78.4% respectively.
Further, the SEM and CLSM observations showed a remarkable
reduction in biofilm development on glass coverslip (Qais et al.,
2020). Further, Foroohimanjili et al. investigated the antibiofilm,
antibacterial, and anti quorum sensing properties of
phytosynthesized silver nanoparticles (AgNPs) prepared using
leaf extract of Mespilus germanica against multidrug-resistant
Klebsiella pneumoniae strains. Their work revealed that at sub-
MIC, AgNPs prominently inhibited the establishment of biofilm
in all the biofilm-producing strains (Foroohimanjili et al., 2020).

In another study silver nanoparticles, synthesized employing
aqueous leaf extracts of Moringa oleifera Lam imparted excellent
biofilm eradication potential (78%) for P. aeruginosa whereas
only 43% for S. epidermidis, as reported by Gokul Brindha (Gokul
Brindha et al., 2020).

Interestingly, Muthuraman et al. employed a green route for
the synthesis of silver nanoparticles (AgNPs) using medicinally

relevant Nardostachys jatamansi rhizome extract. They showed
that AgNPs (64 µM) prepared using heated plant extract
exhibited superior antibiofilm activity against P. aeruginosa
and S. aureus. Whereas AgNPs prepared using stirred plant
extract required a relatively higher dose (500 µM) to impart
their anti-biofilm effect (Muthuraman et al., 2019). In another
study, Mohanta and colleagues developed biocompatible silver
nanoparticles (AgNPs) utilizing foliage extracts of three different
plants namely Glochidion lanceolarium, Semecarpus anacardium,
and Bridelia retusa. The phytosynthesized AgNPs were screened
for antibacterial and anti-biofilm activity against Staphylococcus
aureus, Pseudomonas aeruginosa, and Escherichia coli; their data
indicated promising results (Mohanta et al., 2020).

Further, Govindappa et al. assessed the antibiofilm activity of
silver nanoparticles synthesized using fleshy pericarp of Punica
granatum (Pfp-AgNPs). The Pfp-AgNPs were investigated for the
antibiofilm effectiveness against Pseudomonas aeruginosa. The
outcome revealed that the nanoformulations significantly
increased the toxicity level in P. aeruginosa in a concentration-
dependent fashion and led to potassium leakage, cellular damage,
and biofilm inhibitory activity (Govindappa et al., 2021).

Interestingly, Al Aboody et al. synthesized silver nanoparticles
(AgNP) using latex ofAzadirachta indica. They demonstrated the
antibiofilm activity of AgNPs against Fluconazole resistant
clinical isolate of Candida tropicalis and concluded that at
concentrations of 4.12 and 3.25 μg/ml, AgNPs inhibited the
biofilms of fluconazole-resistant and fluconazole-susceptible C.
tropicalis, respectively (Al Aboody, 2019). Velgosova et al.
evaluated AgNPs and nanocomposites doped with AgNPs
against biofilm development. For this, they synthesized AgNPs
via green route using leaf extract of Rosmarinus officinalis. And
further, doped Polyvinyl alcohol (PVA) matrix with green
synthesized AgNPs to obtain polymer matrix composite
(PMC) microfibers. The antibiofilm efficacy was screened
against biofilm-producing one-cell green algae Parachlorella
kessleri. The results revealed that there was no antibiofilm
effect of pure PVA matrix whereas AgNPs and PMC (PVA-
AgNP composites) microfibers showed significant antibiofilm
activity (Velgosova et al., 2021).

Gold Nanoparticles
Gold nanoparticles (AuNPs) are one of the most extensively
exploited metal nanoparticles (NPs) paving their way in various
fields of science and industry. Due to its various therapeutic
properties like antibacterial, anticancer, antimalarial, and
antibiofilm, there is a surge in their demand. To fulfill such
demands, rigorous research is required to optimize its
synthesizing approaches. Among various methods employed
for the synthesis of AuNPs, a biogenic approach using plant
extract is simple, effective, cheap, and eco-friendly (Ali et al.,
2020). In this regard, Ali et al. developed gold nanoparticles
utilizing Tinospora cordifolia plant stem (Ayurvedic medicinal
plant) and assessed its biofilm inhibitory properties against
Pseudomonas aeruginosa PAO1 biofilm. The SEM and crystal
violet assay data revealed that the sub-MIC value of AuNPs
significantly reduced the biofilm-producing capability of P.
aeruginosa in a concentration-dependent manner. Their data
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showed that biofilm formation was inhibited up to 59.9, 36.6,
27.1% at 150, 100, and 50 μg/ml concentrations of AuNPs
respectively. The CLSM analysis further indicated that the
structure of the biofilm in the sub-MIC of AuNPs had
abnormalities. Also, treatment of PAO1 with AuNPs at
150 μg/ml displayed internalization of the nanoparticles (Ali
et al., 2020). Similarly, Manju et al., showed that gold
nanoparticles biosynthesized applying essential oil of Nigella
sativa (NsEO-AuNPs), efficiently inhibited the biofilm
establishment of Staphylococcus aureus and Vibrio harveyi by
reducing the hydrophobicity index (78 and 46% respectively)
(Manju et al., 2016).

In another study, Vijayakumar et al. developed AuNPs using
Musa paradisiaca peel extract (MPPE-AuNPs) and studied its
biofilm inhibitory properties in multiple antibiotic-resistant
Enterococcus faecalis. Confocal light microscopic observations
demonstrated that the MPPE-AuNPs meritoriously repressed the
biofilm formed by E. faecalis at concentration 100 µg/ml
(Vijayakumar et al., 2017). Interestingly, Qais et al.
biosynthesized gold nanoparticles by employing an aqueous
fruit extract of Capsicum annuum (AuNPs-CA) and assessed
its efficacy against the QS-regulated virulence factors and biofilms
of Serratia marcescens and Pseudomonas aeruginosa. The result
showed a significant reduction of QS-mediated virulent traits of
P. aeruginosa PAO1 such as pyoverdin, elastase activity,
exoprotease activity, pyocyanin, swimming motility, and
rhamnolipids production by 72.16, 65.72, 81.12, 91.94, 46.09,
46.66%, respectively. Further, microscopic studies showed that
the growth and synthesis of exopolysaccharides have been
suppressed due to reduced bacterial adhesion and colonization
on a solid substrate (Qais et al., 2021).

Accordingly, Perveen and colleagues fabricated biogenic gold
nanoparticles by utilizing the seed extract of Trachyspermum
ammi (TA-AuNPs), followed by assessing its effectiveness against
biofilms of Serratia marcescens and Listeria monocytogenes. It was
demonstrated that there was substantial anti-biofilm activity
against both S. marcescens (81%) and L. monocytogenes (73%).
Moreover, the key factors of biofilm development and
maintenance such as cell surface hydrophobicity,
exopolysaccharide, and motility were considerably inhibited at
sub-MICs. Also, the NPs efficiently eradicated preformed
established biofilms of L. monocytogenes and S. marcescens by
58 and 64%, respectively (Perveen et al., 2021).

Zinc Oxide Nanoparticles
Among several metallic nanoparticles, zinc oxide nanoparticles
have held the attention of several researchers owing to their
multifunctional properties and versatility. The antibacterial
efficacy of zinc oxide nanoparticles has been well established
against both gram-negative and gram-positive bacteria as well as
against fungi. It has already been reported that ZnO NPs are
nontoxic to human cells while imparting antibacterial properties
via several mechanisms like the generation of ROS, the release of
metal ions, etc (Gudkov et al., 2021). Further, green synthesized
zinc oxide nanoparticles have been known to impart superior
properties due to their eco-friendly characteristics. Regarding this

several plant-based syntheses of ZnO NPs have been carried and
their antibacterial and antibiofilm efficacies have been evaluated.

Interestingly, Vijayakumar et al. biologically developed
Plectranthus amboinicus mediated zinc oxide nanoparticles
(Pam-ZnO NPs). Their data showed that the synthesized
nanoparticles exhibited antibiofilm activity at concentrations
range 8–10 μg/ml against the biofilms of methicillin-resistant
Staphylococcus aureus. Further, Confocal laser scanning
microscopy analysis suggested that the biofilm-forming ability
of S. aureus is intensely inhibited by Pam-ZnONPs (Vijayakumar
et al., 2015).

Similarly, in their other study, they reported the QS inhibitory
property of zinc oxide nanoparticles synthesized using seed
extract of Nigella sativa (NS-ZnNPs). Their fabricated
nanoparticles inhibited QS-mediated functions of C. violaceum
and inhibited the production of pyocyanin, alginate, protease, and
elastase in P. aeruginosa PAO1 evidently. Also, at sub-MICs, NS-
ZnNPs prevented the biofilm development as well as eradicated
pre-formed biofilms of food-borne bacteria viz. C. violaceum
12472, PAO1, L. monocytogenes, E. coli. Preformed biofilms were
eradicated by 66, 78, 68, and 72% in E. coli, P. aeruginosa, C.
violaceum, and, L. monocytogenes respectively as observed by CV
assay. Further, CLSM also confirmed the antibiofilm property of
NS-ZnNPs (Al-Shabib et al., 2016).

Further, Al-Shabib et al. investigated the protein-binding and
antibiofilm activity of zinc oxide nanoparticles synthesized from
Ochradenus baccatus leaf extract (OB-ZnNPs). The synthesized
OB-ZnNPs imparted considerable antibiofilm properties against
human and foodborne pathogens (Listeria monocytogenes
Chromobacterium violaceum, Serratia marcescens, P.
aeruginosa, Klebsiella pneumoniae, and Escherichia coli) at
sub-MICs. Further, the NPs significantly impaired swarming
motility and EPS production which aids in biofilm
development. Their data showed the highest inhibition of
biofilm in P. aeruginosa by 84%; in E. coli by 67%; in L.
monocytogenes by 78%; in K. pneumonia by 70%; in S.
marcescens by 80%; and, in C. violaceum by 64% (Al-Shabib
et al., 2018).

Accordingly, Dogan and Kocabas synthesized zinc oxide
(ZnO) nanoparticles (NPs) using foliage extracts of Veronica
multifida under various physical conditions. The antibiofilm
activity of the prepared NPs was evaluated against S. aureus
and P. aeruginosa. The results revealed that in S. aureus, 10 μg/ml
of ZnO NPs at pH 7 inhibited 88% of biofilm development, and
50 μg/ml ZnO NPs at pH 12 inhibited 87% of the biofilm
development. While in P. aeruginosa, at both pH 7 and pH
12, the maximum biofilm inhibitory activity was observed at a
concentration of 50 μg/ml (Doğan and Kocabaş, 2020). Further,
Alavi et al. demonstrated the antibiofilm efficacy of zinc oxide
NPs synthesized using Artemisia haussknechtii leaves extract.
Their crystal violet (CV) assay analysis revealed a significant
reduction in biofilm formation for S. epidermidis with 63.43%
(0.562 ± 0.015) and P. aeruginosa with 62.88% (0.582 ± 0.025) at
100 μg/ml ZnO NPs. Further, Light microscopic observations
showed there was a significant reduction of biofilm formation
with the increase in ZnO NPs concentration (Alavi et al., 2019).
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Interestingly, Vinotha et al. reported a novel fabrication of
ZnO nanoparticles by utilizing foliage extract of Costus igneus
(Ci-ZnO NPs). Their prepared Ci-ZnO NPs displayed
encouraging antibiofilm and antibacterial activities against L.
fusiformis, S. mutans, V. parahaemolyticus, and P. vulgaris
bacteria at concentrations 75 and 100 μg/ml. Further, the light
microscopy and CLSM analysis revealed disintegration and
reduced growth of biofilm in a concentration-dependent
fashion. Also, they suggested that the biofilm inhibitory
activity of ZnO NPs was due to the generation of ROS and
the action of surface ions released from the nanoparticles
(Vinotha et al., 2019).

Similarly, Malaikozhundan et al. synthesized Withania
somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) and
evaluated its antibiofilm efficacy against S. aureus and E.
faecalis. They showed that at concentration 100 μg/ml, the Ws-
ZnO NPs imparted significant biofilm inhibitory activity. Further,
Ws-ZnONP’s surface activity resulted in disruption of the bacterial
cell wall and biofilm inhibition. Also, excessive generation of ROS
leads to enhanced antibacterial properties (Malaikozhundan et al.,
2020). Accordingly, Cherian et al. developed bio-inspired zinc
oxide nanoparticles (MFLE-ZnONPs) fabricated by using
Myristica fragrans leaf ester (MFLE) and assessed its antibiofilm
activity against methicillin-resistant Staphylococcus aureus and
multi-drug resistant Escherichia coli clinical isolates. It was
found that the synthesized nanoparticles showed dose-
dependent declination of biofilm development in both the tested
bacterial strain (Cherian et al., 2019).

Employing the alcoholic extract of Artemisia, Galederi and
Teimouri fabricated ZnO-NPs and studied its inhibitory effects
on biofilm development by P. aeruginosa strains. The outcomes
suggested that ZnO-NPs were effective on the isolates at the
minimum and maximum viscosities of 3.125 and 100 mg/ml,
respectively. (Galedari and Teimouri, 2020).

Moreover, Obeizi et al. reported the antibiofilm efficacy of
biogenic zinc oxide nanoparticles prepared by using Eucalyptus
globulus essential oil. Their results revealed that ZnO NPs
effectively inhibited biofilm development in S. aureus ATCC
25923 and P. aeruginosa ATCC 27853 in a dose-dependent
manner. The percentage of biofilm inhibition at 100 μg/ml
ZnO NPs was observed to be 97 and 85% against P.
aeruginosa biofilm and S. aureus, respectively (Obeizi et al., 2020).

Accordingly, Basumatari et al. fabricated zinc oxide
nanoparticles (ZnONPs) by utilizing an aqueous pseudostem
extract of Musa balbisiana Colla ash (AEPA), a plant
biowaste, and evaluated its efficacy as an antibiofilm and
antibacterial agent. The AEPA mediated ZnO NPs exhibited
note-worthy antibiofilm activity against P. aeruginosa, as
revealed by 96-microtitre well plate and Congo red agar
method. At a dosage of 100 μg/ml, the percent inhibition for
P. aeruginosa was 95.13%, indicating an enhanced inhibitory
impact on bacterial biofilm breakdown (Basumatari et al., 2021).

Copper and Copper Oxide Nanoparticles
The U.S. Environmental Protection Agency (USEPA) has
designated elemental copper and its compounds as
antibacterial materials. Nanoformulations of Copper oxide

exhibit enhanced antimicrobial activity towards pathogenic
microorganisms. Further, numerous reports have also
discussed the antibiofilm activity of copper oxide nanoparticles
(Mahmoodi et al., 2018). Green synthesized CuO nanoparticles
have been known to impart superior properties due to their less
toxic nature.

Regarding this, Naseer et al. demonstrated the antibiofilm
efficacy of biogenic copper oxide nanoparticles (CuO NPs)
prepared by utilizing Melia azedarach and Cassia fistula leaf
extracts. The results revealed that at concentration 1 μg/ml the
M. azadarech derived NPs the prevented biofilm development of
H. pylori and K. pneumoniae by 99.5 and 92.5% respectively.
While, at the same concentration, the C. fistula-derived NPs
inhibited biofilm inhibition by 100 and 99.8% forH. pylori and K.
pneumoniae, respectively (Naseer et al., 2021). In another report,
Suresh et al., synthesized CuNPs applying a two-stage chemical
reduction method, where Hydrazine Hydrate (HH) was used as a
reducing agent and Gum kondagogu extracts were used as a
stabilizing agent. The SEM results revealed complete destruction
of biofilm with destabilized cell masses in Klebsiella pneumoniae
clinical isolates (ATCC 27736) treated with Gum kondagogu
extract mediated CuNPs (Suresh et al., 2016).

Similarly, Punniyakotti et al., prepared copper nanoparticles
(Cu NPs) using leaf extracts of Cardiospermum halicacabum and
evaluated their antibiofilm efficacy against three clinical strains of
S. aureus, E. coli, and P. aeruginosa. They demonstrated that at
100 μg/ml, Cu NPs exhibited maximum antibiofilm activity with
79, 78, and 72% of biofilm inhibition in P. aeruginosa, E. coli, and
S. aureus respectively (Punniyakotti et al., 2020). Similarly, Ali
and his coworkers biosynthesized terpenoids entrapped copper
oxide nanoparticles (ELE-CuONPs) prepared using Eucalyptus
globulus (ELE) leaf extract. The results revealed that application
of ELE-CuONPs in a dose ranging from 125 to 2000 μg/ml,
prevents biofilm development by 19.03 ± 9% to 60.93 ± 8%,
44.41 ± 7% to 70.75 ± 8%, and 34.41 ± 7% to 62.29 ± 8% in P.
aeruginosa-621, E. coli-336, and MRSA-1, respectively, hence
suggesting the promising potential of ELE-CuONPs as an anti-
biofilm therapeutic (Ali et al., 2019).

Interestingly, Erci and colleagues synthesized CuONPs by
using various concentrations of aqueous leaf extract of
Thymbra spicata to obtain Ts1CuONPs (40 ml plant extract)
and Ts2CuONPs (80 ml plant extract). Their data showed, at a
dosage of 100 μg/ml, the biofilm inhibition value for S.aureus was
found to be 57.6 ± 1.03% and 49.1 ± 4.0% for Ts2CuONPs,
Ts1CuONPs respectively (Erci et al., 2020). Accordingly, Cherian
et al. manufactured CuONP via the one-pot green method by
employing Cymbopogon citratus (CLE) leaf extract. The results
revealed that the biofilm growth in MRSA-1 and E.coli was
decreased to 49.0 ± 3.1% and 33.0 ± 3.2%, respectively on
exposure to CLE-CuONPs (2000 μg/ml). Further, CLSM data
suggested superior antibiofilm properties against E.coli followed
by S. aureus owing to the variation in their cell wall compositions
(Cherian et al., 2020).

Titanium Dioxide Nanoparticles
Titanium oxide nanoparticles have a broad spectrum of
applications like antibacterial, cosmetics, photocatalyst,
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wastewater treatment, and other medical fields. In fact, they are
among the most extensively utilized nanoparticles attributed to
their superior properties like non-toxic, stable, safe, and having
surface activity (Al-Shabib et al., 2020). For instance, a study done
by Narayanan et al. showed that TiO2 NPs prevented the growth
of bacterial pathogens via the generation of ROS, DNA, and cell
membrane damage (Narayanan et al., 2021).

Accordingly, Al-Shabib and his colleagues fabricated TiO2

NPs using root extract of Withania somnifera and evaluated its
antibiofilm efficacy. Their results showed that at a concentration
below MIC (0.5×MIC), TiO2 NPs exhibited a significant
inhibitory effect on biofilm development (43–71%) and mature
biofilms (24–64%) in pathogens like P. aeruginosa, E. coli, Listeria
monocytogenes, MRSA, Serratia marcescens, and Candida
albicans. Consequently, they inferred that excessive ROS
generation followed by cell death could be the possible cause
for the compromised biofilm development in TiO2 NP-treated
pathogens (Al-Shabib et al., 2020).

Rajkumari and coworkers fabricated titanium dioxide
nanoparticles (TiO2 NPs) employing Aloe barbadensis leaf
extract. Their results showed treatment of P. aeruginosa in
biofilm mode with TiO2 NPS leads to a significant reduction
in cell viability by 30.76 ± 3.96%. Further, the MIC value of TiO2

NPs imparted prominent antibiofilm activity against P.
aeruginosa by hindering the adhesion of planktonic cells to
the substratum (Rajkumari et al., 2019). Similarly, Achudhan
and colleagues fabricated TiO2 NPs using twigs and bud extract of
Ficus benghalensis, Azadirachta indica twigs, and Syzygium
aromaticum and evaluated their antibacterial and antibiofilm
efficacy against bacteria (Citrobacter freundii and Streptococcus
mutans) and fungi (Candida albicans). The green synthesized
TiO2 NPs inhibited biofilms of both the pathogens at a
concentration of 100 μg/ml (Achudhan et al., 2020).

Interestingly, Dan et al., studied the antibiofilm activity of
green synthesized titanium oxide using the leaf extract of
Ocimum sanctum against P. aeruginosa, E. coli, S. aureus, and
C. albicans. Their results showed the effective range of these NPs
was between 250 and 650 μg/ml with a minimum effective dosage
of 450 μg/ml against E. coli while for the remaining microbes
250 μg/ml was sufficient (Dan and Khan, 2019). Further, Jin et al.
synthesized titanium dioxide nanostructures with the help of
Rosa davurica leaf extract (RDL-TiO2NPs) and evaluated its
antibiofilm potential against different biofilm-producing
bacteria. The minimum inhibitory concentration (MIC) of
RDL-TiO2NPs was 15.62 μg/ml for S. aureus and B. cereus,
62.5 μg/ml for S. enterica, and 31.25 μg/ml for E. coli. Also, the
IC50 value for S. enterica and S. aureus were 158.75 and 76.84 μg/
ml respectively. Further, the TEM and CV assay results indicated
that RDL-TiONPs prevented bacterial biofilm via cell wall and
membrane rupture (Jin et al., 2021).

Zubair et al. evaluated the efficacy of green synthesized TiO2

NPs using leaf extract of Ochradenus arabicus to repress biofilm
development and associated pathways inMRSA andMDR strains
of P. aeruginosa isolated from foot ulcers. They studied that the
constructed NPs reduced the biofilm formation by 22–70%,
inhibited EPS production and cell surface hydrophobicity at
sub-MICs. Further, severe impairment of motility and a

prominent decrease in alginate production was also observed
in P. aeruginosa. Also, significant damage (51–63 percent) to the
preformed biofilms of all tested strains was observed. Moreover,
the treatment of bacterial cells with TiO2 NPs leads to increased
ROS production which could be the possible reason for biofilm
inhibition (Zubair et al., 2021).

Iron Oxide Nanoparticles
Recently, iron oxide nanoparticles (IONPs) have grabbed the
limelight owing to their distinctive properties like higher surface
area, superparamagnetism, surface-to-volume ratio, and simple
separation procedure (Ali et al., 2016). These magnetic
nanoparticles are known to impart antibacterial as well as
antibiofilm properties via various mechanisms such as generation
of ROS, electrostatic interaction with the cell membrane and its
proteins, leading to physical damage and ultimately microbial death
(Thukkaram et al., 2014). Further, the use of green materials for the
synthesis of IONPs offers several advantages of low toxicity,
biocompatibility for medical application, and eco-friendliness
(Kanagasubbulakshmi and Kadirvelu, 2017).

In this regard, Ramalingam et al., constructed plant-assisted
iron oxide nanoparticles utilizing leaf extract of grey mangrove
Avicennia marina and studied its antibiofilm efficacy against
marine pathogenic biofilm-forming bacteria. The designed NPs
restricted the initial attachment and development of biofilm in
biofilm-producing bacteria like Escherichia coli, Staphylococcus
aureus, and Pseudomonas aeruginosa. Their results showed that
nearly, 72% of quorum sensing factors of Pseudomonas
aeruginosa, 63% of S. aureus, and about 46% of E.coli were
inhibited by 200 μg/ml of FeO-NPs. Moreover, the FeO-NPs
reduced the hydrophobicity index of P. aeruginosa, S. aureus,
and E. coli, from 19, 15, 16% to 11, 11, and 9% respectively. Also,
the designed FeO-NPs prevented the formation of EPS in P.
aeruginosa, S. aureus, and E. coli from 92, 86, 90%, to 65, 60, and
69% respectively. Hence, they concluded that their designed
biogenic FeO-NPs have the promising potential to be
employed as an antibiofilm drug against pathogenic biofilm-
producing microbes (Ramalingam et al., 2019).

Interestingly, the iron oxide nanoparticles synthesized using
Thymbra spicata leaf extract imparted remarkable antibacterial
properties against Salmonella typhimurium at a concentration of
100 μg/ml, as studied by Erci et al. Further, the NPs inhibited the
growth of S. aureus growth and inhibited biofilm growth by
25.9 ± 3.36% at a concentration of 6.25 μg/ml. Therefore, they
concluded that green synthesized FeONPs using T. spicata could
serve as a potential antibacterial and antibiofilm therapeutic
candidate (Erci and Cakir-Koc, 2020).

Accordingly, Ansari and his coworkers have used an extract of
a polyherbal ayurvedic drug formulation, Liv 52 for the synthesis
of superparamagnetic maghemite nanoparticles (L52E-γ-Fe2O3

NPs). Their formulated NPs imparted superior antibacterial,
antifungal as well as antibiofilm properties against MRSA,
MDR P. aeruginosa, and C. albicans. Further, there was
significant damage in the biofilm structure of C. albicans
majorly due to intense cell wall damage and inhibited hyphal
growth, as observed by scanning electron microscopy. Also, the
molecular docking reports showed that there was an effective
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interaction between Fe2O3 NPs and cell wall peptidoglycan and
mannoprotein which may lead to the cell wall and membrane
damage (Ansari and Asiri, 2021).

Cerium Oxide Nanoparticles
Cerium oxide is a cubic-fluorite type of oxide which is regarded as
the most prime among the rare earth oxides. Lately, CeO2

nanoparticles have been widely studied for a wide array of
prospective applications in various fields including
nanomedicine. Although, their antioxidant property has been
well studied, but their antimicrobial and antibiofilm studies are
still at it infancy with very limited studies (Kannan and
Sundrarajan, 2014). Even though phytosynthesised CeO2

nanoparticles have shown promising antibiofilm potential, very
little research work has been done.

In this regard, Ahmed and his coworkers employed fruit
extract of Phoenix dactylifera for CeO2 and Ti-decorated CeO2

nanoparticles synthesis. They evaluated the antibiofilm efficacy of
undoped and Ti-doped CeO2 NPs against the P. aeruginosa
developed biofilm. Their result revealed that undoped CeO2

nanoparticles prevented biofilm development by 11.0, 18.7,
31.3, and 54.5% at a concentration of 125, 250, 500, and
1000 μg/ml respectively. Similarly, 5% Ti-doped CeO2

nanoparticles inhibited biofilm formation by 10.9, 25.0, 34.2,
and 57.4% at a concentrations of 125, 250, 500, 1000 μg/ml
respectively. Also, similar trends were observed with 10, 15,
and 20% Ti-CeO2 nanoparticles, with about 75% biofilm
inhibition by 1000 μg/ml of 20% Ti-CeO2 nanoparticles.
Hence, their data indicated increasing the titanium doping
concentration in CeO2 nanoparticles, enhances the antibiofilm
activity, possibly because of the increased titanium ions release
from the formulated nanocomposite (Ahmed et al., 2020).

Accordingly, Altaf et al. found that biosynthesized cerium
oxide nanoparticles (CeO2-NPs) prepared using Acorus calamus
extract prevented the growth of bacterial biofilms by more than
75 percent. The confocal and electron microscopic data revealed
that the application of CeO2-NPs prevented the development and
colonization of the bacteria on solid surfaces. Moreover, dose-
dependent inhibition of preformed biofilms was also observed.
There was a significant reduction in the exopolysaccharides (EPS)
formation by test bacteria grown in CeO2-NPs supplemented
culture media (Altaf et al., 2021).

Interestingly, Naidi et al., applied a green chemistry route for
the synthesis of cerium oxide (S-CeO2) and 1, 5, and 10% tin-
doped cerium oxide nanoparticles (Sn-doped CeO2NPs) using
aqueous foliage extract of Pometia pinnata as reductant. The
fabricated nanoparticles imparted substantial antibiofilm
properties against S. aureus and Listeria monocytogenes at a
concentration of 512 μg/ml. The 1% Sn-doped CeO2 NPs did
not exhibit any antibiofilm activity while there was a significant
antibiofilm activity imparted by the 10% Sn-doped CeO2 at a
concentration of 512 μg/ml nearly similar to that of S-CeO2 NPs
(Naidi et al., 2021b). Similarly, in their other research work, they
synthesized zirconium/tin-coated nanoparticles (Zr/Sn-CeO2

NPs) using Pometia pinnata aqueous plant extract. All Zr/Sn-
doped CeO2 NPs (1, 5, and 10%) exhibited a concentration-
dependent biofilm inhibition of L. monocytogenes, and only 10%

Zr/Sn-dual doped-CeO2 NPs were found to impart antibiofilm
activity against S. aureus at higher concentrations. The maximum
biofilm inhibition was obtained at a concentration of 512 μg/ml
for all of the synthesized nanoparticles i.e. S-CeO2 NPs, and Zr/
Sn-dual doped CeO2 NPs (Naidi et al., 2021a).

Other Photosynthesized Nanoparticles
Apart from the above-mentioned nanoparticles, few other
phytosynthesized nanoparticles have also been remotely
evaluated for their anti-biofilm properties. Regarding this,
Saleem et al. employed a green route method for the synthesis
of nickel oxide nanoparticles (NiO-NPs) by utilizing Eucalyptus
globulus leaf extract as a bioreductant. They prominently
established the antibiofilm and antibacterial efficacy of the
synthesized NPs against ESβL (+) E. coli, P.aeruginosa, and
S.aureus. Further, the SEM images of NiO-NPs treated with
microbial cells revealed irregular shrinkage and distortion with
prominent depression/indentations with the cells. Hence, their
work indicated substantial antibiofilm and antibacterial activity
of plant synthesized NiO-NPs (Saleem et al., 2017).

Similarly, Prakashkumar and his coworkers fabricated
biocompatible palladium nanoparticles (NG@Pd NPs) using
leaf extract of Orthosiphon stamineus and evaluated its
antibiofilm and antibacterial properties. The results showed
enhanced bactericidal activity of NG@Pd NPs against E. coli,
S. aureus, and extended-spectrum beta-lactamase strain relative
to the PdNPs alone. Moreover, the antibiofilm study
demonstrated inhibition of biofilm development in a
concentration-dependent manner in methicillin-sensitive
Staphylococcus aureus strain with the IC50 value of 15.25 ±
0.012 μg/ml, whereas the Pd NPs exhibited reduced inhibitory
effect (N et al., 2021). Accordingly, Miglani and Tani-Ishii et al.,
constructed a biogenic selenium nanoparticle (SeNPs) using leaf
extract of Psidium guajava with an aim to study its antimicrobial
and antibiofilm properties against Enterococcus faecalis.
Consequently, they evaluated the relative antibiofilm efficacy
of five test groups namely distilled water (control), SeNPs
(1 mg/ml), Calcium hydroxide (1 mg/ml), 5.25% Sodium
hypochlorite, and 2% Chlorhexidine gluconate. The result
revealed that SeNPs were the most efficacious among others
against the biofilm of E. faecalis (Miglani and Tani-Ishii, 2021).

THE MECHANISM OF NANOPARTICLES
EFFICACY AGAINST BIOFILM

There are several studies done that support the superior efficacy
of nanoparticles against biofilm-forming microorganisms. Due to
their unique characteristics and small size, nanoparticles form a
potential alternative to conventional antibiotics to treat biofilm-
related complications. Also, due to their higher surface area, they
act as a suitable drug carrier by immobilizing drugs onto its
surface thereby increasing its solubility and targeted delivery
(Wang et al., 2017). There are numerous mechanisms via
which nanoparticles impart their antimicrobial activity against
these biofilm-forming pathogens which can be summarised
under three categories i.e. 1) ROS (Reactive oxygen species)
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induced oxidative stress, 2) release of metal ion thereby leading to
alteration in enzyme activity, disruption of cell structures and
protein denaturation, and 3) mechanical destruction of cell wall
due to electrostatic interaction (Shkodenko et al., 2020)
(Figure 3) (Baptista et al., 2018).

One of the prime antibacterial mechanisms of NPs includes
induction of oxidative stress due to the production of ROS via
electromagnetic irradiation of NPs (Dwivedi et al., 2014).
Generally, ROS is formed due to aerobic respiration in
bacteria which has an important role in cell death and survival
modulation, cell signaling, and differentiation (Schieber and
Chandel, 2014). But the extreme generation of ROS via NPs
leads to imbalanced redox homeostasis thereby inducing
oxidative stress which in turn affects the membrane lipids,
proteins, and DNA structure. Various nanoparticles produce
different ROS viz. hydrogen peroxide (H2O2), superoxide
(O2

−), and hydroxyl radical (. OH) which is dependent on the
chemical nature of the nanoparticles themselves (Dayem et al.,
2017). It has been studied that while the endogenous antioxidants
can neutralize the effects of superoxide (O2

−) and peroxide
(H2O2) radicals; the singlet oxygen and hydroxyl (. OH) are
fatal to bacterial cells causing acute death. Further, the production
of ROS is directly proportional to the surface-to-volume ratio of
the nanoparticles (L. Vega-Jiménez et al., 2019).

The metal ions of the metal oxide nanoparticles which are
absorbed by the bacterial cell, can disturb the structure of the cell,
alter the normal physiological functions and modify the activity
of various proteins and enzymes via their interaction with
functional groups of various intracellular nucleic acid and
proteins such as sulfhydryl (-SH), amino (-NH), and carboxyl
(-COOH) groups. Metal ions also interact with DNA and modify
its helical structure via cross-linking between as well as within
DNA strands (Wang et al., 2017).

Non-oxidative mechanisms involve the interaction of the
nanoparticles with the cell wall and cell membrane. The cell
walls and membrane of bacteria function as protective shields
against environmental damages. Cell membrane components
provide various adsorption routes for the nanoparticles
(Lesniak et al., 2013). The negatively charged bacterial cell wall
interacts with the positively charged surface of NPs, via
electrostatic interaction and Van der Waals interactions, this,
in turn, causes alteration of cell membrane structure and
permeability due to the accumulation of the nanoparticles
onto the cell surface (Baptista et al., 2018).

Various research studies have indicated that NPs can obstruct
biofilm formation via cell membrane disruption, thereby
promoting bacterial death. Evidence from earlier reports
showed that by interacting with EPS, eDNA, proteins, bacterial
communication-quorum sensing (QS), and lipids of biofilm, NPs
can disrupt biofilm stability (Qayyum and Khan, 2016). The
surface chemistry and size of NPs play a central role in their
antibiofilm activity as size regulates its effective penetration
within the EPS matrix and surface chemistry guides the
amount of interaction between NPs and EPS matrix. The
strategies against biofilm inhibitions majorly aim to interfere
with QS molecules. QS plays a vital role in bacterial pathogenesis
including biofilm formation (Paluch et al., 2020). Therefore, the
foundation for potential next-generation antivirulence
treatments to be developed is the targeting and disruption of
QS signaling systems and, as a result, biofilm formation.

Moreover, numerous nature-derived compounds are known
to impart excellent antibiofilm activity but their clinical
application is restricted due to their poor solubility and
stability. Also, the free antibiotic fails to penetrate within these
biofilms due to the EPS matrix. Further, the hydrophilic nature of
commonly used antibiotics makes their cell penetration difficult.

FIGURE 3 | Diagrammatic illustration representing of effects of various metal/metal oxide nanoparticles on a bacterial cell (Baptista et al., 2018).
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In this regard, NPs are known to function as an efficient delivery
vehicle for the effective delivery of antibiotics/drugs within
biofilm as well as within bacterial cells and thus increasing the
efficacy of these drugs synergistically. Hence, in this way, NPs
may be used to target bacterial biofilms in a variety of ways,
including antibiotic-free and antibiotic-coated methods (Dos
Santos Ramos et al., 2018).

POTENTIAL ADVERSE EFFECTS OFMETAL
OXIDE NANOPARTICLES

Despite displaying an array of significant applications in the field
of medicine, nanoparticles can cause several prominent adverse
effects on human health and the environment (Lanone and
Boczkowski, 2006). Nanotoxicology is a sub-discipline of
nanotechnology which encompasses the study of the toxicity
of nanomaterials and evaluation of potential health risks
associated with its application. The biomedical application of
NPs for treating various diseases is a “double-edged sword,” as the
properties (small size, high reactivity, large surface area) which
favor the beneficial application of nanoparticles, are also known
to cause significant toxic effects (Donaldson et al., 2004). Other
physicochemical properties like crystallinity, elemental
composition, solubility, shape, charge, and surface derivatives
may also affect the toxic potential of the nanoparticles (Dreher,
2004) (Nel et al., 2006). Moreover, agglomeration is one of the
major obstructions in converting nanomaterials into medicine
attributing to its potential toxic effects on various organs and
organ systems (Andleeb et al., 2021). The small size makes the
penetration of nanoparticles within minute capillaries feasible.
Further, it has been reported that NPs with a size below 100 nm
can penetrate cells, while sizes less than 40 nm can enter the
nucleus, and sizes below 35 nm can cross the blood-brain barrier
and enter the brain thereby may cause cellular damage. Further,
studies have shown that these nanoparticles may exert cytotoxic
effects in a cell type-, treatment time-, and dose-dependent
manner (Brooking et al., 2001) (Arora et al., 2012).

When living organisms are exposed to different nanoparticles,
it induces several toxic characteristics such as cytotoxicity,
genotoxicity, and epigeneticity (Schrand et al., 2010) (Jennifer
and Maciej, 2013). Further, The cyto-physiology of the cell may
get affected by nanoparticles at various levels like genetic,
organelle, or cellular levels which thereby add to the
cytotoxicity, tumor development, and other side effects (Arora
et al., 2012). Also, the application of NPs has made humans more
prone to diseases like cancer, diabetes, allergies, bronchial asthma,
inflammation, etc. Nanoparticles may impart their toxic effects
on different cell structures via direct or indirect interactions with
organic molecules of cells. Generation of excessive ROS and
thereby disruption of intracellular redox homeostasis is
considered to be one of the major mechanisms associated with
NPs mediated macromolecule toxicity which leads to oxidative
damage of macromolecules such as lipids, proteins, and nucleic
acids (Radu et al., 2010) (De Planque et al., 2011). The oxidative
DNA damage therefore may alter the interaction of DNA and
methyltransferases thereby leading to DNA hypomethylation. In

addition, nanoparticles may enhance the expression of different
pro-inflammatory genes like TNF-α, IL-1, IL-8, IL-6 via
activation of the NF-κB signaling pathway. Consequently,
these molecular and cellular alterations lead to oxidative stress,
followed by intense genotoxicity and subsequent programmed
cell death (Luo et al., 2015). The alterations in hematological,
oxidative enzymes, biochemical, and other histopathological
criteria are regarded as the possible biomarkers for assessing
the toxicity of nanoparticles in different living organisms (Kanwal
et al., 2019).

Further, the enormous discharge of NPs as industrial nano-
waste into the surrounding environment is proving to cause
ecosystem imbalance and is hazardous to the indigenous living
organisms. Also, the massive generation of NPs is distressing the
food web of the ecosystem. NPs released in the atmosphere can
gain excess into the plant via the stomatal openings of leaves
whereas the NPs occurring in water or soil can selectively gain
access via roots of the plants (Wang et al., 2013) (Tripathi et al.,
2017). NPs may exert their toxicity on plants via excessive ROS
production, DNA damage, a decline in plant biomass, reducing
photosynthetic pigments and protein content, etc.; thereby
impeding the growth and development of the plants (Zhu
et al., 2019).

Also, due to their non-specific antimicrobial nature, the NPs
not only kill pathogenic micro-organisms but also targets the
symbiotic microbial population (Qayyum and Khan, 2016).
Further, if the concentration of nanoparticles is not enough to
eradicate biofilms but enough to cause mutation, then the
nanoparticles can lead to the development of “super mutant”
variants of bacteria (Shkodenko et al., 2020). The occurrence of
NPs mutagenicity in bacterial biofilms plays an important role.
The genetic material of lysed bacterial cells gets accumulated
within the EPM, thereby leading to enhanced gene transfer
frequency among bacterial cells (Kalishwaralal et al., 2010a).
The genetic components like plasmid may contain genes for
antibiotic resistance, therefore it can be assumed that
nanoparticles may add to the development of antibiotic
resistance bacteria (Durmus et al., 2013)

Since conventional chemical synthesis utilizes several hazardous
compounds for nanoparticle synthesis, the developed nanoparticles
tend to show undesirable side effects. An alternative to overcome this
problem is to adopt eco-friendly methods to synthesis less toxic NPs
i.e. biosynthesis of NPs. The utilization of the biological approach
for the synthesis of NPs can also reduce the toxicity of nanoparticles.
Studies have reported the biocompatible nature of several phyto-
constituents (Singh J. et al., 2018). The toxic properties of the
nanoparticles can also be regulated by incorporating free
functional groups onto their surface. Moreover, toxicity can also
be reduced by controlling the particle size of the designed metal
nanoparticles (Singh and Lillard, 2009).

CONCLUSION AND FUTURE
PERSPECTIVE

Biofilms being the most predominant mode of bacterial growth
presents a significant challenge which is not been effectively
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encountered by traditional antimicrobial therapeutics. Further,
its spatial and temporal diversity, both in terms of chemical and
microbial structure, has added a degree of complexity to
eradication methods. It has raised concerns that the usage of
long-term antibiotics may lead to the occurrence of multidrug-
resistant strains. Biofilm infections are extremely resilient to
present antimicrobial therapy and thereby is a severe matter of
concern for the healthcare sector. As a consequence, the
development of efficacious approaches to combat biofilms
needs a multidisciplinary strategy to overcome various
challenges offered by biofilms. Some of the pioneering and
potential antibiofilm strategies include disruption of matured
biofilms, isolation of quorum quenching compounds, an
amalgamation of quorum quenching compounds with
antibiotics, or a mixture of these mentioned techniques, which
are still under investigation and did not reach clinical trial.
Recently, the potential of nanoparticles as a promising anti-
biofilm agent has taken hold, attributed to its unique
properties like small size, superior surface-area-to-volume
ratio, and others. Among various routes employed for
nanoparticles synthesis, the application of the green chemistry
route has gained significant attention due to its several merits like
eco-friendly, cost-effectiveness, low toxicity.

Even though the biological mode of synthesis has the
advantages of green chemistry as mentioned in this literature,
there are certain unsettled issues associated with it like,
reproducibility of the synthesis process, consistency in
particles shape and size, and the exact mechanism involved
in the biosynthesis of nanoparticles. In the case of
phytosynthesis, the mechanism of nanoparticles formation
varies with different plant species. Further, the compositions
of identical plants cultivated in various geographical locations
or harvested in different climates might show variations in their
active components. This, in turn, would influence the
morphology of the synthesized nanoparticles as the shape
and size of nanoparticles are majorly determined by the
different compositions of bioactive molecules with predefined
molecule sizes. This would lead to a fall in their commercial
value and thereby make the marketing of phyto-synthesized
nanoparticles more challenging. In the case of chemical
synthesis, they have the advantage of regulated size and
shape and which is why it is more preferred. Nonetheless,
the beneficial facets outweigh the bad, which also pushes
researchers to upgrade the ways of plant-mediated synthesis.
Therefore, there is a need for a thorough understanding and
evaluation of the plant-assisted synthesis mechanisms. This is a

poorly explored area and requires serious attention to fully
explore and use the benefits of green synthesized metallic
nanoparticles.

Various green synthesized metal/metal oxide nanoparticles such
as Ag, Au, ZnO, CeO2, Fe2O3, CuO, TiO2, Pd, Se, NiO, have been
assessed for their antibiofilm properties, among which
phytosynthesized AgNPs are the most studied nanoparticles
against biofilms. Yet, further research should be promoted to
detect the activity of nanoparticles in industrial settings and their
impact on the environment. Phytosynthesised nanoparticles have a
promising future and can be applied in different biomedical fields
involving nanoparticles like targeted drug delivery, fluorescent
labeling in immunoassays, as antibacterial agents in bandages, and
in destroying tumors via heating (hyperthermia). Even though there
is increasing evidence regarding the promising potential of these
green nanoparticles, it is obligatory to establish procedures to ensure
their benign application to convert these preparations into reality as
anti-biofilm therapeutics. It may be stated that, despite significant
studies on nanoparticles across the world, many topics still need to be
investigated further. Without them, the clinical introduction of these
nano drugs can prove to be havoc for both mankind and the
microbial community. A more structured and explicit study
regarding NP’s mechanism of action on planktonic cells, biofilms,
mutagenicity, and genotoxicitymay permitmore targeted application
thereby enhancing their effectiveness. Further, it is equally crucial to
study the systemic in vivo effectiveness of these upcoming
methodologies from the biomedical perspective. Specificity being
the crucial factor for clinical applications, it is extremely
important to differentiate between commensal and pathogenic
bacteria and host tissue. Another key factor to be considered for
investigation is how the nanoparticles are adapted in the biological
setting, such as blood, and how these modifications will influence
their effectiveness. Moreover, prospective directions should
emphasize on the complete removal of biofilm by targeting the
EPS matrix and the microbial cells simultaneously, thereby
enhancing the therapeutic efficacy, while minimalizing toxic
effects and development of resistance.
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