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Photocatalysis, which includes water splitting for hydrogen fuel generation, degradation of
organic pollutants, and CO2 reduction using renewable solar energy, is one of the most
promising solutions for environmental protection and energy conversion. Halide perovskite
has recently emerged as a new promising material for photocatalytic applications. The
exploration of new efficient halide perovskite-based photocatalysts and understanding of
photocatalytic reaction mechanisms can be revealed using theoretical calculations. The
progress and applications of first-principles atomistic modeling and simulation of halide
perovskite photocatalysts, including metal halide perovskites, halide perovskite
heterojunctions, and other promising perovskite derivatives, are presented in this
review. Critical insights into the challenges and future research directions of
photocatalysis using halide perovskites are also discussed.
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INTRODUCTION

As sustainable, inexhaustible, clean, and renewable energy, solar energy has been considered an
attractive alternative for applications of heating systems and electricity production in the past
decades. Driven by solar energy, photocatalysis is consideredone of the most important routes
for using solar energy since the pioneering work on TiO2 for water splitting in 1972 (Fujishima
and Honda, 1972). Photocatalytic processes are applied in four fields: water splitting, CO2

reduction, degradation of organic compounds, and organic synthesis. Semiconductors have been
the most used photocatalysts because of their intrinsic optical and electronic properties, from
conventional binary semiconductor photocatalysts (i.e., g-C3N4, TiO2, ZnO, CdS) (Yu et al.,
2013; Jin et al., 2015; Ye et al., 2015; Adhikari et al., 2016; Cheng et al., 2018; Jaramillo-Páez et al.,
2018; Yu et al., 2018) to ternary photocatalysts (i.e., BiVO4, SrTiO3, BaTi4O9) (Inoue et al., 1992;
Kato and Kudo, 2002; Zeng et al., 2018; Andrei et al., 2020). However, conventional
photocatalysts have drawbacks, such as large bandgap, high carrier recombination rate, and
low light-absorption ability. It is critical to develop new photocatalysts with high photo-
conversion efficiency.

Metal halide perovskites with a chemical formula of ABX3 (A � CH3NH3, CH (NH2)2, Cs; B � Pb,
Sn; X � I, Br, or Cl) have recently attracted extensive research attention because of their extraordinary
photophysical properties and performance, such as high visible-light absorption coefficients, long
charge carrier diffusion lengths, high photoluminescence quantum yield, tunable bandgap, etc (Park
et al., 2016; Zhang et al., 2018a; Shi and Jayatissa, 2018). Furthermore, combined with a diversity of A
and B sites and ferroelectric and piezoelectric effects (Frost et al., 2014; Kanhere and Chen, 2014; Sun
et al., 2016; Ji et al., 2017; Zhu et al., 2019), ABX3 halide perovskites are indubitably one of the most
promising alternatives in photocatalytic applications (Zhu and Podzorov, 2015; Lee et al., 2018; Hong
et al., 2019; Zhu et al., 2019; Chen et al., 2020).
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First-principle atomistic modeling and simulation, such as
density functional theory (DFT) and Green’s function-based
many-body perturbation theory (GW), are fundamental means
to investigate material properties by inputting the initial lattice
structure and known atomic information. The DFT method is a
calculation method based on Hohenberg-Kohn theorem and
Kohn-Sham equation (Hohenberg and Kohn, 1964; Kohn and
Sham, 1965). When it comes to specific practical problems, it is
necessary to consider several choices of exchange-correlation
functional, such as Local Density Approximation (LDA),
Generalized Gradient Approximation (GGA) and hybrid
density functional method (Jones and Gunnarsson, 1989; Parr
Robert, 1989).

LDA is mainly aimed at uniform electron gas, meaning that
the charge density needs to change slowly in the order of local
Fermi wavelength. In the calculation of Raman spectrum and
phonon spectrum, LDA tends to a good performance. GGA
optimizes the exchange-correlation and adds the gradient of
charge density change to the exchange-correlation functional,
giving more reasonable simulation results for heterogeneous
electronic systems (Richard, 2004; Jiang et al., 2010). The
commonly used GGA functionals are Perdew-Burke-Ernzerhof
(PBE) (Kresse and Joubert, 1999) and Perdew -Wang (PW91)
(Blöchl, 1994). However, GGA ignores the nonlocality of
exchange, which usually underestimates the band gap.
Therefore, hybrid density functional method is developed,
which can improve the calculation accuracy based on the
exact exchange energy obtained by Hartree-Fock
approximation and the partial exact exchange energy obtained
bymixed density functional theory. The commonly used methods
are Heyd-Scuseria-Ernzerhof (HSE), PBE0, etc. (Perdew et al.,
1996; Heyd et al., 2003) In addition, there are not only correction
methods for electronic correlation (Grimme et al., 2010; Cao
et al., 2012), such as dispersion interaction correction (DFT + D),
self-interaction correction (DFT + U), but also correction
methods for magnetic materials such as Spin orbit coupling
(SOC) (Afsari et al., 2017; Sehgal, 2017).

GW method provides a more rigorous theoretical framework
for the theoretical description of the electronic energy band
structure of materials, which can give high-precision
theoretical predictions for physically simple semiconductor
materials, such as G0W0 method based on LDA/GGA self-
consistent calculation (Aryasetiawan and Gunnarsson, 1998;
Aulbur et al., 2000). However, there is still much room for
improvement for physically more complex systems with
stronger electronic correlation effects, because LDA/GGA
often gives wrong description, which can lead to the wrong
calculation of G0W0 (Aryasetiawan and Gunnarsson, 1995;
Jiang, 2010; Jiang and Zhang, 2020). Many new methods have
been developed to choose an appropriate starting point to
calculate the reference Hamiltonian, such as G0W0 based on
DFT + U or HSE (Miyake et al., 2006; Jiang et al., 2010), or quasi
particle self-consistent GW, and fully self-consistent GW (van
Schilfgaarde et al., 2006; Grumet et al., 2018). Among the above-
mentioned methods, GGA-PBE in DFT calculation method is the
most commonly used and inexpensive calculation method,
because it does not cost so much computational power, while

HSE and GW methods are more suitable for dealing with band
gap calculation, and there are some problems such as complex
program implementation and large amount of calculation.

First-principle methods can be used to explore the lattice
constants, electronic structures, carrier mobility and diffusion
lengths of photocatalyst, understand the reaction mechanism,
and further predict new halide perovskite-based photocatalyst
(Catlow et al., 2010; Luo and Daoud, 2015; Yu, 2019). The
calculation of these properties is critical for optimizing the
photocatalytic performance. Thus far, there has been limited
research regarding the booming use of first-principles
calculations to study halide perovskites as photocatalysts.
Herein, we summarize the recent progress in the theoretical
calculation study on halide perovskite-based photocatalysts
(Figure 1), and focus on the link between calculated material
properties and performance of photocatalysts, including 1) metal
halide perovskites, 2) halide perovskite heterojunctions, and 3)
other promising perovskite derivatives. Then, we discuss the
challenges and future research directions of halide perovskite
photocatalysis.

THEORETICAL CALCULATION OF
PROPERTIES OF HALIDE
PEROVSKITE-BASED PHOTOCATALYSTS
Metal Halide Perovskites
As is well known, for theABX3 perovskites, the BX6 octahedra can
be tilted and distorted at finite temperature or pressure (Glazer,
1972), and anharmonic effects are associated with the perovskite-
phase transition (Buckeridge et al., 2013). Moreover, the bandgap
of ABX3 perovskites can be tuned by chemical substitution
(Sutton et al., 2016; Wang et al., 2019a). Several first-

FIGURE 1 | Applications of first-principles atomistic modeling and
simulation in halide perovskite-based photocatalysts.
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principles investigations into ABX3 structures have been
conducted to explore their crystal structures, material stability
properties, and defect physics. Most notably, the electronic and
optical properties of ABX3 perovskite as light absorbers in
photocatalysis are critical, and several theoretical calculation
studies have focused on the electronic energy-band structure,
corresponding density of states (DOS), carrier mobility, and other
electronic properties of halide perovskite-based photocatalyst.

One of the critical properties of a photocatalyst is its bandgap.
Considering the utilization of visible light in the sunlight, the
bandgap of ∼2 eV is desirable for photocatalytic reaction (Xiaobo
et al., 2010). In addition, for CO2 reduction, the position of
conduction band minimum (CBM) should be lower than
−0.52 eV (vs. NHE PH � 0) (the energy barriers of reducing
CO2 to CO) (Kanhere and Chen, 2014; Schneider et al., 2012),
that is more advantageous to the reduction reaction in
thermodynamics. Angelis et al. first computationally
investigated the MAPbX3 hybrid halide perovskites in 2013
(Mosconi et al., 2013). They performed periodic DFT
calculations within the GGA and found that the calculated
bandgap values (MAPbI3: Eg � 1.57 eV, MAPbBr3: Eg �
1.80 eV, MAPbCl3: Eg � 2.34 eV) agreed well with the
experimental values. Figures 2A–C shows the optimized
geometrical structures, calculated band structure, and DOS of
MAPbI3. Afterward, Umari developed an effective GW method
incorporating SOC to accurately model the electronic properties
of MAPbI3 and MASnI3 (Umari et al., 2014). Furthermore, the
HSE06 and PBE functionals, with and without SOC calculations,
were used to compute the bandgap of ABX3 halide perovskites
(Giorgi et al., 2013; Brivio et al., 2014; Melissen et al., 2015). By
comparing the calculated values, it is proved that the strong
electron-hole interaction should consider, and the SOC plays a

critical role in dominating the conduction band, although the
computational requirements increase.

Moreover, the DOS can also be used to predict the
performance of photocatalysts through the analysis of total
and atomic-resolved DOS. The DOS can be obtained from a
non-self-consistent-field (SCF) energy-band calculation, and
from the analysis of the partial DOS, the contribution of each
site to the valence band and conduction band can be revealed. For
ABX3 halide perovskites, the CBM is usually dominated by B
p-states, whereas the valence band maximum (VBM) consists of
antibonding between B s-states and X p-states (Borriello et al.,
2008; Chung et al., 2012; Mosconi et al., 2013; Umari et al., 2014).
Furthermore, the photogenerated carrier transfer ability can be
revealed by the calculated DOS. Sun et al. synthesized colloidal
CsPbBr3 quantum dots (QDs) as new photocatalytic material
(Hou et al., 2017). To understand the advantages of the quantum
size effect, they calculated the DOS of bulk CsPbBr3 and atomic
CsPbBr3 QD slabs. Different from the bulk CsPbBr3, the
conduction band of CsPbBr3 QDs was primarily contributed
by the coupling of Cs p-states, Br p-states, and Pb p-states,
whereas the valence band was constructed by the coupling of
Cs p-states, Pb s-states, and Br p-states (as shown in Figure 2D).
Due to the increased DOS at CBM, more photogenerated carriers
can reach CBM, resulting in more efficient photochemical
conversion.

The last, but the most important issue is the photocatalytic
mechanism. Metal halide perovskites have been successfully
confirmed as efficient photocatalysts. However, it is difficult to
develop improved perovskite materials without a thorough
analysis of reaction mechanisms. Wang et al. derived the
photocatalytic hydrogen evolution reaction (HER) mechanism
using PBE functional of DFT, including the D3 van der Waals

FIGURE 2 | (A) Optimized geometrical structures, (B) calculated band structure, and (C) DOS of MAPbI3 (Grimme et al., 2010). Copyright (2013) American
Chemical Society. (D) Calculated densities of states diagrams of bulk CsPbBr3 and CsPbBr3 QDs (Aryasetiawan and Gunnarsson, 1995). Copyright (2017) John Wiley
and Sons. (E) PbAAA reaction pathway for H2 generation on MAPbI3 surface in acidic solvent (Jiang and Zhang, 2020). Copyright (2018) American Chemical Society.
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correction to account for London dispersion interactions (Zhang
et al., 2018b). They constructed a supercell of the (010) surface of
MAPbI3 in HI aqueous solution, and by comparing the activation
barriers and reaction energies of different reaction pathways, they
found that the Pb atoms and surface organic molecules play
critical roles in the HER reaction. Furthermore, a two-step Pb-
activated amine-assisted (PbAAA) reaction mechanism was
proposed (Figure 2E), which is widely accepted and approved.
Tao et al. performed the DFT calculations with the PbAAA
mechanism to explain the Br effect on the enhanced
performance of the MAPb(I1-xBrx)3 photocatalytic HER
process (Zhao et al., 2019a). Due to the smaller Br ionic
radius, the Br-Pb bonds can be easily broken, and more Pb
defect sites were formed for lowering the H-Pb absorption
energy, and thus MAPb(I1-xBrx)3 shows a superb HER rate
under visible light illumination.

Halide Perovskite Heterojunctions
To enhance the photocatalytic performance, the construction of
halide perovskite heterojunctions with two-dimensional (2D)
materials such as graphene, g-C3N4, and black phosphorus has
caused extensive concern due to improved stability, more efficient
carrier mobility, and regulated bandwidth (Xu et al., 2017; Ou
et al., 2018; Wu et al., 2018; Zhao et al., 2019b; Guo et al., 2019;
Paul et al., 2019; Wang, 2020). For the heterojunction
calculations, the main problem is the understanding of the

charge density difference and charge transfer process at the
contacting interface.

Guo et al. used density-functional first-principles calculations
with empirical dispersion corrections to investigate the interfacial
interactions and electronic properties of graphdiyne/MAPbI3
heterostructures (Guo et al., 2019). By employing the
projector-augmented wave (PAW) to describe the electron-
core interaction, and GGA of PBE as the exchange-correlation
functional, they found that the graphdiyne/MAPbI3
heterostructure was formed by van der Waals interaction, and
the PbI2-terminated surface showed high stability when
contacting graphdiyne. Combining HSE06 with SOC, the
electronic properties including charge density difference,
electron localization field, Bader charge, and electrostatic
potential were analyzed, as shown in Figure 3A. The electron-
hole separation is obviously enhanced due to the built-in electric
field at the interface.

In addition to the van der Waals interaction of the
heterostructure interface, Zhu et al. found that a significant
covalent bond between CsPbBr3 and black phosphorus
nanosheets was formed in the heterostructure by DFT
calculation (Wang, 2020). Moreover, charge density difference
analysis revealed that a directional electron transfer channel was
generated reasonably between Pb and p elements, as shown in
Figure 3B,C which was consistent with the experimental results.
Furthermore, using ab initio atomistic thermodynamics

FIGURE 3 | (A) Calculated electrostatic potential, charge density difference, and electron localization function plots for graphdiyne/MAPbI3 heterostructures with
five-layer interfaces (Glazer, 1972). Copyright (2019) John Wiley and Sons. (B) Electron localization function, and (C) charge density difference of the interface between
the CsPbBr3 and black phosphorus (Yu, 2019). (D) Gibbs free-energy diagram of CsPbBr3/black phosphorus and CsPbBr3 heterostructures in the photocatalytic CO2

reduction process (Yu, 2019). Copyright (2020) Elsevier.
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calculations, the possible mechanism of CO2 reduction by
CsPbBr3 and black phosphorus nanosheet heterostructure was
clarified. The black phosphorus nanosheets acted as the electron
acceptor, which promoted the breaking of the C�O bonds and
reduced the reaction barrier energy (Figure 3D).

Other Promising Perovskite Derivatives
The exploration of new photocatalysts is an important way to
achieve high photocatalytic performance. And the new
promising halide perovskites offer distinct advantages over
the traditional perovskite materials (Volonakis et al., 2016;
Liu et al., 2018; Maughan et al., 2018; Yan et al., 2018; Tang
et al., 2019; Yue et al., 2020), such as substitution or mixing,
double perovskites, and other perovskite derivatives.
Theoretical calculation is a powerful tool to predict new
functional perovskite materials suitable for photocatalysis
and optimize the stoichiometric ratio of mixed halide
perovskites. Especially when introducing the Goldschmidt
tolerance factor t � (rA + rX)/[

�

2
√ (rB + rX)] (where rA, rB and

rX refer to ionic radii for ions in A, B and X sites)
(Goldschmidt, 1926), a useful parameter for basic
formability prediction of any new materials with targeting
perovskite structure, into the first-principle calculations,
many studies have selected several promising perovskite

materials from hundreds of compounds (Bartel et al.,
2020; Fedorovskiy et al., 2020).

Xu et al. compared the catalytic efficiency of bulk CsPbBr3
doped with different metals (Co., Fe, Ni, Cu, Ag, Mg, Mn, and Bi)
and concluded that Co. and Fe doping could be ideal for CO2

reduction (Tang et al., 2019). They specifically analyzed the
adsorption-free energy using GGA of PBE functional with the
PAW method. As shown in Figure 4A the ab initio molecular
dynamics calculations indicated that Co− and Fe-doped systems
showed stronger CO2* adsorption energy (* refers to the
adsorption site), which is the most important factor to
determine the catalytic efficiency. Furthermore, using HSE06
with DFT + U correction to calculate the Hirshfeld charges
and DOS of the strongly correlated effect of Co. atoms, they
further illustrated the proposed reaction mechanism and
confirmed that Co-doped CsPbBr3 could be a great candidate
for CO2 reduction.

The toxicity of lead limits the wide commercialization of metal
halide perovskite, and thus lead-free alternatives have recently
attracted great attention, such as double perovskites (A2BX6 or
A2B

+1B+3X6) and other perovskite derivatives (A3B2X9, A3BX5,
A4BX6, etc.), where Pb

2+ cations are replaced using other metal
cations, e.g., Na+, Ag+, Bi3+, and Sb3+. It is relatively difficult to
experimentally synthesize thin films of these materials for

FIGURE 4 | (A) The free-energy diagrams of themost favored paths of CO2 reduction on pristine, Co-doped and Fe-doped CsPbBr3 (Umari et al., 2014). Copyright
(2019) Royal Society of Chemistry. (B) Calculated electronic band structures of (MA)2TlBiBr6 and MAPbBr3 (Melissen et al., 2015). Copyright (2016) Royal Society of
Chemistry. Schematic of the (C) CsPbBr3 (001) surface and (D) reactivity of highly exposed Cs3Sb2Br9 (1000) surface. (E) Free-energy pathways for highly exposed
Cs3Sb2Br9 (1000), (0001) and (20

−
21) surfaces and CsPbBr3 (002) surface (Giorgi et al., 2013). Copyright (2020) Royal Society of Chemistry.
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photovoltaic and photocatalysis applications. However, the
theoretical calculation is extremely useful because of its
predicting power. For example, Cheetham et al. have used
DFT calculations to compare the bandgaps and electronic
structures of (MA)2B

+1BiX6 (B+1 � e.g., K+1, Ag+1, Cu+1, Tl+1)
and MAPbX3, and found that the new double perovskite
(MA)2TL

+1BiBr6, had strikingly isoelectronic properties with
MAPbBr3, as shown in Figure 4 2) (Deng et al., 2016). This
study provided an intriguing alternative to the lead-containing
MAPbX3 for photoelectronic applications.

For the all-inorganic halide double perovskites, Giustino et al.
(Volonakis et al., 2017) proposed a new promising halide double
perovskites, Cs2InAgX6, with the direct band gaps between the
visible and the ultraviolet as computed by the HSE06 and PBE0.
Recently, Bartel et al. (Bartel et al., 2020) predicted 47 likely
synthesizable compounds containing non toxic elements and
with direct or nearly direct band gaps among the 311 cesium
chloride double perovskites (Cs2BB’Cl6) compounds by
computing with HSE06, and identified that the triple-alkali
perovskites (where B refers to a group 1 alkali, and B′ refers
to a transition-metal cation) showed remarkable optical
properties as computed by the GW-Bethe-Salpeter equation
method. These studies are helpful to realize the future studies
aim and synthesize more efficient photocatalyst with unique
optoelectronic properties.

Besides the analyses of the structural, electronic and optical
properties, first-principles calculations can also be used to predict
phase transition temperatures, which have instructive
significance on the exploration of new materials. Kye et al.
calculated the bandgaps and optical properties of K2SnX6 (X �
I, Br, Cl) in cubic, tetragonal, and monoclinic phases, and
concluded that the cubic K2SnBr6 and monoclinic K2SnI6 can
be promising candidates for light absorber materials (Jong et al.,
2020). Moreover, they calculated the Helmholtz-free-energy
differences among the above three phases, and gave the phase
transition temperatures of K2SnX6, respectively.

As mentioned above, it is difficult to experimentally synthesize
uniform thin films of double perovskites or other perovskite
derivatives; however, nanocrystals or other nanostructures of
these materials can be synthesized more easily. Furthermore,
they are proved to be promising candidates because of their
highly exposed surface. Geyer et al. developed Cs3Sb2Br9
nanocrystals with significantly improved photocatalytic CO
production efficiency (Lu et al., 2020). Moreover, the
analogous mechanism was observed using DFT calculations, as
shown in Figures 4C–E. They calculated the surface energies and
adsorption free energies of the (0,001) (1,000), and (2021)
surfaces of Cs3Sb2Br9 as well as the (001) and (002) surfaces
of CsPbBr3, and found that the surfaces of Cs3Sb2Br9 had a lower
free-energy for the adsorption of COOH* and CO* intermediates
because of the predominant defects, which suggested the
enhanced catalysis activity.

As mentioned above, perovskite heterojunctions are usually
endowed with optimized charge carrier dynamics for improved
photocatalytic performance, and perovskite derivative
heterojunctions are no exception (Feng et al., 2017; Guo et al.,
2017; Wang et al., 2019b). By employing the DFT calculation,

Kuang et al. (Wang et al., 2019b) investigated the electronic
structures and interfacial properties in the Cs2SnI6/SnS2 hybrid
heterojunctions. Then, they revealed that a typical type II band
alignment formed in the heterojunction, which was in accordance
with the experimental values. Due to the facilitated charge
separation between Cs2SnI6 and SnS2 (i.e, holes from SnS2 to
Cs2SnI6 and electrons from Cs2SnI6 to SnS2), the CO2

photocatalytic reduction activity was unquestionably boosted.
We believed that the theoretical calculation of perovskite

derivatives and heterojunction can help predict more direct or
nearly direct band-gap materials and choose some more
matching materials forming heterojunction with promoted the
charge carrier mobility and reduced charge carrier
recombination.

CONCLUSION AND OUTLOOK

Herein, we summarized current computational work on the
halide perovskite-based photocatalyst. To reveal the underlying
photocatalytic mechanisms, first-principles calculations were
used to investigate the crystal structures, electronic properties,
defect physics, and surface and interface interaction of
perovskites. Furthermore, the promising potential of the first-
principles material design for predicting new halide perovskites
such as substitution or mixing, double perovskites, or other
perovskite derivatives has also been demonstrated.

From our perspective, several critical issues and challenges still
need to be overcome. First, several unique properties of halide
perovskites, such as piezoelectric, and ferroelectric properties due
to the anharmonicity in lattice dynamics should be illustrated and
explored to promote the photocatalytic reaction efficiency.
Second, the influence of structure on the photocatalytic
performance of halide perovskite-based heterojunctions, such
as the types of ligands, defects, dopants, and crystalline phases,
needs to be further researched to improve the activity of the
heterostructures. Third, theoretical analytical models of
perovskite derivatives can be helpful to promote the charge
carrier mobility and reduce charge carrier recombination.
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