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The rational design of cost-effective and highly efficient catalysts for the oxygen evolution

reaction (OER) is vastly desirable for advanced renewable energy conversion and storage

systems. Tailoring the composition and architecture of electrocatalysts is a reliable

approach for improving their catalytic performance. Herein, we developed hierarchical

ultra-thin Co nanosheets coupled with N-doped carbon plate (Co-NS@NCP) as an

efficient OER catalyst through a feasible and easily scalable NaCl template method. The

rapid dissolution-recrystallization-carbonization synthesis process allows Co nanosheets

to self-assemble into plenty of secondary building units and to distribute uniformly

on N-doped carbon plate. Benefitting from the vertically aligned Co nanosheet arrays

and hierarchical architecture, the obtained Co-NS@NCP possess an extremely high

specific surface area up to 446.49 m2 g−1, which provides sufficient exposed active

sites, excellent structure stability, and multidimensional mass transfer channels. Thus,

the Co-NS@NCP affords remarkable electrocatalytic performance for OER in an alkaline

medium with a low overpotential of only 278mV at 10mA cm−2, a small Tafel slope,

as well as robust electrocatalytic stability for long-term electrolysis operation. The

present findings here emphasize a rational and promising perspective for designing

high-efficiency non-precious electrocatalysts for the OER process and sustainable energy

storage and conversion system.

Keywords: NaCl template, co nanosheets, N-doped carbon support, hierarchical structure, oxygen evolution

reaction

INTRODUCTION

Urged by the ever-increasing consumption of fossil fuels and environmental pollution problems,
numerous efforts have been put to design new renewable energy materials and technologies
(Liu et al., 2020; Zhang X. et al., 2020; Zheng et al., 2020). Electrocatalytic oxygen evolution
reaction (OER, 4OH−

→ 2H2O + O2 + 4e−) always draws significant attention in the scientific
community because it plays a great crucial role in the development of energy conversion and storage
technologies (e.g., metal-air batteries, water splitting devices) (Lyu et al., 2019; Yin et al., 2020).

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2021.659865
http://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2021.659865&domain=pdf&date_stamp=2021-03-22
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sundongmei@njnu.edu.cn
mailto:tangyawen@njnu.edu.cn
https://doi.org/10.3389/fnano.2021.659865
https://www.frontiersin.org/articles/10.3389/fnano.2021.659865/full


Wang et al. Coupling Hierarchical Ultrathin Nanostructures

However, the complex four-electron transfer process and high
energy barriers of the formation of the O=O bond hinder the
further applications of OER in energy-related applications (Xie
et al., 2019; Jothi et al., 2020). Thus, it is necessary to develop
high-efficiency electrocatalysts to expedite the reaction kinetics
and reduce the overpotential for OER (Fu et al., 2018a;Wang and
Zeng, 2018; Chen R. et al., 2019). Up till now, noble-metal-based
oxides, such as IrO2 and RuO2, are commonly acknowledged
as state-of-the-art electrocatalysts for the OER. But the scarcity
reserves and high prices of these noble metals greatly limit the
realization of large-scale commercialization (Fu et al., 2018b; Sun
et al., 2020b). Therefore, the exploration of both economical and
efficient non-noble-metal-based OER electrocatalysts to replace
these noble metals has become a research trend (Fu et al., 2018c;
Wu et al., 2020).

In recent years, as a potential substitute for commercial
IrO2 and RuO2 catalysts, noble-metal-free-based catalysts have
been widely researched. Among them, earth-abundant Co-based
electrocatalysts, including oxides (Li T. et al., 2019; Zhang Y.
et al., 2020), sulfides (Dong et al., 2019; Fragal et al., 2019),
phosphides (Jin et al., 2019; Li M. et al., 2020), nitrides (Ouyang
et al., 2019; Yang et al., 2019b), layered double hydroxides (LDHs)
(Yu et al., 2017; Dionigi et al., 2020), metal-organic frameworks
(MOFs) (Chen et al., 2017; Kang et al., 2019), single atoms
(Yang et al., 2018; Zang et al., 2018), etc., have been proven to
have a low price and good electrocatalytic activity toward OER
process (Yang et al., 2019a; Zhao et al., 2020; Zhu et al., 2020).
In particular, Co species supported on carbonaceous materials,
such as nitrogen-doped carbon nanotubes (NCNTs) (Zhao et al.,
2018; Huang et al., 2020), reduced graphene oxide (rGO) (Li Y.
et al., 2018), and porous carbon (Fu et al., 2018d) electrocatalysts
have demonstrated greatly enhanced electrocatalytic activity and
stability. For example, Jiao et al. designed and developed a
molecule-level graphitic carbon nitride (g-C3N4) coordinated
transition metal Co catalyst (Co-C3N4/CNT), which possessed
comparable electrocatalytic activity to that of the noble metal
catalysts for the ORR and OER in alkaline solution (Zheng
et al., 2017). The intimate connections between active Co
and g-C3N4 could inhibit the aggregation and dissolution of
active sites during the catalytic process. In addition, structural
engineering is one of the outstanding approaches to improve
the catalytic activity and reaction rate of OER (Li S. et al.,
2019; Chandrasekaran et al., 2020). The construction of special
nanostructures (e.g., hollow structure, hierarchical structure,
nanoarray architectures, etc.) can endow the electrocatalysts
with a higher specific surface area to expose more active
sites and possess more mass transport channels to enhance
the rate of reaction (Fu et al., 2017a; Cheng et al., 2019;
Wang S. et al., 2019; Zhang, C.-L. et al., 2020). For instance,
Guan et al. designed and synthesized a three-dimensional
(3D) hierarchical CoNi/CoFe2O4 supported on Ni foam, which
delivered a cell voltage of only 1.57V at a current density of
10mA cm−2 for overall water splitting (Li S. et al., 2018).
For self-assembled hierarchical structure, the in situ formed
self-supported hierarchical structure could provide numerous
more accessible active sites (Sun et al., 2020a). Besides, the self-
supported structure and the presence of substrate will prevent the

aggregation and stratification of active substances, facilitate the
permeation of electrolyte, enlarge the specific surface area and
release bubbles to accelerate the reaction kinetics (Li T. et al.,
2020). The construction of a hierarchical structure on carbon
supports will also provide an intimate contact interface between
the active substance and the supports, which will facilitate
and improve the electrical conductivity (Zhou et al., 2020).
Taken together, the design and construction of self-supported
hierarchically Co-based catalysts on carbon substrate should be
able to deliver a satisfactory catalytic performance with improved
catalytic activity and robust stability (Yang et al., 2019c).

Herein, we reported a novel and efficient catalyst composed
of hierarchically ultra-thin Co nanosheets arrays coupled
with N-doped carbon plate (denoted as Co-NS@NCP)
for a highly-efficient OER process. Through the rapid
dissolution-recrystallization-carbonization synthesis process,
the self-assembled Co nanosheet arrays and 2D carbon plates
are well-formed on the stable 2D platform surface of NaCl
hard-template. The hierarchical and porous structure of the
Co-NS@NCP provides a high specific surface area (446.49 cm2

g−1), abundant exposed active sites, excellent structure stability,
andmultidimensional mass transfer channels. Thus, the resulting
Co-NS@NCP catalyst displays an excellent OER performance
with a low overpotential at 10mA cm−2 (only 278mV), a small
Tafel slope, as well as steady electrocatalytic stability, which
significantly superior to that of commercial RuO2.

RESULTS AND DISCUSSION

The fabrication process of the Co-NS@NCP catalyst is
schematically described in Figure 1. The Co2+- histidine@NaCl
complexes were first synthesized by the rapid dissolution and
recrystallization of Co(NO3)2·6H2O, histidine, and excessive
NaCl precursors. Histidine, as one of the essential amino acids,
not only has good coordination ability with metal ions, which
is essential for the formation of M-N-C (e.g., Co2+, Ni2+,
Fe3+) (Chen Y. et al., 2019) (Supplementary Figure 1) but
also plays a role of cheap, green and non-toxic sources of N
and C. Besides, excessive NaCl was chosen as a hard-template
which provides a stable 2D platform for the formation and
growth of Co nanosheets and carbon plate (Fu et al., 2017b;
Huan et al., 2019). By rapid dissolution and recrystallization
process, histidine and Co precursors were uniformly deposited
on the surface of NaCl nanocrystals, as observed from the
SEM images in Figure 1. After pyrolysis at 700◦C for 2 h under
N2 atmosphere, the Co2+-histidine@NaCl complexes were
converted into ultrathin Co nanosheets coupled with N-doped
carbon plate (Co-NS@NCP) loaded on NaCl nanocube. During
the annealing process, histidine was transformed into N-doped
carbon plate and Co species were reduced to Co nanosheets on
the surface of the N-doped carbon plate. Finally, after removing
the inside NaCl template with water/ethanol and centrifugation,
the 2D ultrathin Co-NS@NCP was obtained. For comparison,
Co-NS@NCP-600, Co-NS@NCP-650, and Co-NS@NCP-750
samples were prepared via a similar process except with different
pyrolysis temperatures at 600, 650, and 750◦C, respectively. The
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FIGURE 1 | Schematic illustration and SEM images of the formation process of Co-NS@NCP catalyst.

detailed experiment process was described in the Experimental
section. The composition and crystal structure of Co-NS@NCP
was also verified by the corresponding X-ray diffraction (XRD)
pattern. As shown in Supplementary Figure 2, a set of diffraction
peaks located at 44.2, 51.5, and 75.8◦ can be well indexed to
(111), (200), and (220) facets of metallic Co phase (JCPDS Card
No. 15-0806) while a broad diffraction peak at about 26◦ is
corresponding to (002) plane of graphitic carbon.

The morphology and structure features of Co-NS@NCP
were first investigated by scanning and transmission
electron microscopy (SEM and TEM) images. As revealed by
Figures 2a,b, the as-fabricated Co-NS@NCP catalyst presents a
porous hierarchical structure consisted of ultrathin 2D sheet-like
Co nanoarrays which are uniformly distributed on the surface of
the carbon plate. XRD patterns and SEM images of Co-NS@NCP
at different pyrolysis temperatures (Supplementary Figures 3–
5) demonstrate that the composition of the products did not
change significantly while the density of Co nanosheets array
structures enhanced with the increase of pyrolysis temperature.
When the pyrolysis temperature goes up to 750◦C, the array
structures of Co-NS@NCP collapsed. Therefore, 700◦C is the
optimal pyrolysis temperature for the synthesis of Co-NS@NCP
catalysts. Due to the highly open hierarchical architecture and
porosity features, the Co-NS@NCP catalyst possesses a high
Brunauer-Emmett-Teller (BET) surface area up to 446.49 m2

g−1. The pore-size distribution curve (Supplementary Figure 6)
shows the presence of micropores and mesopores in the Co-
NS@NCP-700 catalyst. N2 adsorption-desorption isotherms
(Figure 2c) depict typical IV-type characteristics, indicating
the typical mesoporous features of Co-NS@NCP, which in

accordance well with the SEM and TEM images. The high
specific surface area and highly open hierarchical architecture
of Co-NS@NCP could provide more accessible active-sites and
a large number of electron/mass transfer pathways during the
electrocatalysis process (Chen J. et al., 2019). Magnified SEM
and TEM images (Figures 2d,e) reveal that the flexible and
ultrathin Co nanosheets were interconnected and self-assembled
into many secondary building-units. The thickness of the Co
nanosheet was measured about 4 nm, as obtained from the
magnified SEM image. The high-resolution TEM (HRTEM)
image (Figure 2f) depicts the well-resolved interplanar lattice
spacing of 0.21 nm, corresponding to the (111) plane of cubic
Co phase, which in accordance well with the XRD results above.
Notably, lattice dislocations and defects can also be observed
in the HRTEM image, which may be caused by the curling
and interlacing of flexible nanosheets. The atoms at lattice
dislocations and defects could facilitate the catalytic process
effectively by working as catalytic active sites due to their
coordinative unsaturation nature (Zhou et al., 2019). Scanning
TEM (STEM) image (Figure 2g), corresponding energy-
dispersive X-ray (EDX) element mapping images (Figure 2h),
and line scanning profiles (Supplementary Figure 7) indicating
the uniform interspersion of Co, N and C in the Co-NS@NCP
catalyst. The mass ratio of Co, C, and N elements was measured
to be 60.57: 33.27: 6.15 embodied by the EDX spectrum
(Figure 2i). Thermogravimetry analysis (TGA) was conducted to
further appraise the proportion of Co element in Co-NS@NCP.
As demonstrated in Supplementary Figure 8, the TGA curve
has a significant weight loss at 300–400◦C, which is mainly due
to the weight loss of caron nanosheets and the oxidation of
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FIGURE 2 | Morphology characterization of the composite Co-NS@NCP: Large-area (a) SEM and (b) TEM images; (c) N2 adsorption-desorption isotherms; (d)

Magnified SEM and (e) TEM images; (f) HRTEM image; (g) HAADF-STEM image and (h) corresponding EDX element mapping images; (i) EDX spectrum.

the Co element. The weight content of the Co element in the
Co-NS@NCP was estimated to be about 59.97 wt.% in light of
the residual weight of Co3O4.

X-ray photoelectron spectroscopy (XPS) was further
conducted to examine the composition and surface chemical
valance states of Co-NS@NCP catalyst. The XPS survey scan
spectrum in Supplementary Figure 9 confirms the co-existence
of Co, C, and N elements in the resulting Co-NS@NCP catalyst,
in accordance well with EDX results. The high-resolution Co
2p XPS spectrum in Figure 3A shows two main typical peaks
at 780.3 and 795.6 eV, indicating the presence of 2p3/2 and
2p1/2 orbits of Co3+ and Co2+ species, respectively; while the
peaks at 787.5 and 803.5 eV could be attributed to associated
shake-up satellites. The existence of oxidate Co species could be
ascribed to the surface oxidation of the Co-NS@NCP catalyst

when exposing to air. The high-resolution C 1s spectrum
(Figure 3B) proves an obvious sp2-hybridized C-C peak at
284.6 ev (Wang et al., 2020). It was notable that the peak ascribed
to the C-N bond could be clearly observed at 285.4 eV, indicating
the successful doping of the N element in the carbon plate.
The N 1s spectrum (Figure 3C) can be well-assigned to three
bonding types of N species, pyridinic N (398.1 eV), pyrrolic
N (400.4 eV), and graphitic N (401.9 eV), respectively (Wang
H. et al., 2019). Raman spectroscopy was executed to further
explore the structural characteristic of the Co-NS@NCP catalyst.
As shown in Figure 3D, there are two typical peaks located at
about 1350 and 1580 cm−1 for all the Co-NS@NCP catalysts,
according to the D-band (disordered carbon atoms) and G-band
(graphitic carbon atoms), respectively (Fragal et al., 2019). All
of the Co-NS@NCP samples at different temperatures exhibit
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FIGURE 3 | High-resolution XPS spectra of (A) Co 2p region, (B) C 1s region, and (C) N 1s region, respectively; (D) Raman spectrum of Co-NS@NCP.

a high-intensity ratio of D-band and G-band (ID/IG), which
suggests the high number of defects that origin from the size and
bonding state difference between C and N atoms in the N-doped
carbon. The high content of nitrogen species and high structural
defects in Co-NS@NCP catalyst could result in faster charge
transfer rates and induce more catalytically active sites toward
the catalytic process (Yu et al., 2018).

The electrocatalytic performance of the as-fabricated Co-
NS@NCP catalyst for OER was investigated in an O2-saturated
1.0M KOH solution with a standard three-electrode system.
For comparison, the catalytic performance of commercial RuO2

and Co-NS@NCP catalysts obtained at different annealing
temperatures were also recorded under identical conditions.
All potentials in the polarization curves have not been iR-
corrected. Figure 4A depicted the linear sweep voltammetry
(LSV) polarization curves of Co-NS@NCP catalysts obtained
at different annealing temperatures. The Co-NS@NCP sample
at pyrolysis temperature of 700◦C reveals the best OER
electrocatalytic activities. Co-NS@NCP-700 exhibits the highest
current density during the overall LSV polarization curves.

The activity decreased regardless of the pyrolysis temperature
increases or decreases, which could be ascribed to the structure
superiority of Co-NS@NCP-700. According to Figure 4A, the
overpotentials at the current density of 10mA cm−2 of all
the samples were summarized in Figure 4B. The Co-NS@NCP-
700 sample delivers a low overpotential of only 278mV at the
current density of 10mA cm−2, which is significantly lower than
that of Co-NS@NCP-600 (396mV), Co-NS@NCP-650 (391mV),
and Co-NS@NCP-750 (383mV). The low overpotential of Co-
NS@NCP-700 is even superior to the commercial RuO2 (342mV)
and lower than most of the previously reported Co-based
electrocatalysts (Supplementary Table 1). The OER kinetics and
mechanism of all the samples were investigated by Tafel plot
which calculated from the polarization curves (Chen et al., 2020).
As depicted in Figure 4C, the Co-NS@NCP-700 sample exhibits a
favorable Tafel slope value of 95.9mV cm−2 which is competitive
to commercial RuO2 (101.6mV cm−2) and clearly less than Co-
NS@NCP-600 (126.4mV cm−2), Co-NS@NCP-650 (135.6mV
cm−2), and Co-NS@NCP-750 (125.1mV cm−2). The low Tafel
slope of Co-NS@NCP-700 manifests that the Co-NS@NCP-700
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FIGURE 4 | Electrocatalytic OER performance of different samples in 1.0M KOH electrolyte: (A) LSV polarization curves; (B) overpotentials at a current density of

10mA cm−2; (C) Tafel plots derived from the panel; (D) Cdl values; (E) EIS Nyquist plots; (F) LSV polarization curves of the Co-NS@NCP-700 catalyst before and after

1,000 cycles.

employs the first discharge step (i.e., the chemical adsorption of
OH− species: M+OH−

→ M-OH+ e−) as a rate-limiting step
and influences the reaction kinetics (Xu et al., 2019).

To estimate the authentic catalytic active site number of Co-
NS@NCP for the OER process, the electrochemical double-layer
capacitance (Cdl) of all the Co-NS@NCP samples were assessed
by a cyclic voltammetry curve (CV) with different scan rates
at non-Faradaic potential region (Supplementary Figure 10).
Normally, the Cdl values are positively linearly proportional
to the electrochemical surface area (ECSA) at the solid-liquid
interface (Xu et al., 2020). As shown in Figure 4D, the Co-
NS@NCP-700 catalyst exhibits a Cdl value of 8.0 mF cm−2,
which larger than that of other samples of different temperatures
(Co-NS@NCP-600: 3.8 mF cm−2, Co-NS@NCP-650: 4.4 mF
cm−2, and Co-NS@NCP-750: 5.6 mF cm−2,). Besides, the
electrochemical impedance spectroscopy (EIS) measurement was
further executed to estimate the reaction kinetics during the OER
process (Zhu et al., 2019). As shown in Nyquist plots measured
at 1.57V (Figure 4E), the Co-NS@NCP-700 catalyst displays
the smallest charge transfer resistance (Rct) in all catalysts
obtained at different pyrolysis temperatures, demonstrating a
good charge transfer resistance and faster OER kinetics. The
stability of the Co-NS@NCP-700 sample is also examined by
running sequential 1,000 CV scanning cycles. As depicted in
Figure 4F, the LSV curve of Co-NS@NCP-700 after 1,000 CV
cycles is almost the same as the previous one. The overpotential
of OER at the current density of 10mA cm−2 only increased

by 13mV, demonstrating excellent electrochemical stability in
an alkaline medium. Long-term i–t chronoamperometric teat
was also executed to verify the good electrochemical stability
of Co-NS@NCP-700. In O2-saturated 1.0M KOH solution,
the current density of Co-NS@NCP-700 remains stable under
sequential i-t test at a constant potential of 1.51V for even
over 12 h (Supplementary Figure 11a). XPS characterization
of Co-NS@NCP-700 sample before and after the i-t test
(Supplementary Figure 11b) indicates that the peaks of high-
resolution Co 2p spectrum of Co-NS@NCP-700 shift to higher
binding energies after i-t test, which may be attributed to the
surface oxidation of Co-NS@NCP-700 catalyst at high oxidation
potential during OER process. To evaluate the quantity of catalyst
comprehensively, the Faradic efficiency of Co-NS@NCP-700
during the OER process was also measured through the drainage
gas collector device (Supplementary Figure 12a). As depicted
in Supplementary Figure 12b, the experimental and theoretical
O2 yield-time curve is almost overlapped at a constant current
density of 20mA cm−2. Thus, the calculated Faradic efficiency
is nearly 100%, indicating the ultrahigh selectivity of the Co-
NS@NCP-700 catalyst for OER. Taken together, the outstanding
OER activity, stability, and selectivity of Co-NS@NCP makes it
a promising non-precious metal catalyst for OER with low cost
and high efficiency.

The excellent OER performance is greatly associated with
the vertically aligned ultrathin Co nanosheet arrays and
hierarchically porous architecture of Co-NS@NCP catalyst (Zhou
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et al., 2017). First, the self-supported and vertically aligned
ultrathin Co nanosheet arrays possess a large number of
more accessible active sites, which is favorable to facilitate the
OER process (Hua et al., 2019; Zhang et al., 2019). Second,
the hierarchically porous architecture of Co-NS@NCP has
prominent structural advantages that not only provide a highway
formass diffusion/transport but also prohibit themutual stacking
and aggregation of nanosheets during the OER process (Mishra
et al., 2018). Last but not least, the N-doped carbon plate, which
serves as a good electron conductor, could boost the interaction
with oxygen/protons species and stabilizes the catalytic active
components during the OER process (Zhang, C.-L. et al., 2020).

CONCLUSION

To sum up, we reported a novel and efficient catalyst composed
of hierarchically ultra-thin Co nanosheet arrays coupled with
N-doped carbon plate through a feasible and easily scalable NaCl
template method for a highly-efficient catalytic OER process.
NaCl hard-template could provide a stable 2D platform for the
formation and growth of self-assembled Co nanosheet arrays and
2D carbon plates during the dissolution-recrystallization-
carbonization process. Benefitting from the vertically
aligned ultrathin Co nanosheet arrays and hierarchically
porous architecture, the obtained Co-NS@NCP possesses
sufficient exposed active sites, excellent structure stability, and
multidimensional mass transfer channels. As expected, the
Co-NS@NCP affording remarkable electrocatalytic performance
for OER in alkaline medium with a low overpotential of
only 278mV at 10mA cm−2, a small Tafel slope, as well as
robust electrocatalytic stability for the long-term electrolysis
process. The present findings here may shed a feasible and
promising perspective for the development of high-efficiency
noble-metal-free electrocatalysts for OER and energy storage
and conversion system.

EXPERIMENTAL SECTION

Reagents and Chemicals
Cobalt nitrate hexahydrate (Co(NO3)2·6H2O), L-histidine
dihydrochloride (C6H10ClN3O2), and sodium chloride (NaCl)
were furnished from Sinopharm Chemical Regent Co., Ltd.
(Shanghai, China). Commercial Ruthenium oxide (RuO2) was
purchased from Alfa Aesar Co., Ltd. All reagents and chemicals
were used without further purification.

Synthesis of the Co-NS@NCP Catalysts
In a typical synthesis, 2.5mM of L-histidine dihydrochloride,
5 g of NaCl, and 1mM of Co(NO3)2·6H2O are dissolved in
10mL of deionized water with continuous vigorously magnetic
stirring for 30min to form a clear pink solution. Then, the
solution was transferred into an open bottle and heated at 80◦C
for 5 h in an oil bath. Subsequently, this mixture was dried
overnight in a vacuum oven to remove superfluous moisture.
After that, the sediment was calcined in a tube furnace at 700◦C
for 2 h with a heating rate of 5◦C/min in the N2 atmosphere.
The obtained black product was named Co-NS@NCP-700 and

washed with ethanol and deionized water several times. Finally,
the as-prepared Co-NS@NCP-700 was dried in an oven at 60◦C
overnight. For comparison, catalysts obtained from the above
method under different pyrolysis temperatures of 600, 650, and
750◦C are named Co-NS@NCP-600, Co-NS@NCP-650, and Co-
NS@NCP-750, respectively.

Characterization
The crystalline and phase of the products were determined
by X-ray powder diffraction (XRD) on a Rigaku D/max-
RC diffractometer with a Cu Kα radiation (λ = 1.5406
Å). The morphology and structure of the products were
represented by scanning electron microscopy (SEM, Hitachi
S5500), transmission electron microscopy (TEM, JEOL JEM-
2100F, 200 kV), and high-resolution transmission electron
microscopy (HRTEM, JEOL JEM-2100F, 200 kV). High-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) and elemental mapping images were conducted
on an FEI Tecnai G2 F20 microscope, which is built as an
accessory to the JEOL JEM-2100F. The surface composition of
materials was identified by X-ray photoelectron spectroscopy
(XPS) on a Thermo VG Scientific ESCALAB 250 spectrometer
with an Al Kα light source. Thermogravimetric analysis (TGA)
was carried out under air with a temperature ramp of 10◦Cmin−1

using a Netzsch SSTA 449C thermogravimetric analyzer (Netzsch
STA 449C).

Electrochemical Measurement
All electrochemical tests were performed by using a conventional
three-electrode system on a CHI 760E electrochemical analyzer
at 25◦C. In the three-electrode system, a glassy carbon electrode
(GCE, 3mm in diameter) served as a working electrode, a
saturated calomel electrode (SCE) served as a reference electrode
while a carbon electrode served as an auxiliary electrode. The
5 mg/mL of catalyst ink was prepared by ultrasonic dispersion
method into a well-proportioned suspension as a working
electrode. The solvents for the catalyst ink are water and ethanol
in a ratio of 3:1. The 10 µL catalyst ink was evenly dropped
to the surface of polished GCE and dried at room temperature.
After that, 3 µL of 5 wt.% Nafion solution was dropped on
the surface of catalyst modified GCE. The OER tests were
implemented in O2-saturated 1.0M KOH solution with Linear
SweepVoltammetry (LSV) at a scan rate of 5mV s−1 at 25◦C. The
electrochemical double-layer capacitances (Cdl) were obtained
through a series of CV tests (scan rate: 20 ∼ 100mV s−1) at the
potential range of 1.02 – 1.12V. In this work, all the potentials
were converted to a reversible hydrogen electrode (RHE). The
equation of potential conversion from SCE to RHE is described
in Equation (1):

ERHE = ESCE + 0.0592pH+ 0.242 (1)
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