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Resistive switching random access memory (RRAM) has emerged for non-volatile

memory application with the features of simple structure, low cost, high density, high

speed, low power, and CMOS compatibility. In recent years, RRAM technology has

made significant progress in brain-inspired computing paradigms by exploiting its unique

physical characteristics, which attempts to eliminate the energy-intensive and time-

consuming data transfer between the processing unit and the memory unit. The design

of RRAM-based computing paradigms, however, requires a detailed description of the

dominant physical effects correlated with the resistive switching processes to realize

the interaction and optimization between devices and algorithms or architectures. This

work provides an overview of the current progress on device-level resistive switching

behaviors with detailed insights into the physical effects in the resistive switching layer

and the multifunctional assistant layer. Then the circuit-level physics-based compact

models will be reviewed in terms of typical binary RRAM and the emerging analog

synaptic RRAM, which act as an interface between the device and circuit design. After

that, the interaction between device and system performances will finally be addressed

by reviewing the specific applications of brain-inspired computing systems including

neuromorphic computing, in-memory logic, and stochastic computing.

Keywords: memristive devices, RRAM, physics-based models, brain-inspired computing, neuromorphic

computing, computing in-memory, stochastic computing

INTRODUCTION

In the 1960s, the resistive switching phenomenon in metal–insulator–metal structure was first
reported by Hickmott in binary oxides (Hickmott, 1962). As the development of material
processing and device integration technologies, the research into the resistive switching in
memristive devices was revived in the late 1990s (Asamitsu et al., 1997; Sawa, 2008; Waser et al.,
2009; Wong et al., 2012; Yang et al., 2013; Pan et al., 2014; Jeong et al., 2016; Wu H. et al., 2017).
The resistive switching random access memory (RRAM) are widely investigated in recent years
for their potential to be used as a promising candidate for non-volatile memories (Asamitsu et al.,
1997; Sawa, 2008; Waser et al., 2009; Wong et al., 2012). A typical RRAM device consists of a metal
oxide-resistive switching layer sandwiched between two electrodes. The resistance of the device can
be switched reversibly between the high-resistance state (HRS) and the low resistance state (LRS).
Up to now, significant technical advances have been achieved in the device performance of RRAM,
including great scalability (<10 nm), fast speed (<1 ns), low operation voltage (<1.5V) and current
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(<1 µA), high endurance (>1012 cycles), an long retention (>10
years at room temperature for binary state RRAM) (Lee et al.,
2008, 2010, 2012; Chen et al., 2009; Chien et al., 2010; Govoreanu
et al., 2011; Wang et al., 2012; Li K. S. et al., 2014).

So far, to reveal the origins of resistive switching in RRAM, a
large variety of physical mechanisms have been proposed leading
to the resistive switching effects such as oxygen vacancy (Vo)
generation and recombination, ion migration, charge trapping
and de-trapping, thermal reaction, insulator-to-metal transition,
charge transfer, and so on (Russo et al., 2007; Wei et al., 2008;
Degraeve et al., 2010; Kwon et al., 2010; Goux et al., 2011; Kang
et al., 2015). Multiple experimental techniques have been utilized,
so far, in order to identify the resistive switching mechanism
such as high-resolution X-ray photoelectron spectroscopy (XPS),
scanning electron microscopy (SEM), conductive atomic force
microscopy (C-AFM), and transmission electron microscopy
(TEM) (Baek et al., 2004; Janousch et al., 2007; Yun et al.,
2007; Yang et al., 2012). These techniques are widely used in
the conductive-bridge random access memory (CBRAM) with
fruitful findings. However, for the metal oxide-based RRAM, it
is difficult to directly observe the Vo defects. It is now commonly
accepted that the switching behavior inmetal oxide-based RRAM
is due to the formation and rupture of the conductive filament
(CF) composed of Vo in the resistive switching layer (Sawa, 2008;
Waser et al., 2009;Wong et al., 2012; Pan et al., 2014;WuH. et al.,
2017).

In the early work, the RRAM devices with single resistive
switching layer are widely studied. The typical binary oxides
that exhibit resistive switching characteristics includes HfOx,
Al2O3, TaOx, TiOx, and NiO (Sawa, 2008; Waser et al., 2009;
Wong et al., 2012; Yang et al., 2013; Pan et al., 2014; Jeong
et al., 2016; Wu H. et al., 2017). To specifically optimize the
device performance, RRAM devices with multi-layer electrolyte
stack are also proposed and investigated such as HfOx/Al2O3,
Ta2O5/TaOx, and HfOx/TaOx, where one electrolyte layer acts
as the resistive switching layer, and the other acts as an assistant
layer to enhance the performance. After inserting an assistant
layer, the device uniformity and reliability can be improved, and
other additional function such as self-compliance, self-rectifying,
and even analog switching can be realized (Lee et al., 2011; Hsu
et al., 2014; Azzaz et al., 2015; Chou et al., 2015; Zhao et al.,
2015, 2016; Woo et al., 2016a; Wu W. et al., 2017; Wu et al.,
2018). Compared with the typical binary switching with two
stable resistance states, analog switching is an attractive device
property to mimic the function of biological synapse.

Due to the unique characteristics, RRAM has been suggested
for use as building blocks for brain-inspired computing systems
(Yang et al., 2013; Philip Wong and Salahuddin, 2015; Chi et al.,
2016; Jeong et al., 2016; Yu, 2018). The brain-inspired computing
paradigms are highly desired to overcome the bottleneck of the
so-called “memory wall” from the traditional von Neumann
architecture. The brain-inspired computing aims to carry out
calculations where the data are located, which is similar to the
information processing in the human brain. The RRAM electrical
characteristics can mimic the signal processing of biological
synapse, making it feasible to be applied into neuromorphic
applications to perform energy-efficient, fault-tolerant, and

highly parallel computing tasks (Yu et al., 2012; Gao et al.,
2014, 2016; Prezioso et al., 2015; Wang et al., 2017). RRAM was
also proposed and demonstrated to implement the stateful logic,
in which Boolean logic states were operated and stored in the
resistance of RRAM (Borghetti et al., 2010; Li et al., 2015a; Huang
P. et al., 2016). With the feature of inherent variability, RRAM
shows great potential to be used as low-cost and energy-efficient
stochastic number generator enabling stochastic computing,
which emulates the generation of neural spikes processed by the
human brain in the form of long sequences of noisy voltage spikes
(Gaba et al., 2013; Suri et al., 2013; Knag et al., 2014; Moons
and Verhelst, 2014; Ielmini and Wong, 2018; Wang et al., 2018;
Carboni and Ielmini, 2019; Zhao et al., 2019). For the design
and optimization of these brain-inspired computing systems,
related physics-basedmodels and simulation platforms have been
developed to bridge the link between device, circuit, and system,
which aims to meet the requirement for the device–circuit–
system co-design (Gao et al., 2011; Guan et al., 2012; Huang et al.,
2013, 2017, 2018; Chen et al., 2017; Larcher et al., 2017; Pedretti
et al., 2017; Zhao et al., 2019; Cai et al., 2020; Liao et al., 2020).

In this work, we will review the latest advances in the design
and optimization of metal oxide-based RRAM in the applications
of brain-inspired computing systems based on physics-based
models. First, the physical effects in both the resistive switching
layer and the multifunctional assistant layer of RRAM are
discussed in the Physical Effects of Resistive Switching Behaviors
in Resistive Switching Random Access Memory section. Then,
the physics-based compact models of typical binary RRAM
and the analog synaptic RRAM are presented in the Physics-
Based Compact Models of Resistive Switching Random Access
Memory section. In the Applications in Brain-inspired Computing
section, the design and optimization of system applications
of RRAM in novel brain-inspired computing paradigms are
explored. The reviewwill be concluded with a short summary and
future prospect.

PHYSICAL EFFECTS OF RESISTIVE
SWITCHING BEHAVIORS IN RESISTIVE
SWITCHING RANDOM ACCESS MEMORY

Understanding the dominant physical effects in the resistive
switching behaviors in metal oxide RRAM is crucial for designing
and optimizing the device performance. In this section, we will
first address the physical effects correlated with the resistive
switching layer in detail, and then discuss the various functions
of assistant layers in the bilayer device.

Physical Effects in the Resistive Switching
Layer
The resistive switching of the metal oxide RRAM has been
attributed to the filamentary modification of conduction
properties since the early 2000s (Waser et al., 2009; Wong
et al., 2012; Pan et al., 2014). To reveal the physical effects
and the resistive switching mechanism of Ox-RRAM, multiple
experimental techniques have been utilized. For the metal oxide-
based RRAM, although it is difficult to directly observe the
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Vo defects, the resistive switching behaviors can be detected by
the change in electrostatic potential distribution through in situ
electron holography, which is based on the change of transmitted
electron wave phase triggered by the accumulated charges in the
sample (Li et al., 2017). This is because the electrons traveling
along the CF would change the potential of the HfOx layer. The
in situ low-energy-filtered images can then be used to describe
the change in oxygen concentrations in HfOx layer. Based on this
technique, the bias-induced phases featuring 1ϕ

bias(x,y) of the
TiN/HfOx/AlOy/Pt structure in the forming process are shown
in Figure 1A. During the forming process, positive bias is applied
to the TiN top electrode (TE), and the increasing bias would
enhance the positive potential with the most positive charges
aggregated near the interface between the HfOx and AlOy layers.
With the bias increasing over 3V, the potential of the AlOy layer
changes to nearly zero and then becomes negative. At the same
time, in the lower half of the HfOx layer, a negative potential
emerges and then diffuses vertically toward TE. The positive
charges originated from Vo, while the negative potential can be
attributed to the transport electrons residual in the migration
path, which can be used to track the CF formation process in
the HfOx layer. The RESET process can also be monitored by
the hologram images similarly, which demonstrates that the CF
starts to rupture from the interface of TE and the HfOx layer.
Based on the above experimental results, the CFs in the resistive
switching layer are formed due to the fact that Vo are generated
and ruptured at the top interface of the HfOx layer.

To explain the physical origin of generation and rupture of
the CF, multiple switching mechanisms have been proposed in
recent years (Russo et al., 2007; Wei et al., 2008; Degraeve et al.,
2010; Kwon et al., 2010; Goux et al., 2011; Kang et al., 2015).
Combining with the experimental evidence, one widely accepted
physical mechanism is the generation and combination of Vo
with O2− (Gao et al., 2011; Guan et al., 2012; Huang et al., 2013;
Kang et al., 2015). Based on the mechanism, the microscopic
physical processes of switching of the typical TiN/HfOx/Pt device
are shown in Figure 1B. In the SET process, O2− are ionized
from the HfOx lattice accompanied by the generation of Vo.
The O2− will be driven toward TE under the electric field and
restored at the oxygen reservoir, which is the TiN electrode in
the TiN/HfOx/Pt structure. The probability of above microscopic
processes can be described as Guan et al. (2012):

Pg = f · exp(−
E0 − 1ϕ

kBT
) (1)

where f is the vibration frequency of the oxygen atom, E0 denotes
the average active energy of VO generation or O2− hopping, 1φ

is the barrier height reduction induced by the electric field, and
T is the local temperature. In the RESET process, the electrons in
the vicinity of Vo are depleted under the electric field, and then
the positively charged Vo would recombine with the dissociated
O2− released by the oxygen reservoir. The recombination of Vo
and O2− finally results in the rupture of CF.

For other resistive switching materials, such as TiO2 and
Ta2O5, the phase transition also takes place during the resistive
switching (Wei et al., 2008; Kang et al., 2015). The phase

transitions in TiO2 and Ta2O5 were calculated by ab initio
calculations as shown in Figure 1C (Kang et al., 2015). In
the Ta2O5-based RRAM, the phase transitions take place
between Ta2O5 and TaO2, and Ta2O5 is semiconductive, while
TaO2 is metallic. During the resistive switching, the CF is
composed of both Vo and TaO2. Although the effects of Vo
generation/recombination and phase transition coexist during
switching, the Vo generation/recombination is the dominant
effect based on the device simulation results (Zhao et al., 2016).

Based on the basic principle of Vo generation and
recombination, the bipolar and unipolar switching characteristics
can be explained by a unified model (Gao et al., 2011). Their
physical origins of CF formation and rupture between the
bipolar switching and unipolar switching are roughly similar.
The difference is the location that stores and releases O2−. In
the unipolar RRAM, the dissociated O2− would be absorbed or
released by the easily reduced oxide clusters near the CF, and
several different phases of oxide clusters coexist in the electrolyte
material. The O2− will be thermally activated and recombine
with the neighbor Vo in the RESET process. For both bipolar and
unipolar RRAM, the electron transport in the CF is metallic, and
the conductivity decreases with increasing temperature following
the Arrhenius law (Ielmini et al., 2010). In the region with low
Vo concentration, the electrons hop among the dispersive Vo,
and the hopping rate can be calculated by the Mott hopping
model (Mott and Davis, 1972). Therefore, the I–V characteristics
are nonlinear for the HRS device as shown in Figure 1D. Based
on the physical effects of resistive switching, the kinetic Monte
Carlo simulations can be performed to investigate the switching
dynamics in atomic scale. Figure 1D shows the CF evolution
processes during RESET and SET processes (Huang et al., 2013).
In the RESET process, the CF first ruptures at the interface
between the TiN and HfOx layer, and then the gap region
enlarges gradually. In the SET process, a thin CF first connects
the electrode and residual CF, and then the thin CF would grow
along the radius direction.

Even the filament effect and the correlated physical effects
have been widely accepted for resistive switching, the direct
experiment evidences of the physical effects in microscopic
characterizations are still lacking. Future breakthroughs in
atomic level characterization technologiesmay finally help people
to clarify the underlying physical origins.

Device Optimization With Multifunctional
Assistant Layer
The RRAM characteristics can be improved or modified by
inserting an assistant layer adjacent with the resistive switching
layer, which composes a multifunctional electrolyte stack. A
typical example is the Ta2O5/TaOX bilayer stack, which aims
to improve the endurance characteristics (Wei et al., 2008; Lee
et al., 2011). In the Ta2O5/TaOX stack, the oxygen-deficient
TaOX layer, instead of TiN electrode in the HfOX-RRAM, acts
as the oxygen reservoir. The generated O2− in the SET process
would be absorbed by the TaOx layer, in which part of O2−

will continue hopping in the TaOx layer under the electric field,
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FIGURE 1 | (A) The bias-induced phases featuring 1ϕ
bias(x,y) in the forming process of HfOx- resistive switching random access memory (RRAM). The intrinsic inner

potential is removed by using the phase image of the pristine sample without bias. The dash curve is the boundary between the positive and negative phases. TE, top

electrode; BE, bottom electrode. (B) Physical effects during SET and RESET processes. (C) Ab initio calculation results for various metal oxide materials such as

HfO2, TiO2, and Ta2O5. (D) I–V curves and the corresponding CF evolutions simulated by the kinetic Monte Carlo method during RESET and SET processes.

Reprinted from Kang et al. (2015), Huang et al. (2013), and Li et al. (2017).

while the rest will take the redox reaction with the oxygen-
deficient TaOx and be stored as lattice oxygen. The oxygen
concentration in the TaOx layer increases as O2− gradually
oxidizes TaOx, leading to the resistance increase in the TaOx
assistant layer. In this way, the current during the SET process
can be adjusted dynamically and prevented from being too
large. This can explain the self-compliance behavior observed
in measured I–V characteristics in Ta2O5/TaOX-based RRAM
as shown in Figure 2A (Zhao et al., 2016). Besides that, one
remarkable characteristic of Ta2O5/TaOX-based RRAM is the
superior endurance performance. The endurance can reach up
to 1012 as shown in Figure 2A (Lee et al., 2011). Moreover, the
endurance can be enhanced when choosing lower oxygen partial
pressure during the deposition of TaOx. The enhanced endurance
can be attributed to the capability of TaOx to take redox reactions
with O2−, which can then be stored concentrated near CF in the
TaOx layer. Figure 2A schematically shows the endurance model
in the bi-layered TaOx-based RRAM (Zhao et al., 2015). During
the resistive switching process, the concentrated distribution
of absorbed oxygen guarantees the sufficient supply of O2− in
each RESET cycle, otherwise, the O2− would distribute more
dispersively in the oxygen reservoir. If the TaOx material is easy

to take redox reactions with O2−, the endurance can be highly
enhanced, otherwise the endurance behavior would be degraded.

For HfOx-based RRAM, recent studies demonstrated that
by introducing a thin Al2O3 layer into the HfO2-based RRAM
devices, the switching uniformity, memory window, as well as
the operating current can be improved compared with the single-
layer HfOx RRAM (Yu et al., 2011; Goux et al., 2012; Azzaz et al.,
2015). Figure 2B shows the LRS and HRS retention behaviors for
the HfO2/Al2O3 device at 200◦C. The comparison between the
retention of HfO2 and HfO2/Al2O3 are also shown in Figure 2B.
The insertion of the Al2O3 assistant layer greatly improves the
device thermal stability. This can be explained by the increase
in Vo diffusion barrier due to the incorporation of Al into the
HfO2 matrix.

The assistant layer can also help the device realize self-
rectifying property. Due to the sneak current issue in the RRAM
crossbar array, the maximum array size is limited, which requires
an additional selector to suppress the current crosstalk. One
solution to reduce the cell area and fabrication complexity
is to construct a RRAM device with highly non-linear I–V
characteristics, which is also known as selector-less or self-
rectifying. A Ta/TaOx/TiO2/Ti RRAM cell is constructed with a
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FIGURE 2 | (A) The self-compliance and enhanced endurance characteristics of Ta2O5/TaOX-based RRAM and its schematic endurance model. (B) The retention

characteristics at 200◦C of the HfO2/Al2O3 device and its comparison with the single-layer HfO2 device. (C) Self-rectifying characteristics in the TaOx/TiO2-based

RRAM with 103 rectifying ratio and the schematic mechanism. (D) Analog switching behavior under both SET and RESET pulses in the HfOx/TaOx RRAM. Reprinted

from Lee et al. (2011), Azzaz et al. (2015), Chou et al. (2015), Zhao et al. (2015, 2016), Wu W. et al. (2017).

high self-rectifying ratio up to 103 for sneak current suppression
(Chou et al., 2015). Figure 2C shows the I–V characteristics of the
proposed device. No obvious SET transition is observed during
the switching from HRS to LRS. Compared with a positive-bias
current at 2V, the device shows a three-order rectifying ratio at
+2V and −2V. Different from the filamentary switching in a
single-layer device, the switching mechanism in the TaOx/TiO2-
based device can be attributed to the O2− migration under the
electric field and the Schottky barrier modulation at the Ta/TaOx
interface as shown in Figure 2C.

Compared with the abovementioned binary RRAM with two
stable resistance states, the analog RRAM with hundreds of
resistance levels is an attractive device to mimic the function
of biological synapse for neuromorphic computing. A gradual
resistance change requires analog modulation of CF evolutions,
while it contrasts with the presence of the gap, as the current
depends exponentially on the band offset and thickness of the
gap. Another issue that contrasts the analog switching is the
exponential dependence of physical effects on the field (Larcher
et al., 2017). Mitigating the strong field dependence is the key to
achieve analog switching, which can be achieved by introducing
an assistant layer in the device. Several methods have been
used to form the assistant layer such as introducing an AlOx
layer in the HfOx-based RRAM (Woo et al., 2016a; Chuang
et al., 2019), introducing a SiO2 layer at the TiN/TaOx interface
(Wang et al., 2016), insertion of a TiO2 layer in the TaOx/Ti
interface (Gao et al., 2015), and the Ar plasma treatment at
the Ti/HfO2 interface (Ku et al., 2019). Figure 2D shows the
analog switching behavior by introducing an oxygen-deficient

TaOx layer in the HfOx/Ti RRAM cell at room temperature (Wu
W. et al., 2017; Wu et al., 2018). For the HfOx/Ti RRAM cell,
the experimental measurements indicate that when increasing
the temperature in the HfOx layer, the abrupt switching changes
to analog switching due to the thermal effect. Based on this
principle, a thermal enhanced layer is designed with less thermal
conductivity than metal, therefore it will confine the heat in the
HfOx switching layer. In the HfOx/TaOx RRAM, the DC I–
V characteristics exhibits gradual current change in both SET
and RESET processes. For the operation scheme of identical
pulses, the gradual conductance modulations are achieved in
both SET and RESET processes as shown in Figure 2D. Besides
the thermal effect, simulations also show that the slower diffusion
of O2− in the bi-layer device would benefit the gradual resistance
change (Larcher et al., 2017). The slower diffusion is due to the
lower electric field within the oxygen reservoir layer, originated
by the voltage distribution and the lower dielectric constant of
the assistant layer compared with the resistive switching layer.
Therefore, a careful thermal and electric design is required to
achieve analog switching behavior.

For the analog RRAM, the distribution of multi-level
resistance states is widely spread. The wide conductance
distribution causes the overlap of neighboring conductance
states, resulting in retention degradation (Huang et al., 2018). In
addition, after programming the device to the target conductance
state, the conductance of the device may experience a notable
change in a short time scale, forming tail bits (Xu et al., 2020).
This is called conductance relaxation effect, which is different
from retention degradation. The relaxation effect and retention
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degradation are mainly due to the stochastic diffusion of O2−

and Vo, thus can be suppressed by the restriction of O2− and
Vo diffusion. For instance, Al doping in HfOx-based RRAM
and HfO2/Al2O3 multilayer stack are used to suppress the Vo
diffusion (Chen et al., 2013; Fantini et al., 2014). However, doping
may introduce dopant variations with the device scaling down
to a small size. A post annealing process after Hf/HfO2 RRAM
formation was used to form an HfOx interface layer to enhance
retention by slowing down the oxygen diffusion (Huang X. et al.,
2016). Devices with worse state instability and retention need a
short refresh interval to ensure accuracy of neural network, which
brings extra power consumption.

PHYSICS-BASED COMPACT MODELS OF
RESISTIVE SWITCHING RANDOM ACCESS
MEMORY

The compact model is very important for the development
of emerging devices. It can provide fast calculations of the
device electrical properties and be implemented into standard
IC design software to evaluate the performance of the target
system. Moreover, a compact model involving the device
physics can act as an interface between the device and the
circuit. For RRAM device, based on the understanding on
the microscopic properties of CF evolution and the correlated
device characteristics, the physics-based compact models are
investigated to capture the essential characteristics, which can be
used to design and optimize the brain-inspired systems.

Binary Resistive Switching Random
Access Memory
The first model of RRAM is the memristor model proposed
by Chua (1971). Then a physical model for the device that
behaves like a perfect memristor is proposed with a simplified
explanation of current–voltage anomalies (Strukov et al., 2008).
With the development of understanding of physical effects
in RRAM, a compact model by considering the generation
and recombination of Vo is proposed and implemented in
Ngspice (Guan et al., 2012). Numerical compact models have
also been developed based on the temperature and field-driven
ion migrations (Larentis et al., 2012; Kim et al., 2013). By
invloving the electro-themal effect, a physics-based compact
model is proposed by bridging the switching behaviors with the
evolution of CF configuration (Huang et al., 2013). The model
is implemented into HSPICE and used for simulation of large-
scale circuit by Verilog-A. In this section, this physics-based
electro-thermal model will be discussed in detail.

Based on the kinetic Monte Carlo simulations in Figure 1D,
the model with 3-D CF evolution process is developed as shown
in Figure 3A (Huang et al., 2013). For the initial state of RESET,
a cylindrical CF with the diameter w0 bridges two electrodes.
The RESET process is modeled by the increase in gap distance x
between the CF tip and the top electrode when the bias increases.
The increase rate of x is expressed as dx/dt. The x determines
the HRS resistance, and dx/dt determines the RESET speed.
The dx/dt can be calculated by the slowest process among: (1)

electrode releasing O2−, (2) O2− hopping in the switching layer,
and (3) recombination between O2− and VO.

As an example, to illustrate the modeling process, we consider
the O2− hopping process as the slowest process, which is also
called the dominant process. During RESET, the amount of O2−

flowing through the unit area of cross-section per unit time can
be written as:

JO2− = 1/2(Ph(E,T, dt)− Ph(−E,T, dt))/(a2dt) (2)

where JO2− is the O2− flow rate, a is the distance between two VO.
The coefficient 1/2 is due to the two hopping directions of O2−.
In dt, the amount of O2− hopping to VO is:

NO2− = JO2−π(w0/2)
2dt (3)

and the amount of VO that take recombination reaction with
O2− is:

NVO = π(w0/2)
2dx/a3 (4)

Combining Equations (3) and (4), we can get:

dx

dt
= af exp(−

Eh

kBT
) sinh(

αhZeE

kBT
) (5)

where Eh is the hopping barrier of O
2−, E is the electric field, αh is

the enhancement factor of the electric field for the lowering of Eh,
and Z is the charge number of oxygen ion. If the O2− releasing
or Vo recombination is the dominant process, the dx/dt can be
calculated similarly.

For the SET process, the CF evolution is divided into two
steps as shown in Figure 3A. First, a thin CF would grow from
the residual CF and then connect to the electrode. Then, the
thin CF would expand laterally along the radius direction. The
reduction speed of gap distance dx/dt and the increase in speed
of CF radius dw/dt can be calculated similarly, which are the
two factors that influence the SET operation. The equivalent
circuit of RRAM is shown in Figure 3B. It consists of a parallel
capacitance (Cp), a parallel resistance (Rp), contact resistance
(Rc), and the resistive switching elements (Rs). The conduction of
the switching element can be modeled with metallic conduction
in the CF region and hopping conduction in the gap region as
shown in Figure 3C (Huang et al., 2013). The temperature also
plays a very important role in resistive switching. In the model,
we assume uniform temperature in the electrolyte layer, and the
temperature at LRS can be written as Russo et al. (2009):

T = T0 + IVRth (6)

where T0 is the environment temperature, Rth is the effective
thermal resistance of the electrolyte. Involving the model
of conduction and temperature, the I–V characteristics can
be calculated.

The calculated DC and AC electrical characteristics are
shown in Figures 3D,E. The compact model can accurately
reproduce the gradual RESET and the abrupt SET in the DC
I–V characteristics. The transient response current waveforms
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FIGURE 3 | (A) Schematic of the conductive filament (CF) evolution model in the RESET and SET process. (B) Equivalent circuit with parasitic effects. (C) The low

resistance state (LRS) and high resistance state (HRS) conduction model. (D) Measured and calculated DC and (E) AC characteristics for different operation schemes.

Reprinted from Huang et al. (2013).

for different RESET programming schemes of −2 V/500 ns and
−2.3 V/50 ns can also be successfully reproduced. The excellent
agreement between the modeling andmeasured results shows the
validity and universality of this compact model to capture the
main features of the RRAM devices. Using the model, the critical
parameters during switching can be extracted from the physical
view, thus providing design space for device optimization and
device–circuit co-design.

Besides the basic resistive switching characteristics, the
compact model for synaptic features of HfOx-based RRAM
is developed to satisfy the co-design requirements of RRAM
synapses and the CMOS neurons in the neuromorphic
computing systems (Huang et al., 2017). The conductance
change in HfOx-based RRAM can emulate the activating or
deactivating ion channels of biological synapse, and the gradual
RESET and stochastic SET can emulate the biological depression
and potentiation processes. During RESET process, multiple
intermediate states can be achieved under proper spike pulses,
and they can be divided into three stages as shown in Figure 4A

(Huang et al., 2017). Figure 4B schematically shows the model
of gradual RESET with three stages. In the first stage, with O2−

released by the electrode, the Vo density near the electrode would
decrease, resulting in the slimming of CF. The conductance in
this stage is linear with CF width, so the conductance decrease
is relatively low. In the second stage, CF is ruptured from
the tip, and the O2− released by the electrode would continue
recombining with VO in the CF. In this stage, the resistance is
approximately exponentially dependent on the gap distance, and
thus, the conductance decreases fast. In the third stage, due to
the decrease in electric field in the gap, the reaction rates of O2−

hopping and Vo recombination decreases; hence, the resistance
would tend to saturate.

The SET process in the single-layer HfOx-based RRAM is
typically abrupt; thus, only binary states can be achieved. The SET
also demonstrates the stochastic transition behavior as shown in
Figure 4D. Figure 4E shows the model of stochastic SET. The
device will be switched to LRS with the probability P after a
positive pulse, which is related with the pulse amplitude V and
pulse width Tw. The probability P can be written as:

P =

∫ Tw

0
v exp(−

Ea − αaZeV/x

kBT
)dt (7)

P follows a distribution even for the same device.
The proposed model is verified with measurement data

as shown in Figure 4C. The gradual resistance modulation
under consecutive identical pulses can be well-reproduced.
The figure indicates that more intermediate states can be
achieved with lower initial LRS, which is beneficial for synapse
application. Figure 4F shows the measured and calculated SET
voltage distributions in 1,000 cycles for the same device.
They both roughly follow a normal distribution with similar
mean value and standard variation. Good agreements between
measurements and calculations demonstrate the validity of the
model to capture the RRAM synaptic features. In addition,
the SET stochasticity can be employed to generate stochastic
numbers, which demonstrates great potential in the application
of stochastic computing. This will be further discussed in the
Stochastic Computing section.

Analog Resistive Switching Random
Access Memory
As discussed in the Device Optimization With Multifunctional
Assistant Layer section, analog RRAM devices have been realized
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FIGURE 4 | (A) Measured gradual RESET under consecutive identical pulses. (B) CF evolution model of gradual RESET. (C) Measured and calculated gradual RESET

with different initial states. (D) Measured binary stochastic SET under consecutive identical pulses. (E) Model for stochastic SET. (F) Measured and calculated SET

voltage distributions in 1,000 cycles. Reprinted from Huang et al. (2017).

by introducing an assistant layer. Many efforts have been made
to mitigate the non-ideal effects of analog RRAM including
the programming non-linearity and asymmetry, variability, and
tuning voltage sensitivity (Woo et al., 2016a; Wu W. et al.,
2017; Wu et al., 2018). Compact models for analog RRAM
have been developed to provide insights into the influence
of electrical and thermal effects of assistant layer on the
device characteristics and provide guidance for the optimization
of non-ideal effects. In addition, the compact models can
provide fast and accurate evaluation of the training accuracy.
Multiple theories have been used to explain the analog switching
behavior. One is the multiple-weak-filament theory, in which
the local Vo concentration in the CF region is lower than
the binary RRAM; thus, multiple weak CFs are assumed to
be formed due to the percolation effect (Liao et al., 2020).
The number of weak CFs and their conductivity are strongly
dependent on the Vo concentration. Another theory describes
CF with one resistive switching (RS) region and one Vo-rich
(VR) region (Cai et al., 2020). The Vo concentration varies
in the RS region during resistive switching processes, thus,
leading to the gradual resistance modulation. Based on above
theories, the key factor for analog properties is to control
the Vo concentration and distribution in the CF, and the Vo
modulation inmultiple weak CFs can be treated as the Vo density
redistribution in the RS region. The compact model with Vo
modulation in the RS region will be introduced in detail in the
following part.

In the model, the CF is modeled with the RS region and one
VR region as shown in Figure 5A. In the SET process, due to the

generation of Vo, the percentage of Vo in the RS region (1CV
+)

increases, which can be described as:

1C+

V = 1t · f · exp(−
Ea − λZeE

kBT
)(1− CV ) (8)

where CV is the Vo concentration. For RESET process, the Vo
recombination leads to the decrease in CV . Besides the kinetic
barrier Eo, the releasing of O

2− also relies on CV at the interface
of CF and the intermediate modulation layer (IML). The O2−

percentage in the RS region CO is changed by the released O2−,
which can be described as:

1CO = 1t · f · exp(−
Eo − λZeE

kBT
) ·

a

l
(1− CO) (9)

The reduced percentage of Vo in the RS region is expressed as:

1C−

V = f · exp(−
Er

kBT
) · CV · (1CO + CO) (10)

where Er is the recombination barrier. The conduction of the
analog RRAM is modeled in Figure 5B. In the RS region, the
effective conductivity can be calculated based on the effective
medium theory, while the conductivity of IML can be calculated
by evolving the O2− concentration in IML. Based on above
model, the I–V characteristics of the analog RRAM can be
calculated as shown in Figure 5C. Gradual SET and RESET
behavior can be well-reproduced by the model, which is in
good accordance with measurement data obtained from the
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FIGURE 5 | (A) The physical switching model of the analog RRAM. (B) The conduction model. (C) The measured and calculated I–V characteristics. (D) The

comparison between abrupt and gradual SET by introducing an intermediate modulation layer (IML). (E) The influence of thermal conductivity and (F) resistivity on the

analog switching behavior. (G) Physical model of state instability and retention degradation. (H) Measured and calculated evolution of read current distributions. (I)

Measured and calculated standard deviation of read current vs baking time. (J) Measured and calculated retention degradation for a long baking time at 175◦C.

Reprinted from Cai et al. (2020) and Huang et al. (2018).

TiN/TaOx/HfOx/TiN device in Wu et al. (2018). Based on
the model, the continuous conductance accumulation can be
reproduced under identical pulses as shown in Figure 5D. By
adjusting the resistivity ρ of IML, the compact model shows good
agreement with experiments about the linearity improvement.
The non-linearity of conductance is influenced by both the
electrical and thermal effects of IML. The impacts of electrical
and thermal effects of IML on potentiation and depression are
investigated as shown in Figures 5E,F. The results indicate that
reduced thermal conductivity κ enlarges the tuning window due
to the acceleration of Vo generation under high temperature,
and the switching window is reduced with increased resistivity
ρ. Increasing ρ and κ of IML both improve the linearity of
conductance tuning, but the impact of resistivity is more obvious.
Therefore, IML material with high resistivity would be more
recommended to improve the linearity for learning accuracy in
the application of neuromorphic computing.

Although analog RRAM shows great potential in weight
storage and weight updating, it suffers from serious state
instability and retention degradation issues, which greatly affect
the performance of neural network. A physics-based analytic
model is developed to describe the statistical state instability and

retention behaviors of analog RRAM (Huang et al., 2018). In the
model, the diffusion of Vo, the Brownian-like hopping of Vo
during diffusion, and the recombination of Vo are considered.
Figure 5G shows the physical model of the state instability and
retention degradation. In a relatively short time, the Vo hopping
is similar to the random Brownian movement. The Brownian-
like hopping of Vo at the critical site of the current percolation
path (CPP) results in the fluctuation of conductance, which
is also called as the state instability. In a relatively long time,
Vo diffuses along the radius direction and recombines with the
O2− released by the IML, thus the Vo concentration C(Vo) in
the RS/VR region and the corresponding conductance decrease
(case I). The diffusion of Vo from the VR region to the RS
region will increase the conductance because the cell resistance
mainly depends on the C(Vo) in the RS region (case II). To
sum up, the diffusion and recombination of Vo will result in the
retention degradation. C(Vo) in the RS and VR regions are the
key parameters to characterize the state instability and retention
degradation. The mean C(Vo) can be obtained as a function
of time by calculating the diffusion and recombination of Vo.
Figure 5H shows the measured and calculated read current
distribution at different baking times. The distribution becomes
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wide with time. The mean and standard deviation of the read
current are in good accordance with the measured data. The
measured and calculated standard deviations of the read current
at different states are shown in Figure 5I, which indicates that the
model can reproduce the statistical state instability. To further
verify the model, the 1-kb analog RRAM array is measured
under higher temperature and longer time. Figure 5J shows the
retention behavior under 175◦C of 1.2 × 104s, which agrees
well with the model prediction. The results indicate that the
mean read current of high current states decrease with time,
while the mean read current of low current states increase with
time. The model can be used to evaluate and optimize the
performance neural network. Optimized synapse structures and
refresh operation schemes can be proposed under the guidance
of the model to mitigate the performance degradation, which
can significantly enhance the reliability of the RRAM-based
neural network.

APPLICATIONS IN BRAIN-INSPIRED
COMPUTING

In the era of big data, the amount of data is explosively
growing every day especially the non-structured data such as
pattern, voice, and video. However, due to the von Neumann
bottleneck, the traditional computing paradigm has a hard
time in handling the task of a large amount of non-structured
data. Fortunately, in recent years, brain-inspired computing has
developed rapidly and has demonstrated great advantages in the
fields of recognition and information processing, which could
supplement the shortcoming of the traditional computing. In this
section, the specific applications of RRAM-based brain-inspired
computing including neuromorphic computing, computing in
memory, and stochastic computing will be introduced.

Neuromorphic Computing
Neuromorphic computing is a kind of computing paradigm for
accelerating neural networks used in data-centric computing,
which paves the way for artificial intelligence with low
power consumptions, mimicking the synapse- and neuron-
interconnected biosystems in the human brain. RRAM is widely
regarded as one of the promising candidates of artificial synaptic
device, and its crossbar structure can be utilized for the
hardware acceleration of the neural networks (Hochreiter and
Schmidhuber, 1997; Hinton et al., 2006; Russo et al., 2009;
Krizhevsky et al., 2012; Graves et al., 2013; Silver et al., 2016).
The Vo/ion-based mechanism of RRAM controlling the device
conductance can emulate the synaptic plasticity, acting as the
base for learning and memory operations of the brain. RRAM
enables high-precision synaptic weight over 6 bits, bidirectional
conductance modulation, and tiny weight accumulation, so
that a high-performance deep neural network algorithm could
be realized; besides, RRAM could also implement the basic
functions of biological synaptic, such as spike time-/rate-
dependent plasticity (STDP/SRDP) and paired-pulse facilitation
(PPF), which provides an approach to establish spike neural

networks (SNN) (Yu et al., 2012; Gao et al., 2014, 2016; Prezioso
et al., 2015; Wang et al., 2017).

In a neural network composed of neurons and synapses,
neurons are connected by synapses with different weights. A two-
layer neural network can be directly mapped to a RRAM crossbar
array, where WLs are connected to the pre-neurons, and BLs are
connected to the post-neurons as shown in Figure 6A. Through
the RRAM-based synapse, the signals sent by the pre-neurons
can be transmitted to the post-neurons. The synapse weights are
mapped to the RRAM conductance. The output current Ij at the
jth column can be written as:

Ij =

m∑
i=1

ViGi,j (11)

where Vi is the voltage applied to the ith row, and Gi,j is the
conductance of RRAM at row i and column j. Therefore, the
weighted sum, which is a time- and energy-consuming step
for neuromorphic computing based on conventional computing
system, can be performed by the RRAM crossbar array in one
step. Generally, the integrated current at each column will be
converted to voltage pulse by the neuron circuit and sent to
the post-neuron.

The weights of the RRAM-based synapses can be updated
in two ways. The first way is based on the working mechanism
of the biological neural networks, in which the weight can
be updated based on certain modification rules, such as the
STDP (Jo et al., 2010; He et al., 2014; Du et al., 2015; Eryilmaz
et al., 2015; Prezioso et al., 2016). For an STDP synapse, the
weight update direction depends on the time difference 1t
of the spikes from the pre-neuron and post-neuron as shown
in Figure 6B (Jo et al., 2010). When spikes from the pre-
neuron are before (or after) the post-neuron, the synaptic
weight increases (or decreases). It can be found that the relation
between the change in the synaptic weight and 1t can be
well-fitted with exponential decay functions, which is similar
to the STDP characteristics of biological synaptic systems as
shown in Figure 6B. Arbitrary STDP behaviors, such as anti-
STDP, symmetric STDP, and STDP with sin decay function
can be achieved with this feature. In addition to STDP, several
other synaptic functions have been realized by RRAMs, such
as SRDP, short-term plasticity (STP), and long-term plasticity
(LTP) (Yu et al., 2012; Gao et al., 2014, 2016; Prezioso et al.,
2015; Wang et al., 2017). All these achievements are helpful to
the researcher of biological neural network and will significantly
enhance the intelligence of neuromorphic hardware. Although
various functions of biological synapse have been realized by the
RRAM, a large neural network based on such synapse update
rule is still lacking due to the fact that the working mechanism
of the brain is not clear. Moreover, for the SNN, the training
is mainly achieved using the biology-like unsupervised learning
rules, which makes it difficult to support complex practical
cognitive applications.

Another principle to update the weight is the backpropagation
(BP) learning rule, which has shown its advance in pattern
and speech recognitions. The HfOx-based RRAM synaptic
device has been demonstrated with sub-pJ energy per spike
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FIGURE 6 | (A) Schematic of the RRAM-based neural network. (B) Demonstration of the spike time-/rate-dependent plasticity (STDP) in the RRAM-based synapse

and the excitatory postsynaptic current of rat hippocampal neurons. (C) Measured gradual training process of RRAM under consecutive identical pulses. (D) Improved

linearity of conductance tuning in RRAM synaptic devices by introducing an electro-thermal modulation layer. Reprinted from Wu et al. (2018), Yu et al. (2012), and Jo

et al. (2010).

to build a neuromorphic visual system. The measured gradual
training process of RRAM under consecutive identical pulses
are shown in Figure 6C (Yu et al., 2012). According to the
BP algorithm, the desirable characteristic of the RRAM synapse
is multilevel (states > 64) and low power (<0.1 pJ/spiking)
switching, and the linear and symmetric responses of synapses
to electric pulses are required for the training process. However,
that is a quite difficult task for RRAM-based synapse. To
modulate the characteristics of the RRAM-based synaptic device,
the optimization of linearity and symmetry of conductance
modulation is essential to realize efficient training tasks. The
programming schemes can be optimized by varying the operation
voltage, pulse width, gate voltage in 1T1R structure, and
compliance current (Wu et al., 2012; Park et al., 2013; Woo et al.,
2016b; Ku et al., 2019). However, this method brings additional
circuit overhead and power consumption. Then a more favorable
solution was proposed to optimize an identical programming
scheme independent of device conductance states, and the abrupt
resistance change can be avoided (Woo et al., 2016b). Besides
the operation scheme, the non-linearity can be mitigated by
the device engineering. As has been discussed in the Device
Optimization With Multifunctional Assistant Layer section and
the Analog Resistive Switching Random Access Memory section,
an electro-thermal modulation layer has been inserted between
the top electrode and resistive layer to control the distribution of
electric field and temperature in the filament region; the linearity
of conductance tuning is improved as shown in Figure 6D

(Wu et al., 2018). However, the dynamic range decreases by
this method.

The multilevel conductance capability of the RRAM-based
synapse can impact the inference accuracy. Figure 7A shows
the impact of weight precision on the accuracy of a two-layer
fully-connected neural network for MNIST dataset (Chen et al.,
2017). At least six bits are required for online training, and
one or two bits are sufficient for offline classification. Higher
weight precision is required for complicated convolutional
neural network as shown in Figure 7B (Yang and Sze,
2019). To meet this requirement, a large ON/OFF ratio with
multiple intermediate resistance states is essential. Regarding
the issue of non-ideal device characteristics, other possible
solutions may be from the interaction and optimization between
devices and algorithms or architectures. For example, in the
incorporation with recently proposed binarized neural networks
(BNNs) based on modified BP algorithm, the impact of non-
linearity in RRAM-based synapses on system performance
can be effectively eliminated. A new BNN-based hardware
implementation approach to utilize the non-linear synaptic cells
to achieve highly efficient online training is shown in Figure 7C

(Zhou et al., 2018). Based on the presented implementation
approach, the conductance tuning non-linearity has little impact
on the recognition accuracy of neural network. However, the
binarization of weight would lead to the information loss, and the
discontinuity of its quantization function increases the difficulty
of the optimization of neural networks (Qin et al., 2020).
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FIGURE 7 | (A) Impact of weight precision on accuracy in a two-layer fully neural network for MNIST dataset. (B) Impact of weight precision on accuracy of

representative DNNs. (C) Schematic of binarized neural network (BNN) algorithm and the typical example of weight accumulation process. (D) Recognition accuracy

and normalized energy consumption change as a function of baking time. Reprinted from Chen et al. (2017), Yang and Sze (2019), Zhou et al. (2018), and Xiang et al.

(2019).

The robustness of RRAM-based neural network is related with
the reliability of the RRAM-based synapse such as retention,
endurance, and immunity to noise. The impacts of device
state instability and retention on the performance of DNN
was investigated (Xiang et al., 2019). Using the analytic model
for RRAM state instability and retention degradation in the
Analog Resistive Switching Random Access Memory section, the
performance of the 11-layer RRAM-based DNN for CIFAR-10
recognition can be evaluated. Figure 7D shows the dependence
of the recognition accuracy on the baking time at 125 and
175◦C. The accuracy decreases remarkably with time due to
the overlap among neighboring resistance levels. Meanwhile, the
energy consumption during the inference increases with time as
shown in Figure 7D. This is because, for the proposed neural
network, more than 90% of the weight is located near 0, which
means most of the RRAMs are in the low conductance states.
More importantly, the differential pairs are used to store weight,
and one device is in the conductance state at least. Therefore,
the conductance of a large proportion of RRAMs increases with
the baking time, which dominates the energy consumption. To
enhance the reliability of DNN, both the device characteristics
and the operation scheme should be optimized.

To design and optimize the RRAM-based neuromorphic
system, modeling platforms have been developed to design
the neuromorphic computing circuits and find the algorithmic
constraints with device properties (Chen et al., 2017; Larcher
et al., 2017; Haensch, 2018). A comprehensive model for SNN
based on STDP is developed to predict the learning efficiency

and time for unsupervised learning from detailed spice-like
models to high-level analytical compact models (Pedretti et al.,
2017). The analytic model includes all possible pattern/noise
and noise/pattern sequences of input spikes as driving forces
for potentiation and depression, and can predict the time
evolution of pattern weight and noise weight for any set
of input variables. Using the model, the impacts of noise
density, pattern density, and pattern/noise probabilities on
learning efficiency can be investigated, and a learning efficiency
improvement up to 92% can be realized by using optimized
noise in unsupervised learning of handwritten digits from the
MNIST database. In terms of system-level learning accuracy
and hardware performance metrics, an integrated device-to-
algorithm framework NeuroSim+ for benchmarking synaptic
devices and array architectures was developed (Chen et al.,
2017). The framework includes the technology and memory
models in the device level, the synaptic array architectures and
neuron periphery in the circuit level, and the neural network
topologies in the algorithm level. The impact of device non-
ideal properties on learning accuracy, the area, latency and
energy estimation in the circuit level can then be investigated
by this framework. A two-layer multilayer perceptron (MLP)
neural network with MNIST handwritten digits is adopted as the
training and testing dataset to implement online learning and
offline classification. In the MLP neural network, the MNIST
input images are converted to black and white data to reduce
the encoding complexity. The weights are mapped to the synaptic
cores, which are the computation units for performing weighted
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sum and weight update. The synaptic core can be categorized
into the binary RRAM and analog RRAM, where binary type
is more mature. When a weighted sum or weight update
instruction is given during feed forward and BP, the instruction
will be sent to the RRAM array and device behavior model
for calculating the computation error and sent to NeuroSim
to evaluate the circuit performance. The framework facilitates
the design space exploration from device to algorithm, which is
helpful to benchmark different synaptic device candidates and
array architectures for neuromorphic applications.

For RRAM-based neuromorphic computing, although some
small-scale neural networks have been demonstrated, it is still
far from being applied. The challenges come from the design
and fabrication of RRAM arrays with high performances, device
characteristic engineering, neuron circuit design, and algorithm
modification. Possible solutions should consider the interaction
and optimization between devices and algorithm or architectures.

In-memory Logic
The conventional computation systems process information and
store information separately, which brings huge energy cost and
time wasting in data transfer between the computing units and
memories. In order to break the von Neumann bottleneck in
both the device and architecture level and meet the requirement
for energy-efficient information system, the RRAM-based logic
is proposed as a promising solution, which can perform logic
operation and store the output in the same physical location
(Borghetti et al., 2010; Li et al., 2015a; Huang P. et al., 2016).

In 2010, the RRAM-based stateful logic operation was first
proposed and experimentally demonstrated (Borghetti et al.,
2010). The basic logic operation is the implication (IMP), and
the operation is based on two RRAM devices (P and Q) and one
resistor as shown in Figure 8A. The resistance state stored in
P and Q represents the logical value. IMP is performed by two
simultaneous pulses applied on P and Q to execute conditional
toggling on Q depending on the state of P and Q. The output
of the operation is then stored in Q. If we define HRS as “1”
and LRS as “0,” the IMP result is summarized in Figure 8A.
Based on this principle, other logic computations can also be
performed. However, the initial state of Q is covered during the
operation, which hinders the logic cascading, and the Q needs
a copy operation if the value is used more than once (Li et al.,
2015b).

To prevent the input value from being covered, a method to
execute NAND and logic operations in one step was proposed
(Huang P. et al., 2016). The subcircuit to realize a NAND
operation is shown in Figure 8B. In the circuit, the device top
electrodes are connected to a common WL. A strong pulse is
applied to the WL via a reference resistor, and a small pulse is
applied to devices A and B through BL. For device Y, the BL is
grounded. The input for the operation is the resistance states of
A and B, and the output will be stored in Y, whose initial state
has been switched to HRS. If A and B are both “1,” the potential
of common WL is close to VDD, then Y will be programmed to
“0” after the operation. If any input device is “0,” the potential of
common WL is close to VR; thus, the output Y will still be “1.”
By this way, the NAND logic operation is performed. The value

of VR, VDD, and RG should be carefully designed to guarantee
the NAND operation. VDD should be larger than the SET voltage
in order to compensate the voltage drop across RG. As for VR,
on one side, it should be large enough to avoid the switching
of A and B; on the other side, it should be small enough to
avoid the switching of Y. The experimental demonstration of the
NAND logic is shown in Figure 8B. The logic function of the
subcircuit can be reconfigured by changing the applied voltage.
For example, the AND logic can also be realized using the same
subcircuit by exchanging the VDD and VR.

Besides the basic logic operation, compound logic operation
can be executed with latching the NAND logic operation.
Figure 8C shows an example of a full adder. The subcircuit is
composed of nine RRAM devices including three input devices
(addend A, summand B, and carry-in Ci), two output devices
(summary S and carry-out Co), and four assisted devices (AS1-
AS4). The computation procedure is shown in Figure 8C, which
needs 10 sequential steps. The corresponding logical states after
each procedure are read out and demonstrated as gray-scale
maps. Themeasured data indicate that the function of a full adder
can be realized correctly. In order to realize the logic operation in
arbitrary positions in the RRAM array, the structure of devices
with the same BL was also proposed and verified (Huang P. et
al., 2016). The same computing task can be performed parallelly
by cells in different rows or columns in the RRAM array by
simultaneously applying the pulses to the corresponding ports of
BL and WL.

One challenge for the RRAM-based stateful logic is the
device variations, which may cause errors to the logic operation.
Therefore, the logic operation should be robust to these device
variations, which include the SET voltage variation and resistance
variation. To quantitatively describe the robustness of the logic
operation, the dependence of maximum tolerance to SET voltage
variation on the resistance window (RH/RL) was investigated by
HSPICE simulation (Shen et al., 2019). The results indicate that
compared with the conventional scheme based on 1R structure,
the dual gate voltage scheme in the 1T1R array shows higher
robustness to the SET voltage variations as RH/RL changes from
25 to 10,000. The variation of resistance in HRS and LRS will
reduce the effective resistance window. For each given SET
voltage variation, there exists a tolerable resistance window to
ensure the successful logic operation.

The Boolean logic computing is closer to the off-the-shelf
system compared with the neuromorphic computing paradigm,
which does not require new algorithm or software. However, the
development of the RRAM-based in-memory logic is very slow
due to the lack of application scenarios, and the demonstration
of complete computing and memory unit is still missing.

Stochastic Computing
Stochastic computing (SC) is a highly fault-tolerant and energy-
efficient computing paradigm, which can realize complex
functions with simple logic units (Gaines, 1969; Lv and Wang,
2017; Hu et al., 2019). Different from the traditional binary
computing, SC operates on stochastic bit streams (SBSs), which
emulate the neural spikes processed by the brain in the form of
long sequences of noisy voltage spikes as shown in Figure 9A.
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FIGURE 8 | (A) RRAM-based IMP logic operation and the truth table. (B) The subcircuit of the NAND operation by using three RRAM devices with common WL and

the corresponding measured results. The logic inputs are stored in devices A and B, while Y stores the output. (C) The subcircuit of one-bit full adder and the

corresponding computation procedure. Here “NAND(A, B) → Y” represents that states of devices A and B are executed; the NAND operation and the output are

stored into device Y. Reprinted from Borghetti et al. (2010) and Huang P. et al. (2016).

FIGURE 9 | (A) The schematic of the RRAM-based stochastic number generator (SNG) in the stochastic computing (SC) system. The RRAM-based SNG utilizes the

probabilistic SET to randomly generate “1” or “0.” (B) The SET waiting time distribution when the pulse amplitude is 2.5 V and (C) 3.5 V. Reprinted from Knag et al.

(2014) and Zhao et al. (2019).

The information contained in the SBS is the frequency at
which the spikes appear randomly within a period of time.
For example, the value 0.4 can be represented by a 10-bit
SBS {1,0,0,1,0,1,0,0,1,0}, where the probability of “1” is 0.4.
The position of “1”s in the SBS is random, so different
SBSs can represent the same value. Moreover, SC can be
implemented with simple arithmetic units. For example, A
multiplied by B can be operated with an AND gate, while
A plus B can be operated with a MUX (Lv and Wang,
2017; Yang et al., 2017; Hu et al., 2019). Compared with the
binary system, the SBS is more fault tolerant because one-
bit flip is almost negligible. Therefore, SC can be used in

highly fault-tolerant applications such as parity-check decoding,
image processing, filter design, and neural networks (Gaudet
and Rapley, 2003; Ma et al., 2012; Alaghi et al., 2013; Li P.
et al., 2014; Canals et al., 2016; Li B. et al., 2016; Li Z. et al.,
2016).

The biggest challenge to realize SC is to generate SBS
efficiently. The traditional stochastic number generator (SNG) is
composed of a pseudo stochastic number-generating unit such
as the linear feedback shift register and a comparator. Compared
with the simple computation unit of SC, the CMOS-based SNG
occupies up to 80% of the system circuit area, which brings
huge hardware overhead. RRAM devices, with the feature of
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FIGURE 10 | (A) The measured resistance state after 100 consecutive SET and RESET pulses and the corresponding SBS. (B) The measured SBS with probability

shift behavior between continuous cycles with the same initial probability. (C) The model of probability shift behavior. (D) The measured and calculated SET probability

shift behavior. (E) The measured and calculated SET probability curve with different pulse intensity under optimized operation scheme. Reprinted from Zhao et al.

(2019).

inherent variability, shows great potential to be used as low-
cost and energy-efficient SNG (Gaba et al., 2013; Suri et al.,
2013; Knag et al., 2014; Moons and Verhelst, 2014; Ielmini and
Wong, 2018; Wang et al., 2018; Carboni and Ielmini, 2019;
Zhao et al., 2019). The inherent variability of RRAM originates
from the probabilistic SET process as have been discussed in
the Binary Resistive Switching Random Access Memory section
(Figure 4). Figures 9B,C are the measurement results of the
waiting time distribution during the SET process (Knag et al.,
2014). The SET waiting time can be obtained by performing
continuous RESET and SET operations on the device and then
recording the time before the transition from HRS to LRS
during each SET operation. Based on the measurements, the
SET waiting time roughly follows the Poisson distribution, and
the distribution curve will shift left or right when changing the
pulse amplitude. Therefore, when consecutively applying SET
and RESET pulses on the device, whether the CF would be
generated inside the device is random, so a sequence of different
current levels can be obtained, as shown in Figure 10A. Using
“1” representing the LRS and “0” representing HRS, an SBS of n
bits can be achieved. The SET probability is determined by the
intensity of SET pulse; thus, by adjusting the pulse amplitude
and pulse width, the numerical value represented by the SBS can
be adjusted.

To accurately control and predict the SET probability, the
probability should be quantitatively modeled considering the
device physics, as a small deviation of the input signal could affect
the probability significantly. By considering multiple variation

sources including the atom thermal vibration, manufacturing
parameter variation, and cycle–cycle gap distance fluctuation,
the behavior of the RRAM-based SNG can be modeled (Zhao
et al., 2019). However, the RRAM SET probability may shift
upward or downward between continuous cycles. Figure 10B
shows the measured SBS with probability shift behavior of
TiN/HfO2/Pt device. The unstable SET probability will influence
the accuracy of the SBS, which must be mitigated for the
application of RRAM-based SC. The probability shift behavior
is modeled as shown in Figure 10C. Due to the different SET
results in the N−1th cycle, the SET probability between the
N−1th and the Nth cycles will increase or decrease. For example,
the upper figure in Figure 10C corresponds to the situation
where the CF successfully connected the electrodes during the
N−1th SET process, and the device represents “1” after this
operation. At this time, the concentration of the remaining
Vo increases after RESET. The probability of generating “1”
in the next SET operation increases, and the corresponding
SET probability distribution curve would shift left. The model
can well-reproduce the probability shift behavior observed in
experiments as shown in Figure 10D. The increase or decrease
of SET probability with cycles is due to the mismatch between
SET and RESET pulses; thus, an optimized operation scheme is
proposed by the model to suppress the probability shift behavior
by applying an additional deterministic SET before each RESET
operation. After suppressing the probability shift behavior, the
SET probability dependence on pulse amplitude and pulse
width can be investigated. Figure 10E shows the calculated and
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measured SET probability curve with different pulse strengths.
The SET probability changes with pulse strength; thus, one can
use this curve to obtain the device operation scheme depending
on the desired probability, which is the value represented by SBS
in the SC application.

In addition to the SET operation, the RESET operation
also has a great influence on the SET probability. When
increasing the amplitude of RESET pulse, the probability
distribution curve shifts to the right. This is because a
stronger RESET pulse will increase the gap length before
each SET, which will reduce the probability of a successful
SET. Therefore, to obtain the expected SET probability in a
RRAM-based SNG, the SET and RESET operations should
be both carefully designed. Moreover, due to the randomness
of resistive switching and the noise in the pulse signal, the
length of SBS should be properly selected to avoid a large
error. The accuracy of SBS can be improved by using longer
SBS, but the energy consumption and calculation time will
also increase exponentially (Gaines, 1969). Therefore, according
to the requirements of the SC application scenarios, the
accuracy, energy consumption, and calculation time should be
collaboratively designed.

The challenge facing the RRAM-based SC is the
uncontrollable device stochasticity, so the distribution and
probability of switching cannot be accurately predicted, which
would seriously affect the accuracy of SC. Although the
improvement of accuracy can be realized by using a longer bit
stream length, the energy consumption will be greatly increased,
resulting in the design trade-off between accuracy and energy
consumption. The cost-effective design techniques that minimize
the disadvantages such as low precision and long bit-streams are
highly required.

SUMMARY

The RRAM-based brain-inspired computing systems has
achieved remarkable progresses in the past decades. Various
computing paradigms have been proposed to exploit the device
physics to perform neuromorphic computing, in-memory logic,
and stochastic computing. However, some key issues still need
to be addressed such as the device variability, forming voltage,
selector device, and non-linearity/symmetry of RRAM-based
synapses; thus, the design and optimization of structures,
materials, and operation schemes in the device level, by
means of the deeply physical understanding and innovative
device-engineering methods, are still required. Moreover, the
corresponding architectures and algorithms that can be utilized
to construct power-efficient brain-inspired computing systems
are still being developed, and it highly desires the persistent and
creative research to the interaction and optimization between
devices and algorithms or architectures.
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