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Angiogenesis, tissue invasion and metastasis in the tumour microenvironment are all

critical hallmarks of cancer. Upregulation of cathepsin L plays an important role in

angiogenesis and metastasis through its ability to degrade the extracellular matrix,

facilitating tissue remodeling and tumour cell invasion. Thus, cathepsin L is a potential

therapeutic target for anticancer nanomedicine, with its inhibition emerging as an

innovative and potentially promising therapeutic intervention for the development of

anti-invasion and anti-metastatic enzyme therapies. Nanotechnology-based platforms

have been extensively tested in the anti-cancer nanomedicine field with effective

anti-tumour efficacy. These nanodrugs can suppress tumour cell proliferation, thereby

reducing tumour growth. Recently, nanomedicinal approaches have also emerged as

effective anti-metastatic strategies, including the use of graphene oxide and gold

nanoparticles. With a focus on recent advances in developing nanotechnology to inhibit

cathepsin L, this review provides an in-depth examination of this stimulating field in the

context of tumour microenvironments. Innovative anti-metastatic agents may lead to new

options for the treatment of cancers.

Keywords: nanomedicine, graphene, nanopartcicles, cathepsin L, cancer

INTRODUCTION

Cancer treatment is challenging partly as a result of significant damage to adjacent healthy tissues,
unwanted side-effects, high rate of recurrence, and associated costs. Novel approaches developed to
reduce tumour resistance to chemo/immune/radio-therapy and the combination of these therapies
have improved treatment efficacy. Tumour growth creates a specialized niche microenvironment
which has been reported to include overexpression of cathepsin L (CathL) in some cancers. CathL
is an ubiquitous cysteine proteinase that resides in the lysosomes of all cells; primarily, this enzyme
breaks down endocytosed foreign proteins as well as misfolded/unfolded faulty protein quaternary
structures in the lysosomes in acidic pH (Kirschke et al., 1977; Kominami et al., 1991). However,
CathL has also been reported to be secreted out of the cell into the extracellular space (Kominami
et al., 1991) and maybe active in the extracellular tumour microenvironment (Kirschke et al., 1977;
Kominami et al., 1991). The development of innovative modalities for the inhibition of CathL could
be an emerging anti-tumour therapy and recent work indicates a platform for investigating this.
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The emergence of nanomedicines provides the possibility
to address the challenges associated with inhibition of CathL.
Nanomaterials have emerged as effective anti-cancer agents
in the areas of smart delivery and drug targeting for cancer
diagnosis and treatment (Noureen et al., 2018b, 2019; Tabish
et al., 2018b). The rapidly growing field of nanotechnology deals
with structures less than <100 nm in size (Tabish et al., 2018a),
with these nanostructures exhibiting unique physiochemical
characteristics which are different from their bulk counterparts.
For the last three decades, nanomaterials have been extensively
exploited for biomedical applications owing to their size-
dependent properties (Noureen et al., 2018a). Recent studies
have demonstrated that nanostructured graphenes, which are
considered as a new and promising class of nanomedicine
drugs due to their low toxicity, are significantly toxic to cancer
cells (Tabish et al., 2018d). Graphene is a single atomic, 2D
layer of sp2 hybridized carbon atoms covalently bonded in
a honeycomb lattice (Tabish, 2018). Graphene offers many
remarkable characteristics, for example high electron mobility,
excellent mechanical strength, exceptionally good specific surface
area, and good biocompatibility (Tabish et al., 2018c). We have
recently reported the inhibition of cathepsin D and L using
graphene oxide and explored the ability of enzymatic inhibition
triggered by high surface area of graphene.

This review highlights the key role of CathL in cancer
invasion, metastasis and angiogenesis in the context of its
therapeutic potentials. This review additionally discusses the
scientific evidence that nanostructured materials have anti-
metastatic features, and potential mechanisms of action for the
inhibition of CathL.

CATHEPSIN L

Discovery of CathL was first reported as a major excreted protein
from a transformed mouse fibroblast cell line and it was later
identified as an important lysosomal enzyme (Kominami et al.,
1988). It was thought at first that the precursor form of the
enzyme (pCathL) was secreted from the cell and remained
proteolytically inactive. However, reports have emerged that
suggest that the extracellular precursor form of CathL remained
enzymatically active at pH lower than 6.5 i.e., pH of the
tumour microenvironment, although, it showed no activity
at neutral pH (Kominami et al., 1988). This suggested that
pCathL transportation bypassed recruitment to the lysosomes
and instead, was secreted directly by exocytosis from the
ER/Golgi pathway, with an ECM-degradation role in the tumour
microenvironment. Interestingly, the mature form of CathL
(proteolytically active) was also found in the extracellular space
both in physiology and disease. For instance, CathL was shown to
degrade extracellular membrane proteins and play an important
role in bone remodeling through extracellular proteolytic activity
(Mason et al., 1986; Maciewicz et al., 1990; Nguyen et al., 1990;
Maciewicz and Wotton, 1991; Ishidoh and Kominami, 1995;
Nosaka et al., 1999). Recently, recombinant mature CathL was
shown to stimulate axonal growth in a proteolytic-independent
manner (Tohda and Tohda, 2017). Secreted CathL has also been

shown to be protective against bacterial infection in mice airways
(Xu et al., 2013).

CathL is processed via the default ER/Golgi pathway where
preprocathepsin L is cleaved into procathepsin L (pCathL).
pCathL can either consist of a single chain of molecular mass of
30kDa and/or a two-chain form with molecular masses 25 and 5
kDa (Kominami et al., 1988; Nishimura et al., 1988). The protein
is then transported in newly formed vesicles to endosomes,
and via an interaction with the mannose-6-phosphate/receptor
(M6P/M6PR), the pCathL enters the lysosome (Dong and
Sahagian, 1990). The N-linked oligosaccharide mannose is
covalently attached to CathL and undergoes phosphorylation
by phosphoesterases in the cis Golgi and becomes M6P (Lang
et al., 1984). A resident M6PR protein in the trans Golgi network
interacts with these M6P groups which facilitates the delivery of
the protein to lysosomes (Kornfeld, 1986). On their arrival, the
acidic pH of the lysosomes initiates dissociation of the cathepsins
from the receptors, resulting in the removal of the phosphate
group by lysosomal acid phosphatase (Samie and Xu, 2014).

The enzyme inhibitors 1, and 10-phenanthrolin and pepstatin
induced partial inhibition of the processing of pCathL to its
mature form. This observation suggested that the active form of
CathL in the lysosomes is generated via proteolytic cleavage by
metalloproteinases or aspartic proteases such as CathD (Ritonja
et al., 1988; Ishidoh et al., 1991). At the very low pH of the
lysosome (pH 3), pCathL can also be autoprocessed to form
mature CathL which is highly active at pH 5.5 (Mason et al.,
1987; Mason and Massey, 1992). For instance, in physiology,
the Ii peptide of the MHC II complex is degraded by active
CathL, allowing degraded peptides of foreign or self-proteins to
be presented to stimulate an immune response (Nakagawa et al.,
1998; Hsieh et al., 2002). Indeed, mice deficient in CathL were
observed to have reduced CD4+ T cells. Intracellular CathL has
been reported to play a homeostatic role in the epidermis and
regular hair follicle morphogenesis and cycling. For instance,
mice with CathL deficiency suffer from periodic hair loss and
epidermal hyperplasia, acanthosis, and hyperkeratosis (Roth
et al., 2000).

Interestingly, secreted CathL retains its function as a protease
and plays a key role in a range of functions. For instance, a role
of CathL in physiological bone remodeling has been described
where a significant decrease in bone volume in trabecular
bone, but not cortical, could be observed in CathL-null mice
compared to wild type (Potts et al., 2004). Estrogen-induced
secreted CathL was suggested to regulate bone turnover during
normal development and in pathologies (Potts et al., 2004).
Basic fibroblast growth factor (bFGF) was shown to induce an
upregulation of CathL mRNA and its release. It is also believed
that, in a hypoxic, acidic environment, cells increase production
of lysosomal enzymes such as CathL and CathD which results
in their hypersecretion (Cuvier et al., 1997). However, the exact
mechanism of CathL secretion still remains unanswered. CathL
has a relatively low affinity for M6PR (von Figura and Hasilik,
1986; Dahms et al., 1989; Dong et al., 1989), thus, it is believed
that only some binds to the available M6PR and the rest is
secreted out of the cells via conventional protein trafficking
(Noureen et al., 2019). An overexpression of CathL at its protein
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level, saturation of M6PR, and downregulation or redistribution
of this enzyme to the plasma membrane has also been suggested
(Achkar et al., 1990; Prence et al., 1990). Nonetheless, secreted
CathL is now understood to play a role in normal physiological
processes and disease.

CATHEPSIN L IN CANCER

The homeostasis of the tumour microenvironment is
dysregulated compared to normal tissue physiology. As a
solid tumour grows, the cells within it secrete numerous enzymes
and pro-survival factors such as vascular endothelial growth
factor (VEGF), bFGF, inflammatory cytokines, ECM remodeling
enzymes and proteins, creating a proinflammatory environment
(Hanahan and Weinberg, 2011). These secreted proteins create a
cross-talk between local cells, stimulating them to behave in favor
of the tumour growth (Figure 1). For instance, cancer-associated
fibroblasts (CAFs) increase secretion of ECM proteins as well as
pro-tumourigenic factors in the tumour microenvironment (De
Palma et al., 2017). Secretion of major enzymes such as MMPs
and LOX1 degrade and remodel the local ECM allowing tumour
cells to invade the host organ and endothelial cells from the local

microvasculature to form new blood vessels, in a process called
angiogenesis (De Palma et al., 2017).

In the last 3 decades, cysteine cathepsins, particularly CathL,
have been found to play a role in cancer progression, although
this enzyme remains less well-studied than other cathepsins.
An enzymatic role for CathL has been reported in tumour
invasion and metastasis, mainly by degrading bone and several
ECM components (von Figura and Hasilik, 1986; Dahms et al.,
1989; Dong et al., 1989; Cuvier et al., 1997; Roth et al.,
2000; Potts et al., 2004). For instance, breast cancer cells
overexpress CathL, which induces bone degradation in breast
and prostate cancer metastasis (Qin et al., 2016; Sudhan et al.,
2016). In prostate cancer patients with skeletal metastasis,
tumour cells have been shown to alter cytokine milieu in
the microenvironment, resulting in activation of osteoclasts
and selective upregulation of osteoclastic CathL production
and secretion (Leto et al., 2010, 2016; Sudhan et al., 2016).
Activated osteoclasts increase bone resorption, releasing pro-
tumourigenic growth factors. This, along with tumour cell-
secreted CathL, results in an increased degradation of bone
matrices that supports aggressive growth of metastases (Yoneda
and Hiraga, 2005). In immortalized fibroblasts (NIH/3T3 cells),
CathL-overexpression was linked to metastasis following RAS

FIGURE 1 | An illustration of the tumour microenvironment and a role of proteolytically active cathepsin L in degrading extracellular matrix proteins. Under the hypoxic

condition of the tumour microenvironment, growing tumours secrete factors that induce a cross-talk between surrounding stromal cells. Tumour cells and

cancer-associated fibroblasts secrete extracellular matrix-degrading enzymes such as cathepsin L (CathL) that catalyze the breakdown of the local basement

membrane, allowing tumour cells to migrate and “squeeze” through the disrupted ECM and enter the local circulation to metastasize to distant organs.
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transformation in vitro (Chambers et al., 1992; Sui et al., 2016),
suggesting a role in the transformation of non-cancerous cells
to cancerous ones. This was further shown in melanoma cells
whereby overexpression of CathL was shown to be responsible
for inducing a metastatic state in these cells in vitro (Frade et al.,
1998). An extra-lysosomal role for CathL was also reported in
human and murine melanoma cells in the context of metastasis
(Ishidoh and Kominami, 1998). In melanoma cells (B16F-
10), CathL-induced cellular migration is thought to be partly
responsible for invasion (Yang and Cox, 2007). For instance,
a 70% reduction in invasion and migration was observed in
clones transfected with CathL antisense compared with control.
CathL-induced migration in melanoma cells was confirmed by
the observation that anti-CathL antibody mediated a marked
inhibition of the pro-migratory effect (Rousselet et al., 2004).
However, CathL had no effect on cellular proliferation (Yang
and Cox, 2007). CathL-induced pancreatic cancer cell invasion
was also observed in mice. In mice models carrying pancreatic
tumour, CathL was reported to degrade the extracellular N-
terminal domain of E-cadherin which acts as an adhesion
molecule between adjacent cells (Gocheva et al., 2006). This
degradation was suggested to result in an increase in cancer
cell dissemination and invasion (Gocheva et al., 2006). However,
interestingly, a 58% decrease in proliferation was also observed
in these CathL knockout cells, although the exact mechanism of
action, i.e., proteolytic or non-proteolytic, was not investigated
(Gocheva et al., 2006).

Hypersecretion of CathL has been observed in the sera
of malignant epithelial ovarian cancer (EOC) patients
(Nishida et al., 1995; Zhang et al., 2014), possibly due to
the overexpression of this enzyme in tumour cells within
the hypoxic microenvironment, which was shown by an
upregulated expression of CathL mRNA levels in tumours.
This was later reported to play an important role in the
invasion and metastasis of EOC, and hence was suggested
to be a marker for advanced stage ovarian cancer (Zhang
et al., 2014). In our immunohistochemical studies, we
observed significantly increased CathL expression in the
endothelium of vessels within the omentum hosting secondary
tumour foci in patients suffering from high-grade serous
carcinoma compared with control patients with benign ovarian
cystadenoma (Winiarski et al., 2014). The omental fat is highly
vascularized (Platell et al., 2000) and contains a vast amount
of ECM proteins such as collagen (Alkhouli et al., 2013).
Thus, in the inflamed, hypoxic tumour microenvironment,
tumour cells may induce overexpression and hypersecretion
of proteolytically active CathL, among other enzymes, from
surrounding cells that in turn degrade local basement membrane
allowing tumour cell invasion of the omentum. Interestingly,
when investigated for a direct, non-proteolytic role, CathL
was observed to have less influence on proliferation of
the A2780 ovarian cancer cell line (Zhang et al., 2014).
However, the proliferative and the invasive capacity of SKOV3
ovarian cancer cells was significantly inhibited by inducing
downregulation of CathL-gene expression (Zhang et al.,
2015).

CATHEPSIN L IN ANGIOGENESIS

A presence of CathL in the extracellular space within the
microenvironment, along with its role in ECM degradation
suggests a potential role in inducing angiogenesis i.e., allowing
migration of ECs through digested ECM toward tumour
foci (Figure 2). However, studies using different experimental
model systems suggested both pro-and anti-angiogenic roles
for CathL. For instance, bFGF-transfected skeletal muscle cells
demonstrated an increased secretion of CathL which induced
migration in human umbilical vascular ECs (HUVECs) in
vitro (Chung et al., 2011). This migratory effect was assessed
in the presence of Z-Phe-Tyr-Cho, an inhibitor of CathL-
enzymatic activity, which resulted in a significant reduction
in HUVEC migration, suggesting a proteolytic-dependent
mechanism. Interestingly, in the same study, CathL induced c-
Jun N-terminal kinase (JNK) activation in cellular migration,
possibly via cleaving and releasing a growth factor that acted on a
specific cell surface receptor upstream, although the authors did
not explore this in the study (Chung et al., 2011).

We reported secretion of CathL by EOC cells (SKOV3
and A2780) in vitro (Winiarski et al., 2013), and more
recently showed that exogenous CathL induced proliferation,
migration and angiogenic tube formation of human omental
microvascular endothelial cells (HOMECs) by activating the
ERK1/2 pathway in a proteolytic-independent manner (Pranjol
et al., 2019a). A potent and selective inhibitor (FY-CHO)
of CathL-proteolytic activity was utilized to assess whether
CathL remained proteolytically active at pH 7. FY-CHO is
known to prevent secreted CathL-induced bone resorption
in unfractionated rat bone cells in the pit formation assay
and reduce bone-weight loss in mice in a dose-dependent
manner (Woo et al., 1996). Moreover, studies investigating
breast and prostate cancer reported this inhibitor as a potent
compound that successfully inhibited CathL mediated migration
and invasion in vitro (Sudhan and Siemann, 2013). We found
that CathL remained proteolytically active at the pH of cell
culture media (i.e., pH 7.2–7.4), however, the inhibitor did
not induce a reduction in CathL-induced cellular proliferation
(Pranjol et al., 2019a). Thus, it was concluded that CathL induces
HOMEC proliferation via a mechanism that is independent of its
proteolytic activity, probably via an allosteric interaction with an
unknown receptor, which remains to be investigated.

In an attempt to further investigate the extracellular role of
CathL, our group has recently demonstrated that the enzyme
induces an upregulation of galectin-1, a lectin protein, at both
the mRNA level and secreted protein level in HOMECs (Pranjol
et al., 2019b). Galectin-1 is known to play various roles in cell
biology including cell proliferation and migration in cancer (van
den Brûle et al., 2003; Croci et al., 2012; D’Haene et al., 2013; Hsu
et al., 2013). We found that CathL-induced secreted galectin-1
further promotes angiogenesis via increasing proliferation and
migration of HOMECs in an autocrine manner. Thus, CathL
not only directly induces proangiogenic changes in ECs, but
also acts indirectly to contribute to tumour angiogenesis in
cancer metastasis.
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FIGURE 2 | Tumour cell-secreted cathepsin L-induces proangiogenic changes in endothelial cells, possibly via a non-proteolytic mechanism. Tumour cells secrete

procathepsin L (pCathL) and/or CathL in the microenvironment in response to hypoxia and/or basic fibroblast growth factor (bFGF). Extracellular CathL then binds to

an unknown receptor(s) and induces endothelial cell proliferation, migration and angiogenic tube formation by activating MAPK/ERK1/2 and PI3K/AKT pathways.

In contrast, there are studies that disagree with the
aforementioned proangiogenic effect of CathL. For instance,
release of endostatin, a potent inhibitor of angiogenesis,
was reported to be released by CathL-mediated cleavage
of ECM collagen (Felbor et al., 2000). The slightly acidic
tumour microenvironment favors this anti-angiogenic function
of CathL. In other studies, CathL was found to have no
effect on ECs (Gocheva et al., 2006). For instance, in
CathL-knockout RT2mice (RT2, or RIP1-Tag2 mice carry the
SV40 large T-antigen under the insulin promoter II), no
change in microvascular density was observed in cancerous
lesions (pancreatic cancer), compared with control mice,
suggesting that angiogenic switching is not controlled by
CathL (Gocheva et al., 2006). Interestingly, CathB and CathS
were found to be very significant in inducing angiogenesis in
the same study (Gocheva et al., 2006). Nevertheless, CathL
has been reported elsewhere to play a major proangiogenic
role. For instance, mice with CathL deficiency suffered from
impaired neovascularization. Moreover, when CathL-deficient
bone marrow cells were injected into mice, a significant
reduction in angiogenesis was observed, suggesting that CathL
plays a critical role in endothelial progenitor cell (EPC)
mediated neovascularization (Urbich et al., 2005). This was
further supported by Shimada and colleagues, who noted that

EPC-expressed CathL was vital in intraocular angiogenesis
(Shimada et al., 2010).

A pro-tumourigenic and pro-angiogenic role of CathL
signifies a window of opportunity in developing anti-
cancerous therapies. A number of approaches such as inhibitor
development, nano-based CathL targeting, have been an interest
in the recent years. For example, Gocheva et al. utilized pan-
specific cathepsin protease inhibitor in studying pancreatic
cancer progression (Gocheva et al., 2006). However, the inhibitor
had no significant effect on tumour growth and angiogenesis
(Gocheva et al., 2006). This may have been because the enzyme
was also acting in a non-proteolytic manner, as we have shown in
our studies (Pranjol et al., 2019a). Thus, new strategies, including
nanotechnology based targeting could be researched further.

CATHEPSIN L INHIBITION

Mallari et al. (2008) studied the effects of thiosemicarbazones
against the enzymatic activity of human and trypanosomal
cathepsins (B and L) and evaluated the toxicity of these
compounds against four cell lines (BJ, Raji, HEK 293, and HEP
G2), revealing low toxicity and good membrane permeability.
Kevin Pinney’s research group have synthesized astructurally and
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biologically relevant anti-tumour series of thiosemicarbazone-
based inhibitors of CathL. These agents incorporate a diverse
range of electrophilic moieties to breakdown the structure
of CathL via electrostatic attraction forces. In one study,
they prepared thirty six functionalized benzophenone
thiosemicarbazone compounds to assess the inhibition of
CathL: the efficient inhibitors of CathL (IC50 < 85 nM) among
these compunds were six which combined a bromo group in an
aryl ring in addition to other functionalities involved within the
second aryl ring. These active compounds also revealed good
results of cell invasion inhibition against a human prostate cancer
cell line (DU-145) (Kishore Kumar et al., 2010). Another study
(Parker et al., 2015) reported the production and assessment
of benzoylbenzophenone thiosemicarbazone compounds to
inhibit the CathL. Three compounds demonstrated highly
efficient inhibition. This research group also fabricated a library
of 36 compounds based on aryl–alkyl ring compounds (which
contain nitrogen and carbon atoms). Furthermore, this work
also included the functionalization based on oxygen, sulfur,
sulfoxide, and sulfone groups for investigating the morphology
and inhibition linked to these compounds and their potency
for CathL activity. Among these thirty six compounds, five
were highly active against CathL (Song et al., 2013). Parker
et al. (2017) reported the KGP94, a member of the group of
functionalized benzophenone thiosemicarbazone analogs, which
showed similar inhibition capacity for CathL. However, this
compound has low water dispersibility and to improve aqueous
solubility, the phosphate prodrug, KGP420 can be used which
converts to the parent compound, KGP94. Chavarria et al. (2012)
also reported that KGP94 inhibits CathL. KGP94 significantly
improved the inhibition of CathL. This is also the first in vitro
study on the inhibition of CathL where growth retardation
was achieved against a mouse carcinoma cell line C3H. These
promising benzophenone and thiochromanone compounds have
emerged as promising CathL inhibitors but their use is limited
by complex chemical configuration and synthesis routes.

NANOTECHNOLOGY-BASED ADVANCES
IN CATHEPSIN L INHIBITION

The anionic properties, surface charge, high surface area and
small diameter of nanomaterials make them ideal candidates
for the degradation and inhibition of a variety of enzymes.
Recent findings have described the effect of size, shape, and
functionalization of nanoparticles for the inhibition of the
cathepsin family (Sée et al., 2009; Speshock et al., 2011;
Tabish et al., 2019). Unfortunately, very little is known about
the mechanism of nanoparticle-cathepsin interaction. A deep
understanding of the biochemical interactions of nanoparticles
with cathepsin at molecular and intra-, sub-cellular levels is,
therefore, crucial for the development, testing and utilization
of nanoparticles as nanodrugs to inhibit cathepsin. Sée et al.
(2009) have demonstrated that functionalized gold nanoparticles
(with peptides and proteins) have the potential to be degraded
during cellular localization within endosomal compartments as
entry pathways. The potential mechanism of this process occurs

via peptide cleavage by the protease CathL. This work was
focussed on the cellular uptake and enzymatic alterations of gold
nanostructures against Hela, SK-N-AS, D-283 Med, MEF, and
DAOY cell lines. This study has not discussed the inhibition
of CathL and nanoparticle-CathL interaction at molecular or
cellular levels. Speshock et al. (2011) reported gold (10 nm of size)
and silver (10 and 30 nm of size) nanoparticles and investigated
the effects of these nanoparticles on CathL activity, revealing
that gold nanoparticles stimulated CathL activity in cells but
not silver nanoparticles. These results confirmed that functional
groups on the surface of gold nanoparticles could potentially
have been lost upon cell internalization and localization in
Vero cells, although this work did not provide any evidence of
cellular internalization and localization of nanoparticles which
largely remains unexplored and unknown. The high levels
of internalization and cellular uptake of AuNPs stimulated
CathL activity.

Both studies mentioned above showed the cellular activity of
CathL using gold nanoparticles. Despite recent advancements
in using gold nanostructures for optical diagnostics (such as
Raman scattering systems, photoacoustic imaging modality) and
therapeutics (such as photothermal therapy), understanding the
ultimate fate, clearance, excretion and biodistribution of these
nanostructures in living systems is a major knowledge gap
in their use as theranostic agents. Importantly, bioinformatics,
pharmacokinetics and pharmacodynamics are important tools
to further uncover the mechanistic phenomena of nanoparticle-
cathepsin interaction. Furthermore, inhibition of the cathepsin
family using nanotechnology-based approaches is a major
knowledge gap. Our group has recently shown (Tabish et al.,
2019) that highly biocompatible graphene oxide could be used
as a strong inhibitor for CathL activity in a time, dose and pH
dependent manner. Different analytical tools such as Raman
scattering system, Fourier Transform Infrared Spectroscopy
(FTIR), water contact angles and surface energy revealed the
strong bonding and adsorption mechanisms of this inhibition
activity against CathL. This was the first study to examine the
inhibition of CathL using nanomaterials under biologically and
clinically relevant conditions e.g., appropriate pH. The method
of graphene oxide synthesis described in this work was very
straightforward, cost-effective and highly biocompatible and
showed the potential for development of nanomedicine-based
anti-metastatic agents to inhibit of cell invasion. In this work,
the batch adsorption process was adopted to quantity the effect
of pH on the inhibition of CathL using graphene oxide. CathL
adsorption was revealed to be pH- and concentration-dependent,
representing that the highest adsorbed quantities were at the
acidic pH of 5. The adsorption capacity of graphene oxide at the
concentration of 1000µg/mL was higher than 90% after 20min.
In a recently published study, Junior et al. (2019) encapsulated
cysteine protease inhibitors (Neq0551, Neq0554, and Neq0568)
into apoferritin protein nanocages and seeded them with two
cancer cacell lines (HCT-116 colorectal carcinoma cells and
MiaPaCa-2 pancreatic adenocarcinoma cells) to investigate the
inhibition of CathL. In both cells, CathL activity was efficiently
inhibited with nanoagents (at the concentrations above 25µM),
in comparison to pristine inhibitor groups, potentially by
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retaining intracellular/lysosomal nanoagents for a greater period
of time. Recently Bratovš et al. (2019) developed a liposomal
drug carrier system conjugated with a small endogenous protein
inhibitor of cathepsins, stefin A [D61C], as the targeting
moiety and demonstrated that stefin A-conjugated liposomes
could inhibit CathL in vitro and in vivo (mice) models. This
approach could potentially be used as diagnostic tool and also
for encapsulation of chemotherapeutic drugs because stefin has
large protease-binding region, high thermostability and lack of
disulphide bonds and high affinity and high specificity toward
its endogenous targets (Jenko et al., 2003; Renko et al., 2010;
Mikhaylov et al., 2014).

In general, covalent inhibitors are considered as potential
inhibitors for CathL with reduced collateral side effects. However,
these small compounds and inhibitors suffer from off-target toxic
effects and limited reactive groups existing onto their surfaces.
Therefore, novel design and development of these compounds is
significantly important to facilitate the high affinity toward the
target enzyme. An alternative approach to modify these small
compounds is to use nanoparticles as core structures. Although
toxicity associated with these small compounds can beminimized
by using nanomaterials. Nanomaterials are already available in
clinical settings for selective and targeted delivery of drugs and
photochemicals for disease management (Ronkainen and Okon,
2014; Patra et al., 2018). Small inhibitor compounds can be
encapsulated onto the core of biocompatible nanoparticles for
selective and targeted delivery to the site as well as selective
inhibition of CathL. The efficient design of nanomaterials and
their payloads provides beneficial structures that allow efficient
inhibition of CathL. Selective inhibition of CathL is a promising
strategy toward the efficient designs of anti-metastatic agents,
which still remains an urgent unmet need. Although, drugs
for the inhibition of cathepsin K, B, C, and S have extensively
been studied (Withana et al., 2012; Sudhan and Siemann, 2015;
Flanagan-Steet et al., 2018; Lu et al., 2018; Nwosu et al., 2018;
Panwar et al., 2018; Xue et al., 2019) there has been limited
success with CathL.

SUMMARY AND FUTURE OUTLOOK

High levels of CathL in tumours have been linked with
poor prognosis in breast, ovarian, prostate, brain, and lung
cancers. High biocompatibility and low cytotoxicity are the most
significant therapeutic features of nanomedicines required of
anti-invasion and anti-metastatic agents to suppress tumour

microenvironment-enhanced metastasis (Tabish et al., 2017;
Fan et al., 2018; Zhang et al., 2020). To date, the most
promising nanomedicine-based anti-metastatic agents are gold
nanoparticles and nanostructured graphene. Tunable size,
physiochemical and shape-dependent surface properties, pH-
dependent surface charge, high specific surface area, luminescent
characteristics and the ability for selective and targeted
delivery of these nanoparticles make them ideal candidates
as anti-metastatic agents. These agents show a high ability
to inhibit and breakdown CathL, which is desired for the
cell invasion. Both gold and graphene nanostructures have
widely been demonstrated for cancer treatment in pre-
clinical studies and are considered as promising candidates for
therapeutic interventions. Recent studies on the high efficiency
of nanomaterials for the inhibition of CathL and other cathepsin
family members could potentially revolutionize the emerging
field of nanomedicine.

It has been reported that nanostructured materials have
antiproliferative, selective and targeted light-mediated
therapeutic activities. Therefore, nanomaterials-based
anti-metastatic agents could complement other therapies
such as antiproliferative, photodynamic and photothermal
therapies. However, the molecular mechanistic insights are
yet to be fully elucidated in this field of anti-metastatic
therapy. Critical assessment of optimum anti-metastatic
activities of nanomaterials, therefore, warrants further
studies at in-vitro and in-vivo levels. The combination
of these nanoagents with clinically available drugs may
offer a new broad-spectrum impairment of tumour cell
function, and it is hoped that these nanodrugs have
the therapeutic potential to become new and improved
therapeutic modalities.
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