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An innovative advance in bone
grafting: initial clinical results
using a novel integrative bone
graft in spinal fusion
Peter G. Passias*, Oluwatobi O. Onafowokan, Ankita Das,
Jamshaid M. Mir, Anthony Yung and Max Fisher

Spine Division, Departments of Orthopaedic and Neurological Surgery, Duke University Health System,
Durham, NC, United States
Introduction: Although autologous iliac crest bone graft (ICBG) has long been
the gold standard for spinal fusion, complications related to its harvest and
availability issues with local bone autograft have encouraged the development
of bone graft substitutes that provide safer alternatives with consistent clinical
efficacy and potential for applications across musculoskeletal health, including
spinal fusion. This study evaluates the initial safety and efficacy of a novel
integrative bone matrix (IBM) in spinal fusion procedures.
Methods: The charts of twenty patients who underwent spinal fusion surgery at
1–5 contiguous interbody levels and/or 1–15 contiguous posterolateral levels
with the novel IBM between November 2022 and May 2023 were
retrospectively evaluated for safety and efficacy endpoints at standard of care
3, 6, and 12 months postoperative follow up visits. Radiographic fusion rate
was evaluated by plain radiographs using the Bridwell interbody fusion grading
system and/or the Glassman posterolateral fusion grading system, as
appropriate. Subjective pain, disability, and quality of life assessments included
the EuroQoL 5 Dimensions Visual Analogue Scale (EQ-5D VAS), Oswestry
Disability Index (ODI), and the revised Scoliosis Research Society Score (SRS-22r).
Results: No adverse events occurred that were related to the graft, and no
subjects required unplanned revision surgery. Radiographic fusion was
achieved in all (100%) of the interbody and posterolateral levels by 12 months.
There was no significant difference in overall fusion rate between subjects
receiving short vs. long segment constructs. At 3, 6, and 12 month follow up,
significant (p < 0.001) improvements were observed compared to baseline
values for all patient reported outcome measures, and the cohort reached the
minimum clinically significant mean improvements.
Discussion: This study highlights the potential of this novel IBM as a safe and
effective bone graft substitute in spinal arthrodesis procedures. Patients had a
high rate of fusion without any graft-related adverse events. Larger, controlled
studies with longer-term follow-up are warranted for further validation.
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TABLE 1 Bridwell interbody fusion grading system.

Fused Grade I Fused with remodeling and trabeculae present

Grade II Graft intact, not fully remodeled and incorporated, but no
lucency present

Not
fused

Grade III Graft intact, potential lucency present at top and bottom of
graft

Grade IV Fusion absent with collapse and/or resorption of graft

Passias et al. 10.3389/fmscd.2024.1459266
Introduction

Spinal fusion plays a pivotal role in managing pain from a

diverse range of spinal disorders, including degenerative disc

disease, spinal stenosis, spondylolisthesis, and spinal fractures.

From 1998 to 2008, the frequency of spinal fusion discharges was

reported to have increased by 137%, which further increased

between the years 2002 and 2014 to 276% for elective lumbar

fusion procedures (1–3). The use of autologous iliac crest bone

graft (ICBG) has been considered the gold standard for bone

grafting in spinal fusion surgery, due to its natural

osteoconductive, osteoinductive, and osteogenic properties.

However, harvesting ICBG can lead to complications such as

pain, blood loss, and infection (4, 5).

One systematic review and meta-analysis compared ICBG to

local autologous bone in spinal fusion procedures and found that

the use of local bone resulted in significantly higher fusion rates

compared to ICBG (5). However, although autologous local bone

from the operative site may serve as an alternative, its limited

availability and variable quality present challenges in achieving

consistent surgical outcomes (6). Thus, there is an unmet need

for bone graft substitutes that can offer comparable efficacy in

supporting bone healing while circumventing the limitations of

autologous grafting (5, 7). Bone graft substitutes, such as those

from either allogeneic (donor) or synthetic sources, can fulfill

this need, however not all bone graft substitutes are biomimetic

alternatives for autologous bone (4, 5, 7, 8).

Specifically in the field of regenerative medicine, extensive

research efforts have focused on identifying novel osteobiologics

capable of enhancing bone healing and integration in spinal fusion

procedures (4, 5, 7). Bone graft substitutes with osteoconductive

and osteoinductive characteristics accelerate bone healing by

releasing growth factors and cytokines, which facilitates cell

proliferation, angiogenesis, and extracellular matrix deposition for

optimal bone regeneration and integration (4, 7). A recent

advancement in bone grafting technology was the development of

cellular bone matrices (CBMs) or viable bone matrices (VBMs)

that preserve viable cells, aiming to enhance osteogenesis and

improve patient outcomes (4, 9). As with many advancements,

improvements in grafting technology often come with compromise.

The focus on preserving viable cell populations in CBMs and

VBMs often comes at the price of reducing inductive factors and/

or suboptimal handling of the bone graft during manufacturing.

However, the latest advancement in bone grafting technology

(integrative bone matrix, IBM) provides viable and functional cells

while including improved graft handling and the preservation

of a greater concentration of inherent osteoinductive and

angiogenic proteins compared to what has been previously

reported for manufactured demineralized bone (10–12). Due to

the critical role of angiogenesis in bone healing, there is an

unmet need for an advanced viable bone graft that can provide

high levels of both osteoinductive and angiogenic growth

factors to support clinical success.

This article provides preliminary observational data on the

use of a novel integrative bone matrix (IBM) in spinal fusion
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procedures and summarizes the regenerative properties of

advanced viable bone grafts such as IBM.
Materials and methods

This study was reviewed and approved by our institutional IRB

review process. A waiver of Informed Consent and HIPAA was

obtained due to the retrospective nature of the work performed.

This study was conducted in accordance with the ethical

principles in the Declaration of Helsinki and conducted

according to U.S. and international standards of Good Clinical

Practice in accordance with applicable Federal regulations,

International Council for Harmonization guidelines, and

institutional research policies and procedures.
Subject population

This retrospective observational study was performed to

evaluate initial safety and efficacy outcomes of INFLUXTM

SPARC integrative bone matrix (IBM) implanted between

November 2022 and May 2023 in patients aged 18–80 years

undergoing spinal fusion surgery. Only patients receiving the

novel IBM as a bone graft were included in the study. Enrolled

subjects included those with spinal fusion surgery at 1–5

contiguous interbody levels and/or 1–15 contiguous posterolateral

levels. Subjects with fusion constructs from 1 to 3 interbody or

posterolateral levels were defined as short segment, and those

that had greater than 3 interbody or posterolateral levels in their

fusion constructs were defined as long segment.
Endpoints

The primary endpoint was evaluation of fusion of the treated

levels, as assessed by the operative surgeon through radiographic

examination of plain films (and CT imaging when available)

collected at baseline (preoperative) and 3, 6, and 12 months

postoperatively utilizing the Bridwell interbody fusion grading

system and the Glassman posterolateral fusion grading system

as appropriate (Tables 1, 2) (13, 14). Grades I and II on the

Bridwell system and Grades 4 and 5 on the Glassman system

were classified as successful fusion based on established

literature (14, 15).

The operative physician’s standard of care patient-reported

assessments collected at baseline (preoperative) and 3-, 6-, and
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TABLE 3 Patient demographics & clinical characteristics.

Demographic Variables
Age, Years, mean ± SD 60.4 ± 10.2

(Min – Max) 45–79

Gender, Male 10 (50.0%)

BMI (kg/m2, mean ± SD) 31.9 ± 6.9

Race
White 16 (80.0%)

Black or African American 4 (20.0%)

Ethnicity
Non-Hispanic or Latino 7 (35.0%)

Hispanic or Latino 1 (5.0%)

Unknown 12 (60.0%)

Smoker 7 (35.0%)

Current 2 (10.0%)

Former 5 (25.0%)

Steroids (Current) 7 (35.0%)

Passias et al. 10.3389/fmscd.2024.1459266
12-months postoperatively for pain, function, and quality of life

were the secondary endpoints of the study: EuroQoL 5

Dimensions Visual Analogue Scale (EQ-5D VAS), Oswestry

Disability Index (ODI), and the revised Scoliosis Research Society

Score (SRS-22r). The EQ-5D VAS scale ranges from 0 to 100,

with 0 indicating “the worst health you can imagine” and 100

indicating “the best health you can imagine” (16). ODI scores

can range from 0% (no disability) to 100% (most severe

disability) (17). SRS-22r has a minimum score of 1 and a

maximum score of 5, with higher scores indicating better patient

quality of life (18). Minimal clinically significant improvements

were defined as an increase of 12 points for EQ-5D VAS, a 10%

decrease in points for ODI, and a mean increase of 0.4 for SRS-

22r, as established in the literature (19–21). Safety evaluation

included incidence of pseudoarthrosis or unplanned reoperation

related to the use of IBM.
Diagnoses at enrollment
None 5 (25.0%)

Hypertension 12 (60.0%)

Obesity (>30 BMI) 9 (45.0%)

Cardiovascular Disease 6 (30.0%)

Kidney Disease 4 (20.0%)

Diabetes (Type II) 1 (5.0%)

Reoperative Surgery 7 (35.0%)
Statistical analysis

Continuous variables are presented as means with standard

deviations and categorical data are represented as counts with

percentages. Fusion rates were considered noncontinuous

variables, whereas pain and disability scores were treated as

ordinal variables. The number of levels treated was correlated

with preoperative quality of life scale scores using Spearman

correlations. Independent median samples tests were used to

compare median time to fusion for short vs. long segment

subjects, and those with vs. without comorbidities. The

nonparametric, related-samples Friedman’s Analysis of Variance

was used to examine change in quality-of-life outcomes over

time. The Bonferroni correction was applied to pairwise post hoc

analyses. Statistical significance was set at p < .05. SPSS software

version 27 (IBM Corp.; Armonk, New York, USA) was used for

statistical analysis.
Results

Patient and procedural details

A total of 20 patients met the inclusion criteria for this study,

50% (n = 10) of which were male. Table 3 provides a summary of

subject demographics and health profiles. Subjects had a mean

age of 60.4 years (range 45–79) and a mean body mass index

(BMI) of 31.9 kg/m2. A quarter (25.0%) of the subjects were

current smokers and 35.0% were currently taking steroids.

Diagnoses within patient charts revealed a range of health
TABLE 2 Glassman posterolateral fusion grading system.

Not fused Grade 1 No fusion

Grade 2 Partial or limited unilateral fusion

Grade 3 Partial or limited bilateral fusion

Fused Grade 4 Solid unilateral fusion

Grade 5 Solid bilateral fusion
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conditions: 45.0% of subjects were obese (BMI > 30), 30.0% had

cardiovascular disease, 20.0% had kidney disease, 5.0% had Type

II diabetes, and 35.0% were undergoing a revision surgery.

On average, each subject had 3.6 ± 1.4 indications for surgery

(Table 4). The most common indications were stenosis (90.0%),

followed by herniated nucleus pulposus (HNP) (75.0%),

spondylolisthesis (60.0%), and spondylosis (50.0%). There were

no cases of degenerative disc disease (DDD). Other indications

(85.0%) included scoliosis, radiculitis/radiculopathy, kyphosis,

and revision. Most subjects underwent interbody with posterior

spinal fusion (90.0%), but some underwent posterolateral fusion

alone (10.0%). The cohort was split evenly between short (50.0%)

vs. long segment (50.0%) fusion constructs. The average number

of levels treated per interbody subject was 2.1 (ranging from T8

to S1), and 5.0 for posterolateral subjects (ranging from C2 to

S1). However as expected, the most treated levels were between

L3 – S1 (70.2% of interbody and 32.3% of posterolateral). The

number of levels treated was not associated with preoperative

EQ-5D [r(19) =−0.075, p = 0.752], ODI [r(19) = 0.123, p = 0.604],

or SRS-22r [r(19) = 0.004, p = 0.985] scores.

Approximately half of the procedures were performed using

minimally invasive approaches (55.0% TLIF or LLIF). All

interbody subjects (100.0%) received an expandable titanium

interbody device (Globus Medical, Audubon, Pennsylvania) and

bilateral percutaneous pedicle screw constructs with posterolateral

grafting. A total of 5.0cc of IBM was used per fusion area (i.e.,

5.0cc for posterolateral fusion alone, 10.0cc for both interbody

and posterolateral), and all posterior fusions also included the

use of available local autograft (approximately 6cc per level). All

subjects who underwent ALIF, LLIF, or TLIF also underwent
frontiersin.org
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TABLE 5 Radiographic fusion rates.

Interbody Fusion Rate, n (%)
(Bridwell grading system)

N= 37

3 months 28 (77.8%)

6 months 35 (94.6%)

12 months 37 (100.0%)

Time to Fusion, median (25th – 75th percentile) 3.0 (3.0–4.5)

Posterior Fusion Rate, n (%)
(Glassman grading system)

N= 99

3 months 2 (2.0%)

6 months 57 (57.6%)

12 months 99 (100.0%)

Time to Fusion, median (25th – 75th percentile) 6.0 (6.0–12.0)

Combined Fusion Ratea, n (%) N= 37
3 months 1 (2.7%)

6 months 23 (62.2%)

12 months 37 (100.0%)

Time to Fusion, median (25th – 75th percentile) 6.0 (6.0–12.0)

aCombined fusion rate indicates time level achieved fusion per both measurement scales (i.e.,

Bridwell Grade I or II and Glassman Grade 4 or 5) for subjects with interbody and

posterolateral grafting.

TABLE 4 Procedural details.

Indications for Surgerya

# Indications per subject, mean ± SD 3.6 ± 1.4

Stenosis 18 (90.0%)

Herniated Nucleus Pulposus (HNP) 15 (75.0%)

Spondylolisthesis 12 (60.0%)

Spondylosis 10 (50.0%)

Degenerative Disc Disease (DDD) 0 (0.0%)

Otherb 17 (85.0%)

Surgical Approach
Interbody with Posterior Fusion 18 (90.0%)

Posterior Fusion Alone 2 (10.0%)

Construct Size
Short Segment (≤3 levels) 10 (50.0%)

Long Segment (>3 levels) 10 (50.0%)

Interbody Levels Treated N = 37
# Levels Treated (1–5), mean ± SD 2.1 ± 1.2

T8 – T9 1 (2.7%)

T9 – T10 1 (2.7%)

T10 – T11 1 (2.7%)

T11 – T12 1 (2.7%)

T12 – L1 0 (0.0%)

L1 – L2 3 (8.1%)

L2 – L3 4 (10.8%)

L3 – L4 7 (18.9%)

L4 – L5 12 (32.4%)

L5 – S1 7 (18.9%)

Interbody Implant Used During Procedure (per level) N = 37
Titanium Cage 37 (100.0%)

Posterolateral Levels Treated N = 99
# Levels Treated (1–15), mean ± SD 5.0 ± 4.3

C2 – C3 1 (1.0%)

C3 – C4 1 (1.0%)

C4 – C5 1 (1.0%)

C5 – C6 1 (1.0%)

C6 – C7 1 (1.0%)

C7 – T1 1 (1.0%)

T1 – T2 1 (1.0%)

T2 – T3 2 (2.0%)

T3 – T4 2 (2.0%)

T4 – T5 3 (3.0%)

T5 – T6 3 (3.0%)

T6 – T7 3 (3.0%)

T7 – T8 3 (3.0%)

T8 – T9 5 (5.1%)

T9 – T10 5 (5.1%)

T10 – T11 5 (5.1%)

T11 – T12 7 (7.1%)

T12 – L1 8 (8.1%)

L1 – L2 6 (6.1%)

L2 – L3 8 (8.1%)

L3 – L4 9 (9.1%)

L4 – L5 14 (14.1%)

L5 – S1 9 (9.1%)

IBM, integrative bone matrix; SD, standard deviation.
aPercentages do not equal 100, as most patients had multiple indications for spinal fusion.
bOther indications included scoliosis, radiculitis/radiculopathy, kyphosis, and revision.
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PSF. When preparing the fusion graft for implantation during

intervertebral fusion, the expandable cage was first packed with

bone graft and implanted in a collapsed state, then was expanded

to the desired height and backfilled with bone graft. No patients

required harvesting of ICBG.
Clinical and radiographic outcomes

Radiographic fusion rates per level are summarized in Table 5.

For interbody fusion (n = 37 levels), assessed using the Bridwell

grading system (Table 1) and literature definition for successful

fusion (grade I or II), fusion rates steadily increased over time,

with 77.8% at 3 months, 94.6% at 6 months, reaching 100.0% at

12 months post-surgery (13, 15). The median time to interbody

fusion was 3.0 months (range 3.0–4.5). Posterior fusion rates

(n = 99 levels), evaluated via the Glassman grading system

(Table 2) and literature definition for successful fusion (grade 4

or 5), showed a slower progression with only 2.0% achieving

fusion at 3 months, increasing to 57.6% at 6 months, and

eventually reaching 100.0% by 12 months, with a median fusion

time of 6.0 months (range 6.0–12.0) (14). The combined fusion

rate, i.e., scores of Bridwell grade I or II and Glassman grade 4

or 5 for subjects with interbody and posterolateral grafting

(n = 37 levels), was 2.7% at 3 months, 62.2% at 6 months, and

100.0% at 12 months, with a median fusion time of 6.0 months

(range 6.0–12.0). Although excellent reference images can be

found in the original publications, example radiographs

representing the interbody and posterolateral scoring systems

from our subject cohort are shown in Figure 1 (13, 14).
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FIGURE 1

Example radiographs of interbody (Bridwell) and posterolateral
(Glassman) scoring. (A) At 3 months, this single level LLIF subject
was scored as Bridwell Grade III (not fused) and (B) Glassman
Grade 2 (not fused). (C) At 12 months, this 3-level LLIF subject was
scored as Bridwell Grade I (fused) and (D) Glassman Grade 5
(fused) at each level.

Passias et al. 10.3389/fmscd.2024.1459266
Radiographs and CT imaging that display baseline and

successful fusion at 6- and 12-month follow-up are provided

of two subjects in Figure 2: a low-risk subject undergoing a

single level interbody and posterior fusion, and a high-risk

subject undergoing an 11-level revision posterior fusion. One

subject achieved their single level fusion on both scales at

only 3 months: a high risk 77-year-old obese female who

was a current smoker, hypertensive, with coronary artery

and peripheral vascular disease, and was currently taking

corticosteroids. No patients experienced pseudarthrosis or

required unplanned revision surgery. When fusion rates

between subjects receiving short vs. long segment constructs

were compared, no significant differences were found (p > 0.05

for interbody, posterolateral only, and combined median times

to fusion), and there were no differences in comorbid risk

factors between these groups. Further, no significant

differences were found in median time to fusion for subjects

who were current smokers, currently on steroids, or obese

(>30 kg/m2), however obesity trended with a shorter time to

fusion (p = 0.057).
Frontiers in Musculoskeletal Disorders 05
Subjective clinical outcomes

Subject-reported outcomes, including: EuroQoL 5 Dimensions

Visual Analogue Scale (EQ-5D VAS) for pain, Oswestry Disability

Index (ODI) for disability, and Scoliosis Research Society Score

(SRS-22r) for quality of life demonstrated statistically significant

main effects (p < 0.001). Additionally, post-hoc comparisons at

3-, 6-, and 12 months were significantly improved compared to

baseline (p < 0.001 for all comparisons) (Table 6, Figures 3–5).

In terms of pain perception measured by EQ-5D VAS, subjects

exhibited significant improvements over the follow up times

(Table 6, Figure 3). At baseline, the median pain score was 45.0

(IQR: 30.0–60.0), which notably increased to 67.5 (IQR: 60.0–

82.5) at 3 months (p < 0.001), further improving to 70.0 (IQR:

52.5–80.0) at 6 months (p < 0.001), and 70.0 (IQR: 61.3–85.0) at

12 months (p < 0.001). Regarding disability levels assessed by

ODI, subjects experienced a significant reduction in disability

from baseline (median score: 62.0, IQR: 50.5–72.0, p < 0.001) to 3

months (median score: 31.0, IQR: 24.5–42.3, p < 0.001),

remaining relatively stable at both 6 months (median score: 31.0,

IQR: 26.0–39.0, p < 0.001) and 12 months (median score: 29.0,

IQR: 22.0–34.0, p < 0.001) (Table 6, Figure 4). Quality of life, as

measured by SRS-22r, also showed significant improvement

throughout the study period: the median score increased from

2.4 (IQR: 2.1–2.6) at baseline to 3.5 (IQR: 3.1–3.8) at 3 months

(p < 0.001) and 6 months (p < 0.001), reaching 3.8 (IQR: 3.4–4.0)

at 12 months (p < 0.001), indicating a consistent enhancement in

patients’ overall well-being over time (Table 6, Figure 5).

The most substantial improvements compared to baseline were

at the 12-month assessment, however the cohort reached the

minimum clinically significant mean improvements in EQ-5D

VAS (+12 points), ODI (−10%), and SRS-22r (+0.4 points) by 3

months (19–21). The mean changes in EQ-5D VAS scores at 3,

6, and 12 months were +19.3, +21.5, and +25.8, respectfully. At

3, 6, and 12 months, the mean change in ODI percentage points

were −26.9%, −29.3, and −32.0%, respectively. For SRS-22r, the

mean score changes at 3, 6, and 12 months were +1.0, +1.1, and

+1.3. Overall, from baseline to 12 months there was a 54.9%

improvement in EQ-5D VAS, 52.4% in ODI, and 54.2% in SRS-22r.
Safety

No adverse events related to the graft were reported. Only 1

report of mild, procedure-related proximal junctional kyphosis

(PJK) was found in an obese 78-year-old white female with

chronic kidney and cardiovascular disease.
Discussion

Expanding capabilities in regenerative medicine research and

manufacturing have resulted in osteobiologic substitutes that

reduce dependence on autologous bone grafts, and therefore

effectively lower the risk of related complications (4, 5, 7, 8). The
frontiersin.org
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FIGURE 2

Example radiographs of two subjects: (A–D) a 51-year-old obese female who underwent a single level ALIF from L5 to S1, and (E–I) a 61-year-old
obese, current smoker female with hypertension who underwent a revision T2 to L1 posterolateral fusion after a L1 to L3 TLIF with T6 to pelvis
posterior fusion 8 months prior, and a L3 to L5 PLIF 6 years prior (subject experienced PJF and pseudarthrosis in the thoracic spine and
underwent hardware removal with revision in the latest procedure). (A,E) Baseline radiographic imaging and successful fusion apparent at (B,F)
6-month follow up, (C,G) 12-month follow-up, and (D,H,I) CT images at 12 months postoperative.
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clinical success of these grafts is mainly attributed to the inclusion

of osteoconductive, osteoinductive, and/or osteogenic properties

that mimic those of autologous bone (5, 12). During bone

healing, tissue remodeling and neovascularization are conducted

by osteogenic cells and cytokines such as insulin-like growth

factors (IGFs), bone morphogenetic proteins (BMPs), platelet-

derived growth factor (PDGF), transforming growth factors

(TGF-βs), vascular endothelial growth factor (VEGF), and

endothelial growth factor (EGF) (22). Thus, bone grafts that

preserve viable bone forming cells and a high concentration of

these supportive growth factors and cytokines may provide

clinical benefit over bone grafts which only provide

osteoconductive properties.

Currently in the United States, synthetic scaffolds, bone

morphogenetic proteins (BMPs), demineralized bone matrices

(DBMs), bone marrow aspirate (BMA) byproducts, and viable

bone matrices (VBMs) are available for use. Each osteobiologic

has shown promising potential to enhance fusion rates and
Frontiers in Musculoskeletal Disorders 06
alleviate pain associated with autologous harvesting in

musculoskeletal fusion procedures, however some provide more

limited characteristics compared to others which could affect

clinical outcomes (23). Synthetic bone graft scaffolds provide

consistent structure but have lower reported fusion rates (77% to

90%) when used alone compared to using as an extender with

iliac crest autograft (78% to 100%) (24, 25). Demineralized bone

matrix (DBM) was designed to enhance fusion with

osteoinductive properties, however growth factor concentration

variability between individual DBMs and within lots is thought

to be responsible for the differing reported rates of fusion (52%

to 100%) (23, 26, 27). Bone morphogenetic proteins (BMPs)

have high reported fusion rates (93% to 99%) due to strong

osteoinductive effects but carry risks such as inflammation and

malignancy (23, 28–30). Bone marrow aspirate (BMA) relies on

osteogenic cells and growth factors to drive osteogenesis, and

depending on which scaffold it is combined with, has similar

reported arthrodesis rates to iliac crest autograft (76% to 100%)
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FIGURE 3

EuroQoL 5 dimensions visual analogue scale (EQ-5D VAS) for pain.
Scores reported here and in Table 6 are presented as median (IQR,
25th – 75th percentile). At each follow up timepoint, mean scores
were: 46.8 ± 19.8 (baseline), 66.0 ± 16.6 (3 months), 68.3 ± 16.3
(6 months), and 72.5 ± 12.7 (12 months).

FIGURE 5

Scoliosis research society score (SRS-22r) for quality of life. Scores
reported here and in Table 6 are presented as median (IQR, 25th –
75th percentile). At each follow up timepoint, mean scores were:
2.4 ± 0.5 (baseline), 3.4 ± 0.6 (3 months), 3.5 ± 0.6 (6 months), and
3.7 ± 0.5 (12 months).

FIGURE 4

Oswestry disability Index (ODI) for disability. Scores reported here
and in Table 6 are presented as median (IQR, 25th – 75th
percentile). At each follow up timepoint, mean scores were:
61.1 ± 14.0 (baseline), 34.2 ± 11.0 (3 months), 31.8 ± 10.8
(6 months), and 29.1 ± 11.4 (12 months).

TABLE 6 Pain and disability scores.

p-value*

EQ-5D VAS (Pain) median (IQR, 25th – 75th%)
Baseline 45.0 (30.0–60.0) –

3 months 67.5 (60.0–82.5) <0.001

6 months 70.0 (52.5–80.0) <0.001

12 months 70.0 (61.3–85.0) <0.001

ODI (Disability) median (IQR, 25th – 75th%)
Baseline 62.0 (50.5–72.0) –

3 months 31.0 (24.5–42.3) <0.001

6 months 31.0 (26.0–39.0) <0.001

12 months 29.0 (22.0–34.0) <0.001

SRS-22r (Quality of Life) median (IQR, 25th – 75th%)
Baseline 2.4 (2.1–2.6) –

3 months 3.5 (3.1–3.8) <0.001

6 months 3.5 (3.1–3.7) <0.001

12 months 3.8 (3.4–4.0) <0.001

EQ-5D VAS, EuroQoL 5 dimensions visual analogue scale; ODI, oswestry disability index;

IQR, interquartile range; SRS-22r, Scoliosis Research Society Score.
*p-value represents baseline scores versus scores at each follow up timepoint from model post

hoc pairwise comparison with Bonferroni adjustment.
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(31, 32). Currently there is a lack of evidence supporting the

utilization of DBM or BMA derivatives as standalone

orthobiologics (4). The only class of osteobiologic that

incorporates all three required components to support bone

healing are VBMs or IBMs (Table 7).

VBMs have shown equivalent or greater clinical success

compared to ICBG even in complex cases and with patients with

higher risk factors in spinal fusion (33, 34), foot and ankle

arthrodesis (35–38), and craniomaxillofacial repairs (39, 40). The

ability of advanced grafts to overcome potential healing

deficiencies caused by these risk factors could explain the lack of

significant differences in fusion rates between short vs. long

segment arthrodesis and low vs. high comorbid risk factors in

this dataset, however larger studies are needed to confirm these

relationships. Recent studies have also suggested that VBMs may

be more cost-effective compared to other alternatives such as

rhBMP2, in part due to their lower complication rates which

potentially can lead to lower healthcare costs over a 2-year

period postoperatively (41, 42). In fact, the higher rates of

complications from using rhBMP2 could explain the 50%

decrease in utilization during thoracolumbar spine fusion

surgeries observed between the years 2008–2014 (43). There are

many different VBMs commercially available, yet differences exist

between products in manufacturing processes which can affect

the quantity and quality of cells and growth factors, shelf life,

thaw time, use of carrier(s), and time of post-thaw viability (44).

Differences in the presence and bioavailability of these factors

may explain the differences in clinical fusion success, as reported

by others (44, 45). Integrative bone matrix (IBM) includes the

same three bone-supportive characteristics as VBM yet provides

a greater concentration of native osteoinductive proteins

compared to what has been previously reported for

demineralized bone (10–12).

As this is the first reporting of results for this application, the

purpose of this study was to assess the initial safety and efficacy of

a novel IBM in spinal fusion procedures. The use of SPARC IBM

was considered safe, as it led to zero related adverse events and

circumvented the need for harvesting iliac crest autograft. The
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TABLE 7 Comparison of osteobiologic adjunct characteristics within the US.

Osteoconductive Osteoinductive Osteogenic
Synthetic scaffolds +

Bone morphogenetic proteins (BMPs) +

Demineralized bone matrix (DBM) + +

Bone marrow aspirate (BMA) byproducts + +

Viable bone matrix (VBM) + + +

Integrative bone matrix (IBM) + ++ +

FIGURE 6

Advanced proprietary processing resulted in heightened growth
factor preservation and bioavailability for the IBM compared to
demineralized bone matrix (DBM) concentrations. These preserved
growth factors can promote osteoinduction, angiogenesis, and
cellular proliferation. Values were assessed from donor matched
samples across 8 donors (lots). Proteins were extracted from bone
samples using standard guanidine hydrochloride protein extraction
methods, then each target protein was quantified via a
commercially available custom multiplex fluorescent ELISA.
*Dashed line represents normalized level of growth factors
measured from a common DBM.
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only procedure-related complication was proximal junctional

kyphosis (PJK) in a patient with obesity, which is a well-known

risk factor for PJK (46). Increasing fusion levels also heightens

the risk of PJK, nonunion, and mechanical strain, with severe

cases requiring revision surgery. However, these outcomes are

highly dependent upon differing surgical techniques, patient

factors, and follow-up protocols. It is worth noting that the

PJK in this study was asymptomatic and did not require any

subsequent intervention by 1-year follow up. Efficacy outcomes

included radiographic fusion success, which occurred in 100%

of interbody and posterolateral levels by 12 months, and

subjective clinical evaluations for pain, function, and quality of

life which reached the minimum clinically significant mean

improvements by 3 months and was maintained through 12

months of follow up.

Previously published VBM spinal fusion rates and pain,

disability, and quality of life score improvements align with those
Frontiers in Musculoskeletal Disorders 08
reported in this IBM study. A recent systematic review including

VBM studies published through January 2023 reported lumbar

segment fusion rates of 68% – 99% at 12 months (9). However,

the reported rate of reoperation (up to 8.7% in one study with a

similar number of enrolled subjects) (47) is significantly higher

than our observed rate of 0%. Only one VBM study was

identified that included similar subjective outcome measures (48),

reporting a 57.1% improvement in mean ODI scores at 12 months,

similar to the improvements reported in this study (52.4%).

This innovative IBM combines cancellous chips and cortical

DBM fibers to optimize both handling and osteoconduction, and

is processed using a gentle manufacturing protocol that preserves

viable osteoprogenitor cells with viability for up to 5 h post-thaw,

per the IFU. Mitigation of the risk of infection and disease

transmission are due to advanced screening of donors and

aseptic processing methods. Unlike what has been previously

reported for conventional DBM grafts, the IBM retains greater

levels of native growth factors extracted from the bone lining

cells (Figure 6) (10–12). These include a diverse array of

bioavailable osteoinductive, angiogenic, and mitogenic growth

factors such as: BMPs, PDGF, TGF-β3, VEGF, and EGF. Unlike

VBMs, the IBM thaws quickly in approximately 10 min in room

temperature sterile water or saline and is dimethyl sulfoxide

(DMSO)-free, which eliminates the need to rinse and decant

prior to implantation. The graft comes in a surgeon-friendly

ready-to-use syringe.

These favorable radiographic fusion results combined with

early improvements in pain, function, and quality of life

highlight the potential of this novel IBM as a promising bone

graft extender and substitute in spinal fusion procedures. Aside

from its retrospective nature, limitations for this study include

lack of a control group, a small cohort size, short-term follow up,

use of local autograft alongside the IBM, radiographic evaluation

by the operative surgeon, lack of CT fusion evaluation for all

subjects, and use of a Ti cage which may have contributed to

challenges in fusion determination. Larger, controlled studies

with longer-term follow-up are needed to further validate

these results.
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