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Assessment of fitting methods
and variability of IVIM parameters
in muscles of the lumbar
spine at rest
Erin K. Englund1,2, David B. Berry1, John J. Behun1,
Lawrence R. Frank3, Samuel R. Ward4 and Bahar Shahidi1*
1Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States, 2Radiology,
University of Colorado Anschutz Medical Campus, Aurora, CO, United States, 3Radiology, University of
California, San Diego, La Jolla, CA, United States, 4Orthopaedic Surgery, Radiology, Bioengineering,
University of California, San Diego, La Jolla, CA, United States
Intravoxel incoherent motion (IVIM) MRI provides insight into tissue diffusion and
perfusion. Here, estimates of perfusion fraction ( f ), pseudo-diffusion coefficient
(D*), and diffusion coefficient (D) obtained via different fitting methods are
compared to ascertain (1) the optimal analysis strategy for muscles of the
lumbar spine and (2) repeatability of IVIM parameters in skeletal muscle at rest.
Diffusion-weighted images were acquired in the lumbar spine at rest in 15
healthy participants. Data were fit to the bi-exponential IVIM model to
estimate f, D* and D using three variably segmented approaches based on
non-linear least squares fitting, and a Bayesian fitting method. Assuming that
perfusion and diffusion are temporally stable in skeletal muscle at rest, and
spatially uniform within a spinal segment, the optimal analysis strategy was
determined as the approach with the lowest temporal or spatial variation and
smallest residual between measured and fit data. Inter-session repeatability of
IVIM parameters was evaluated in a subset of 11 people. Finally, simulated IVIM
signal at varying signal to noise ratio were evaluated to understand precision
and bias. Experimental results showed that IVIM parameter values differed
depending on the fitting method. A three-step non-linear least squares fitting
approach, where D, f, and D* were estimated sequentially, generally yielded
the lowest spatial and temporal variation. Solving all parameters
simultaneously yielded the lowest residual between measured and fit data,
however there was substantial spatial and temporal variability. Results obtained
by Bayesian fitting had high spatial and temporal variability in addition to a
large residual between measured and fit data. Simulations showed that
all fitting methods can fit the IVIM data at signal to noise ratios >35, and that
D* was the most challenging to accurately obtain. Overall, this study
motivates use of a three-step non-linear least squares fitting strategy to
quantify IVIM parameters in skeletal muscle.
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1 Introduction

Measurement of blood flow to skeletal muscle provides insight into muscle

metabolism, and activation in response to exercise. Non-invasive magnetic resonance

imaging (MRI) methods to measure microvascular blood flow in skeletal muscle such as

arterial spin labeling (ASL) and intra-voxel incoherent motion (IVIM) have been
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employed in a variety of muscles, including those in the leg (1–4),

shoulder (5, 6), and lumbar spine (7–9). While ASL can quantify

perfusion in physiologically relevant units, its spatial extent is

somewhat limited and the perfusion response to stimuli such as

exercise or induced ischemia dissipates quickly (10). Moreover, it

remains difficult to quantify the low perfusion state of muscle at

rest due to the limited signal-to-noise ratio (SNR) of ASL data.

Alternatively, IVIM is based on the incoherent translational

motion of intravascular and intracellular water, and therefore is

sensitive to the entire capillary blood volume within a voxel.

Building off the theory of molecular diffusion, the motion of

water in randomly oriented capillaries will also result in

incoherent phase accrual, leading to signal decay in the presence

of diffusion-encoding gradients (11, 12). Due to the difference in

scale of motion in the intracellular (e.g., molecular diffusion, D)

vs. intravascular (so called pseudo-diffusion, D*) spaces, signal in

intravascular space decays much more quickly than the

intracellular component (13). The molecular and pseudo-

diffusion coefficients, along with the volume fraction of the

intravascular space (i.e., perfusion fraction, f ) can be estimated

by fitting data acquired at multiple diffusion encoding strengths

to a bi-exponential model.

To estimate the IVIM parameters f, D, and D* from diffusion-

weighted images, a variety of fitting strategies have been employed

(14–16). However, in skeletal muscle, where resting perfusion is

quite low, the rationale behind the choice of a particular analysis

approach has not been clearly and methodically evaluated.

Currently, there is not a single agreed upon analysis strategy,

resulting in a lack of comparability of results across studies.

Additionally, given that studies using IVIM to evaluate skeletal

muscle perfusion may interrogate the response to exercise either

acutely (same day) or over the course of some therapeutic

intervention, it is also important to understand the repeatability

of IVIM parameters in skeletal muscle at rest. Thus, the purpose

of this work was to compare the estimates of IVIM parameters

obtained via different fitting methods to ascertain the optimal

strategy and normative values for muscles of the lumbar spine

and to determine the variability of IVIM parameters across

sessions. The findings of this study are essential for enhancing

comparability across studies and establishing a consensus analysis

strategy for future research.
2 Methods

2.1 Study design

This study was approved by the Institutional Review Board of

the University of California, San Diego. Sixteen healthy people

were recruited for the study after providing written informed

consent. Participants were excluded if they had contraindications

to MRI or had a history of low back pain. Individuals were

instructed to avoid any physical activity on the day of the testing

session. MR imaging was performed at 3T (MR750, GE

Healthcare, Milwaukee, Wisconsin, USA) using a CTL phased-

array spine coil for signal reception. The imaging protocol
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consisted of localizers, T1-weighted anatomical reference images,

followed by collection of IVIM data while the subject rested in

the supine position. Twelve participants returned for a second,

identical visit, allowing for the evaluation of inter-session

repeatability of the IVIM parameters.
2.2 Image acquisition

IVIM data were collected using an axial 2D, diffusion-

weighted, spin-echo EPI sequence with: FOV = 192 × 192 mm2,

slice thickness = 8 mm, 22 slices covering L1–S1, matrix = 128 ×

128, TR/TE = 2,295/52.5 ms, flip angle = 90°, spatial-spectral fat

saturation, number of repeats = 4, 3 directions of diffusion

encoding with b-values = 0, 10, 20, 40, 70, 110, 160, 220, 300,

400, 500, 600, 700 s/mm2, and time = 344 s. The phase encoding

direction was set to anterior-posterior to reduce the impact of

any residual signal from subcutaneous fat in the tissue of interest.
2.3 Image analysis

Image acquisition and analysis procedures are summarized in

Figure 1. Specifically, the single IVIM acquisition described above

was used for all sub-analyses, which are described in detail

subsequently. Briefly, the four repeats were analyzed

independently to evaluate intra-session temporal stability across

the entire paraspinal muscle ROI. To assess intra-session spatial

consistency the repeats were averaged across the entire paraspinal

muscle ROI, and the mean diffusion-weighted signal in each slice

was used for analysis. To assess Inter-session repeatability,

repeated exams on separate days were compared in the subset of

participants in which data were available.

2.3.1 Preprocessing
Phase and distortion correction of the diffusion-weighted images

was performed via TOPUP based on blip-up and blip-down

calibration scans acquired at the end of the IVIM acquisition

(17, 18). Denoising was conducted using a local principal

component analysis filter (19). Rigid body motion correction over

the dynamic image series was performed in AFNI (20).

2.3.2 Image processing
Preprocessed data were imported into MATLAB (R2017a,

Natick, MA), and subsequent analysis was performed using in-

house written code, which can be found at https://github.com/

ekenglund/Muscle_IVIM_analysis. First, a 2D 3 × 3 median filter

was applied. IVIM data were then averaged over the three

diffusion encoding directions for each b-value, yielding four

series of low-to-high b-value images (one series per repeat). The

four repeats were initially analyzed separately to assess temporal

stability, then were averaged together prior to the calculation of

slice-wise and voxelwise IVIM parameter maps (described

below). SNR was calculated from a b = 0 s/mm2 image for each

subject by dividing the mean of the signal of a region of interest

(ROI) placed within the muscle by the standard deviation of the

signal of an equally sized ROI placed outside of the body (21, 22).
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FIGURE 1

Acquisition and analysis overview. (A) Shows acquisition scheme, and the right paraspinal ROI is indicated in yellow on the T1-weighted anatomical
reference image. (B) Intra-session analyses were performed on the time-resolved (yellow volumes, whole muscle ROI), spatially averaged (to assess
temporal stability) and slice-averaged, time averaged data (to evaluate spatial consistency) separately. (C) Inter-session repeatability was evaluated by
first computing the voxelwise IVIM parameter maps for f, D*, D, and fD*, then averaging across the paraspinal ROI and comparing between scan
sessions. Representative signal decay curve from a single voxel [blue dot in left panel of (C)] is shown in the middle panel of (C). In all cases, IVIM
parameters were obtained by four different approaches including variably segmented, non-linear least squares fitting approaches and a Bayesian
fitting method.
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2.3.3 IVIM parameter fitting
For each analysis, IVIM parameters f, D*, and D were obtained

assuming bi-exponential signal decay as a function of b-value (13):

S(b)
S0

¼ f (e�bD�
)þ (1� f )(e�bD)

where S(b)/S0 is the measured diffusion-weighted data normalized

by the non-diffusion weighted acquisition, f is the perfusion

fraction, representing the relative fraction of signal from the

intravascular vs. extravascular (i.e., intracellular) spaces and

serving to weight the bi-exponential model by the two

coefficients, D* the pseudo-diffusion coefficient, and D the

diffusion coefficient. The product of f and D* (fD*) was also

calculated. Four separate approaches were evaluated:

• 1-step non-linear least squares (NLLS) fitting; all three IVIM

parameters were computed simultaneously using an NLLS

fitting approach.

• 2-step NLLS fitting; first D was determined, assuming that the

effect of pseudo-diffusion is negligible at high b-values as
S(b.200)

S0
¼ A(e�bD) where A is an offset term. Once D was
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obtained, the value was fixed and all data were used to determine

f and D* from the full bi-exponential equation via NLLS fitting.

• 3-step NLLS fitting; first the natural log of the high b-value data

were fit to a first order polynomial to determine D. This line was

extrapolated to b = 0 s/mm2 to obtain f, and finally the NLLS fit

of the full bi-exponential model was used to calculate D*.

Bayesian fitting; a Bayesian-probability based approach was

used to estimate D, f, and D* based on the joint posterior

probability as described in (23, 24). See supplemental methods

for specific details of the Bayesian fitting analysis.

For all NLLS fitting approaches, fit constraints were

held constant: f = [0–0.5]; D* = [1.5–500] × 10−3 s/mm2; and

D = [0–2.5] × 10−3 s/mm2. In the case of segmented fitting, the

cutoff for diffusion-only signal decay (e.g., high b-value regime)

was b > 200 s/mm2, and subsequently all b-values were used to

compute D* (and f, if applicable). In addition to the obtained

parameter values, the norm of the residual between the measured

and fit data was recorded for each fitting method.

ROIs encompassing in the left and right erector spinae and

multifidus (together referred to as paraspinal) muscles were

manually defined on all slices of the T1-weighted images in
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Horos (v3.3.6, www.horosproject.org) and transferred to the IVIM

data as previously described (25). In the final mask, voxels were

excluded if noise or motion caused the signal intensity of the

first diffusion-weighted acquisition to exceed the non-diffusion-

weighted acquisition. Additionally, voxels were excluded if the

solution for any of the voxelwise fits of the IVIM parameters was

equal to the set fit constraint to prevent bias or overfitting of the

signal to the IVIM equation.

2.3.4 Defining the optimal fitting strategy
Two assumptions were made in order to define the optimal

fitting strategy for IVIM data collected in skeletal muscle: (1)

IVIM parameters are temporally constant in skeletal muscle at

rest (26); (2) the variability of IVIM parameters between adjacent

slices within a spinal segment in healthy paraspinal muscle is

likely negligible due to its segmental innervation and function as

an intervertebral stabilizer (27, 28). Based on these assumptions,

we considered the optimal method as one that minimized the

residual between the measured and fit data and had the least

variability over time and between adjacent slices (e.g., intra-

session repeatability). Variability was assessed by the within-

subject coefficient of variation (WS-CV) (29).

2.3.5 Intra-session temporal stability
Average signal intensity was computed across the entire

paraspinal ROI for each b-value and repeat (Figure 1B), leading

to four temporally-resolved signal decay curves per participant.

Data were normalized by the non-diffusion weighted signal

intensity, and IVIM parameters were computed via the four

fitting methods for each repeat of the IVIM acquisition. The

mean and standard deviation (SD) of f, D*, D, fD*, and the

squared residual norm were computed for each fitting method,

and variability of IVIM parameters was assessed by the WS-CV.

2.3.6 Intra-session spatial consistency
Diffusion weighted data were averaged across the four repeats,

and within the ROI for each of the 22 slices, yielding one signal

decay curve per slice. IVIM parameters were then computed with

each fitting method for each slice (Figure 1B). Four slices spanning

the superior and inferior margins of the vertebral body were

assigned to each lumbar spine segment (L1–L5), and the variability

within a spinal segment was evaluated. Mean and SD of IVIM

parameters and mean squared residual norm for each fitting

method were determined. Assuming that physiologically, perfusion

and diffusion are relatively constant within a spinal segment (e.g.,

across all four slices located within L1), the WS-CV was computed

for each of the five spinal segments as a metric of spatial consistency.

2.3.7 Inter-session repeatability
For inter-session repeatability analysis, voxelwise parameter maps

were computed within the defined paraspinal muscle ROI for the

baseline and repeat scans using each of the four previously defined

fitting methods (Figure 1C). Following voxelwise quantification of f,

D*, D, and fD*, IVIM parameter means and SD were computed

over the entire paraspinal ROI as well as within the erector spinae

and multifidus muscles separately, and results were compared
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between fitting methods. The SD of IVIM parameters for all voxels

within the ROI was computed for both the baseline and repeat data

to assess dispersion. The average percent of voxels included in the

final ROI was also determined and compared between analysis

methods. WS-CV was computed to assess the repeatability of ROI-

averaged IVIM parameters across scan sessions.
2.4 Simulation

To understand the bias and precision of these fittingmethods under

relevant signal to noise ratio (SNR) conditions, a Monte Carlo based

simulation was performed. First, a series of random combinations of f,

D*, and D were generated within the constraints f= [0–0.5]; D* =

[1.5–500] × 10−3 mm2/s; and D = [0–2.5] × 10−3 mm2/s. Then, the

IVIM equation was solved for S(b)/S0 for the b values = [0, 10, 20, 40,

70, 110, 160, 220, 300, 400, 500, 600, 700] s/mm2 given f, D, and D*.

Gaussian noise was added to each voxel corresponding to SNR levels

of 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, yielding a total

of 110,245 simulated IVIM experiments. For each noise condition, the

synthetic signal was fit using the 1-Step NLLS, 2-Step NLLS, 3-Step

NLLS, and Bayesian fitting approaches. An interrater correlation

coefficient (2, 1) was calculated for each fitting method for each SNR

level to assess the bias between fit parameters of f, D, and D* and the

original values. fD* was not explicitly evaluated in the simulation

model, as it the product of two o coefficients that were directly in the

model. Therefore, its accuracy depends on the individual accuracy of

these parameters.
2.5 Statistical analyses

Repeated measures one-way Analysis of Variance (ANOVA)

tests were used to compare the IVIM parameter values between

fitting methods for each analysis.
3 Results

Image artifacts precluded analysis in one subject, leaving 15

participants (mean ± SD, age = 44.4 ± 13.0 years, 8 male) for

intra-session and 11 (42.5 ± 14.6 years, 6 male) for inter-session

repeatability assessments. The average time between scan sessions

was 76 ± 37 days. SNR of the images was 46.6 ± 10.6.
3.1 Intra-session temporal stability

Averaged over the entire paraspinal muscle ROI, it was

observed that overall, the choice of analysis method resulted in

significantly different IVIM parameters (p < 0.0001 for all

parameters, Figure 2A), and three-step fitting had the least

temporal variability (Table 1). The average squared norm of the

residual was highest for Bayesian fitting (0.0016) and was

improved for all NLLS fitting methods. WS-CV was minimized

for all IVIM parameters with the three-step fitting approach.
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FIGURE 2

Summary of intra-session IVIM parameters showing mean and standard deviation across N= 15 healthy individuals. IVIM parameters are shown for the
temporally resolved (A) and slice-wise resolved (B) analyses for each fitting method. Slice-resolved analyses in (B) were evaluated on a slice-by-slice
basis then averaged across slices and summarized here. In general, there was a significant difference between IVIM parameter values depending on the
choice of fitting method (p < 0.0001 for both time-resolved and slice-resolved analyses on RM-ANOVA). The slice-wise analysis revealed a significant
difference of IVIM parameters across the lumbar spine as well (p < 0.0001 for f, D, D* and p= 0.0002 for fD* on RM-ANOVA comparing individual
parameters across spinal segments).

Englund et al. 10.3389/fmscd.2024.1386276
3.2 Intra-session spatial consistency

IVIM parameters calculated from slice-wise mean signal

intensity, averaged within a spinal segment similarly differed based

on the choice of analysis method (p < 0.0001), and additionally all

parameters differed as a function of spinal segment (p < 0.0001)
Frontiers in Musculoskeletal Disorders 05
(Figure 2B). The mean residual was smallest when using one-step

fitting (0.0007), however this led to substantial variation in the

quantified parameters. The average WS-CV for one-step fitting

was 24.2% for f, 45.2% for D*, 5.9% for D, and 40.2% for fD*.

Three-step fitting had the least variability within a spinal segment.

The mean WS-CV for three-step fitting was 15.4% for f, 24.5% for
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TABLE 1 Summary of intra-session and inter-session variability. WS-CV is
within-subject coefficient of variation.

Intra-session: Time-
resolved analysis

WS-CV (%) Norm of fit
residuals

f D* D fD*
1-step NLLS 21.5 51.5 4.1 42.1 0.0007

2-step NLLS 14.4 27.7 2.0 28.1 0.0010

3-step NLLS 13.7 17.4 1.8 22.1 0.0011

Bayesian 36.0 48.7 6.7 36.5 0.0016

Intra-session: slice-
resolved analysis
(averaged across all
spinal segments)

Mean (SD) WS-CV (%)
across spinal segments

Norm of fit
residuals

f D* D fD*

1-step NLLS 24.2
(8.7)

45.2
(15.5)

5.9
(3.1)

40.2
(15.6)

0.0007

2-step NLLS 17.1
(3.8)

34.3
(17.4)

4.4
(1.5)

35.3
(14.8)

0.0010

3-step NLLS 15.4
(2.3)

24.5
(12.7)

4.2
(1.3)

29.2
(12.6)

0.0011

Bayesian 37.9
(6.7)

49.4
(14.2)

9.7
(1.7)

36.5
(11.3)

0.0013

Inter-session WS-CV (%) Norm of fit
residuals

f D* D fD*
1-step NLLS 7.9 13.1 1.4 15.6 0.0026

2-step NLLS 9.7 14.4 1.7 17.7 0.0032

3-step NLLS 8.9 12.7 1.6 16.9 0.0036

Bayesian 9.7 18.4 1.6 21.2 0.0100
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D*, 4.2% for D, and 29.2% for fD* (Table 1). Regardless of fitting

strategy, it was generally observed that across spinal segments,

greater variability in IVIM parameters was observed in L1 and L5

compared to L2–L4 (data are included as Supporting Information,

Supplementary Table S1 and Figure S1).
3.3 Inter-session repeatability

Figure 3 shows quantified IVIM parameter maps for a

representative subject using each of the four fitting strategies.

Comparing the two visits, when voxelwise IVIM parameters were

averaged across the entire paraspinal muscle ROI, the WS-CV

values were in general lower than those observed for the intra-

session repeatability assessment (Table 1). Table 2 summarizes the

results for the IVIM parameters at the first MRI scan session. In

general, two- and three-step fitting methods yielded very similar

results. One-step fitting led to higher f and D* values and lower D,

and D* was significantly lower for Bayesian fitting. The spread of

IVIM parameters (assessed by the mean SD across voxels) was

generally lower for two-step and three-step fitting. The final mask

comprised 62%, 72%, 71%, and 76% of voxels for one-, two-,

three-step NLLS, and Bayesian fitting methods, respectively.
3.4 Simulation results and bias evaluation

110,245 different combinations of f, D, and D* were evaluated

in this analysis. Overall, excellent agreement was found f and D for

SNR levels over 35 for all fitting approaches (ICC > 0.8, Figure 4).
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The ability to fit D* was best for 1-Step NLLS fitting, and fair for

2-Step NLLS, 3-Step NLLS and Bayesian fitting.
4 Discussion

This study evaluated the variability of IVIM parameters in

skeletal muscle at rest using a variety of fitting methods. With

additional use of IVIM in healthy controls, in response to

exercise or other interventions, or in patient populations, it is

important to understand the typical IVIM parameter values in

skeletal muscle at rest in healthy individuals, the repeatability of

those parameters across scan sessions, and how fitting methods

may influence those values. This methodical evaluation of the

various fitting strategies demonstrated that the selected fitting

strategy directly influences the calculation and interpretation of

output IVIM parameters. Provided that our assumptions that

skeletal muscle at rest has relatively temporally stable (over

several minutes) and spatially consistent (within one spinal

segment) perfusion and diffusion characteristics are valid, the

optimal non-linear least squares fitting approach appears to be

the segmented three-step fitting method as intra-session temporal

and spatial variability was minimized and few voxels were

excluded from the final mask.

The simulations performed herein echo the experimental

results, finding that the one-step NLLS fitting method had the

lowest bias between known and fit parameters, but that all fitting

methods provide reasonable estimates of the IVIM parameters at

SNR >35. Given that the average SNR of our experimental data

was 46.6, we posit that there is negligible difference of bias or

precision between fitting methods. A prior study by Damon

defined the threshold for accurate diffusion measurements as 40

(30), in relative agreement with what was observed in our

simulation. However, in general, image acquisition should be

optimized to achieve high SNR in order to ensure accurate

measurements of perfusion and restricted diffusion.

In addition to SNR, another important factor to consider for

IVIM analysis in skeletal muscle is fat suppression. Both intra-

muscular fat depots as well as subcutaneous fat can lead to

potential errors IVIM. In this study, spatial-spectral fat

suppression was used. Further, the low-bandwidth phase

encoding direction was selected to be anterior to posterior, such

that any unsuppressed signal from subcutaneous fat would alias

posteriorly, outside of the anatomy of interest. Nevertheless, the

seminal study by Cameron et al. (31) demonstrates that effective

fat suppression is crucial for accurate measurement of diffusion

parameters including IVIM. A conclusion from the Cameron,

et al. study is that even with triple-fat suppressed data, there may

still be reliability issues when estimating D*. Both the Cameron

et al. and this paper agree that D* is routinely the most difficult

IVIM-based parameter to accurately estimate given currently

available pulse sequence parameters and analysis approaches.

While one-step fitting minimized the residual between

measured and fit data in both experimental and simulated data,

it resulted in substantial temporal and spatial variability and the

final mask contained the fewest voxels due to solutions occurring
frontiersin.org

https://doi.org/10.3389/fmscd.2024.1386276
https://www.frontiersin.org/journals/musculoskeletal-disorders
https://www.frontiersin.org/


FIGURE 3

Representative IVIM parameter maps for each fitting strategy. In general, D was very spatially uniform across the paraspinal muscles. Relative anatomic
contrast is observed in f, D*, and fD* maps for the 2- and 3-step NLLS fitting approaches.

TABLE 2 Summary of mean (standard deviation) IVIM parameter values across the paraspinal ROI at visit 1. The dispersion of parameter values in the
voxelwise map is presented on bottom.

Visit 1—full paraspinal Parameter mean (SD) f D* (×10−3 mm2/s) D (×10−3 mm2/s) fD*(×10−3 mm2/s)
1-step NLLS 0.15 (0.02) 40.7 (15.6) 1.33 (0.08) 4.66 (2.14)

2-step NLLS 0.11 (0.02) 32.4 (10.4) 1.37 (0.09) 3.53 (1.55)

3-step NLLS 0.11 (0.02) 28.4 (6.8) 1.36 (0.08) 2.95 (1.17)

Bayesian 0.12 (0.02) 17.6 (7.1) 1.35 (0.08) 2.46 (1.21)

Visit 1—erector spinae muscle parameter mean (SD) f D* (×10−3 mm2/s) D (×10−3 mm2/s) fD*(×10−3 mm2/s)
1-step NLLS 0.15 (0.01) 42.2 (16.1) 1.35 (0.07) 4.64 (2.23)

2-step NLLS 0.11 (0.02) 34.2 (11.2) 1.39 (0.08) 3.58 (1.68)

3-step NLLS 0.11 (0.02) 30.3 (7.5) 1.38 (0.07) 3.02 (1.28)

Bayesian 0.12 (0.02) 17.9 (7.9) 1.38 (0.07) 2.36 (1.30)

Visit 1—multifidus muscle parameter mean (SD) f D* (×10−3 mm2/s) D (×10−3 mm2/s) fD*(×10−3 mm2/s)
1-step NLLS 0.17 (0.03) 35.7 (14.8) 1.25 (0.11) 4.65 (2.16)

2-step NLLS 0.12 (0.03) 27.2 (10.0) 1.31 (0.12) 3.33 (1.48)

3-step NLLS 0.12 (0.03) 22.7 (6.6) 1.30 (0.12) 2.70 (1.03)

Bayesian 0.14 (0.03) 16.7 (6.0) 1.29 (0.12) 2.68 (1.51)

Visit 1—mean (SD) of the dispersion across full
paraspinal muscle ROI

f D* (×10−3 mm2/s) D (×10−3 mm2/s) fD*(×10−3 mm2/s)

1-step NLLS 0.12 (0.01) 63.3 (15.4) 0.27 (0.04) 8.69 (3.22)

2-step NLLS 0.07 (0.01) 56.3 (16.1) 0.21 (0.06) 7.09 (2.96)

3-step NLLS 0.07 (0.01) 56.3 (11.9) 0.21 (0.06) 5.80 (2.56)

Bayesian 0.12 (0.02) 31.4 (11.0) 0.27 (0.06) 6.42 (3.09)
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at the set boundary condition for at least one parameter from

experimental data. Several prior studies have evaluated fitting

methods for analysis of IVIM parameters (15, 16, 32, 33). In

general, those studies have focused on the evaluation of IVIM

parameters in cancerous tissues and have found, in agreement

with the results herein, that parameter estimates for f, D, and D*

differ depending on the fitting algorithm selected. A number of
Frontiers in Musculoskeletal Disorders 07
additional algorithms have been evaluated recently, including

convolutional neural network based parameter estimation

strategies (34). Overall, the results presented herein demonstrate

the importance of considering the fitting method when

comparing results across prior studies.

In general, it was observed that D had the least intra-session

spatial and temporal variability, and the lowest inter-session
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FIGURE 4

Results of simulation experiment. Ideal signal decay curves were generated from varied f, D, and D* values, then Gaussian noise was added to
correspond to different levels of image SNR. Each fitting method was used to estimate IVIM parameters, and the interrater correlation coefficient
(ICC) was computed between the simulated and fit parameter values. In general, 1 step non-linear least squares fitting had the least bias between
simulated and fit parameters. The other fitting methods were in general agreement between simulated and fit data at SNR levels above 35.
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variability of the quantified IVIM parameters. Perfusion fraction

was stable with intra-session WS-CVs of ∼15% and inter-session

WS-CVs <10%. D* and fD* had higher variability, suggesting

that it may be more difficult to detect the effect of an

intervention with these parameters. However, prior studies have

demonstrated changes in D* on the order of 100% (5–9) and as

large as 289% (3) in response to acute bouts of exercise.

Nevertheless, the variability and sensitivity of parameters needs

to be taken into consideration when powering studies and

interpreting results.

Comparing these results to prior studies, there has been a wide

range of IVIM parameters reported in muscle (8, 9, 35). This

variability may in part be due to the lack of standardization of

fitting approach, as results herein show significant differences in

parameter values depending on choice of analysis method. A

recent study also evaluated the intra- and inter-session

repeatability of IVIM parameters in tumor and muscle, finding

improved repeatability with Bayesian fitting, however the mean
Frontiers in Musculoskeletal Disorders 08
values of IVIM parameters in muscle were not provided (36).

Ranges for IVIM parameters in skeletal muscle have spanned 0.5

(37) to 2.19 (4) × 10−3 mm2/s for D; 0.03 (3) to 0.26 (37) for f;

and 8 (38) to 287 (39) × 10−3 mm2/s for D*.

Focusing on only investigations of the paraspinal muscles, a

recent study by Federau, et al. examined the effect of lumbar

extension exercise on IVIM metrics in controls and patients with

adolescent idiopathic scoliosis (7). IVIM parameters were

quantified via two-step fitting in the paraspinal muscles at rest in

healthy volunteers were in reasonable agreement with those

reported herein; f, D*, and D: 0.10, 32 × 10−3 mm2/s, and 1.4 ×

10−3 mm2/s, (right), and 0.8, 53 × 10−3 mm2/s, and 1.4 ×

10−3 mm2/s (left). In addition to evaluating the IVIM parameters

at rest, we have previously assessed the response to high intensity

lumbar spine extension exercise in healthy individuals and

people with low back pain using a three-step fitting approach (9).

The response to varied exercise intensity was also evaluated in

healthy individuals (8). Results of these prior studies showed that
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acute, targeted exercise is associated with an increase in IVIM

parameters. Importantly, differences in IVIM parameters

have been shown to be clinically relevant, for example, changes

in D and D* in response to an acute exercise bout were shown to

be highly predictive of reductions in disability and pain in

response to an exercise-based rehabilitation program in

individuals with low back pain, suggesting that this method may

have utility in identifying individuals who may benefit from

prescribed treatments (9). It also may help better understand the

contribution of underlying microvascular impairments in various

musculoskeletal conditions (7, 40).

Our results here and in a previous, independent study (41)

suggest that diffusion characteristics differ in the paraspinal

muscles as a function of spinal segment. The observation of

changing mean diffusivity over the span of the lumbar spine may

draw into question the assumption of spatial uniformity, however

we note that spatial consistency was assumed within one spinal

segment, not across the entire spine. Indeed, differences in IVIM

parameters across the spinal segments are likely to reflect

differences in structure and physiology of the paraspinal muscles

from cranial to caudal, including differences in size (including the

relative contribution of erector spinae vs. multifidus), tissue

composition, and metabolic capacity (41–43). We also note that

the IVIM parameters were generally more variable at L1 and L5,

potentially due to respiratory motion at the superior extent and

coil sensitivity at the inferior extent.

This study has several limitations. First, there is no gold

standard to compare the experimental results. Simulations of

various bi-exponential fitting approaches in the context of varied

measurement noise have been completed previously (15), and

were performed here to evaluate bias. In this study, we sought to

primarily make use of the acquired data, based on assumptions

regarding the underlying physiology to evaluate the variability.

However, the lack of a true gold standard with which to compare

the experimental data remains a limitation. In addition, we did

not evaluate the choice of cutoff value for the high b-value

regime (44), which may be important when analyzing IVIM

parameters in response to a physiologic challenge such as

exercise, nor did we evaluate the influence of pre-processing

steps, such as applying a median filter. Last, we did not evaluate

any variation in the cutoff ranges of IVIM parameters, but

instead chose to use a wide range of physiologically plausible

values for f, D, and D*. Given that the mean D was less than

1.4 × 10−3 mm2/s, the minimum D* was set to 1.5 × 10−3 mm2/s.

Overlapping ranges between D and D* could lead to issues with

fit convergence, though this was not practically observed.
4.1 Conclusion

Overall, this study compares repeatability of IVIM parameters in

skeletal muscle at rest using a variety of bi-exponential fitting

strategies and helps to define normal values of IVIM parameters

in muscles of the lumbar spine at rest in healthy adult volunteers.

The three-step NLLS fitting approach yielded results with the least

temporal and spatial variability, low inter-session variability, and a
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large inclusion rate of voxels in the final mask. Future studies

evaluating muscles of the lumbar spine in response to acute bouts

of exercise, pathology, or long-term rehabilitation therapy may

provide additional insight into the physiologic underpinnings of

the IVIM parameters in skeletal muscle.
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