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Introduction: The acetabulum labrum plays a critical role in hip function.
Medical imaging techniques for measuring changes in labral properties due to
its degeneration may help improve our knowledge of its role in hip
osteoarthritis (OA). This study aimed to explore the correlation between the
mechanical properties of the acetabulum labrum and ultrashort echo time
(UTE) MRI properties.
Material and method: Acetabular labrum specimens were dissected from
12 fresh-frozen human cadaveric hip joints (64.6 ± 11.6 years old at the time
of death, 7 female). UTE Cones sequences were used to measure apparent
spin-spin (T2*) and spin-lattice (T1) relaxation times using a knee coil at 3 T in
a clinical MR scanner. The stiffness and the elastic modulus (E) of the
specimens were measured before MRI scans using uniaxial tensile tests.
Spearman’s rank correlation coefficients of Tendons’ UTE-T2* and -T1 with
their mechanical properties were calculated.
Results: The human labrum specimen elastic modulus showed a significant
inverse correlation with UTE-T2* (R=−0.66, P < 0.01) and with UTE-T1
(R=−0.56, P=0.05). The stiffness of the specimens showed significant inverse
correlations with UTE-T2* (R=−0.53, P=0.01) and UTE-T1 (R=−0.63, P=0.02).
Conclusion: This study highlighted the potential of UTE-MRI techniques for the
mechanical assessment of the acetabular labrum. UTE-MRI may improve labrum
degeneration detection and monitoring, which requires further investigations.

KEYWORDS

acetabular labrum, osteoarthritis, quantitative MRI, UTE, mechanical properties
Abbreviations

MR, magnetic resonance; MRI, magnetic resonance imaging; 3D, three-dimensional; UTE, ultrashort echo
time imaging; RF, radio frequency; FOV, field of view; ROI, region of interest; TE, echo time; TR, repetition
time; FA, flip angle; PBS, phosphate-buffered saline.
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FIGURE 1

(A) A representative thawed acetabular labrum specimen harvested
from the hip joint of a 60-year-old female. (B) A representative
acetabular labrum specimen mounted on the grippers of an in-
house developed benchtop uniaxial loading device for tensile
mechanical tests.
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1 Introduction

The acetabular labrum is a C-shaped fibrocartilaginous rim

that outlines the bony acetabulum’s ring in the hip joint (1). The

acetabular labrum is crucial in maintaining normal hip joint

biomechanics and function (2, 3). Labral damage can lead to

abnormal joint mechanics, increasing the risk of osteoarthritis

(OA) (4–6).

OA pathogenesis involves a complex interaction of factors,

including the loss of articular cartilage, altered subchondral bone

structure, and chronic low-grade inflammation. This condition

not only significantly reduces patients’ quality of life but also

imposes a substantial burden on healthcare systems due to

associated disability and costs of management (7, 8).

Mughal et al. observed an increased risk of developing early

moderate osteoarthritis in young individuals with labral tears

likely due to abnormal joint mechanics (9). Strong connections

between mechanical symptoms, hip pain, reduced range of

motion, and underlying labral tears and cartilage defects have

been reported in the literature (6, 9, 10). Chondral lesions also

have been shown to frequently occur in joints exhibiting labral

fraying or tears, with the majority of cartilage damage happening

near the labral injury (6). Therefore, a non-invasive assessment

of the labrum quality and its mechanical status may help detect

OA-related changes in the hip joint.

The acetabular labrum tear and large lesions can be detected

semi-quantitatively using conventional magnetic resonance

imaging (MRI). Conventional MRI has been used in several

studies for morphological assessment of acetabular labrum

(11–13). Fat-saturated T1- and T2-weighted images have been

reported to be the most useful for qualitative assessment of the

acetabular labrum lesions (14, 15). MRI signal intensity of an

injured or recovering acetabular labrum is likely higher than a

healthy acetabular labrum (16–18). However, quantitative

assessment of the acetabular labrum using MR signal intensity is

highly challenging as the signal intensity in MR images depends

on various factors such as the scanner and coil specifications,

subject positioning, acquisition parameters, reconstruction

algorithms, and signal normalization.

Collagen and proteoglycan (PG) constitute a major portion

of the dry weight of acetabular labrum which results in its

short T2 values and low signal in conventional MR sequences

(19). However, employing ultrashort echo time (UTE) MRI

sequences can acquire high signals from short T2

musculoskeletal tissues enabling accurate non-invasive

quantitative assessment (20–23). The feasibility of the UTE

T2* on acetabular labrum has been evaluated by Wong et al.

on the hip of eight asymptomatic volunteers (24). To the

authors’ knowledge, the relationship between UTE-MRI and

acetabular labrum mechanical properties has not been

reported in the literature.

This study aimed to investigate the correlations of apparent

spin-spin (T2*) and spin-lattice (T1) relaxation times with the

tensile elastic modulus, a crucial index representing the tissue’s

quality, of human acetabular labrum specimens. T2* and T1 are

common quantitative MRI techniques used for musculoskeletal
Frontiers in Musculoskeletal Disorders 02
(MSK) tissue assessment (25–27). T2* and T1 are hypothesized

to show correlations with acetabular labrum mechanical

properties at a similar level demonstrated for other MSK tissues

such as anterior cruciate ligament (ACL) (28).
2 Materials and methods

2.1 Sample preparation

The anterolateral acetabular labrum specimens were dissected

from 12 fresh-frozen human cadaveric hip joints (64.6 ± 11.6

years old at the time of death, 7 female). Frozen hip specimens

were provided by a non-profit whole-body donation company

(Anatomy Gifts Registry) and experiments were performed in

the Scripps Research Institute. The average length and cross-

sectional area of the specimens were 31 ± 4.7 mm and 23.7 ±

7.7 mm2, respectively. Figure 1A shows a representative

harvested acetabular labrum specimen from a 60-year-old

female donor.
2.2 Tensile mechanical test

The stiffness and the elastic modulus (E) of the specimens were

measured before MRI scans. The mechanical setup for a

representative acetabular labrum specimen is shown in Figure 1B.

Both ends of the specimens were mounted on the stainless-steel

grippers of an in-house developed benchtop uniaxial loading device.

The initial distance between the fixed and actuated gripper was set to

10 mm. After initial alignment and preloading to straighten the

specimens (steps of 0.005 N tension were applied for 5s periods up
frontiersin.org
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to the time the sample held 0.02 N as preload for the 20s), a 1 mm

tensile displacement was applied at 0.3 mm/sec rate and the applied

force was recorded. The average maximum mechanical stress was

calculated as the maximum force (at 1 mm displacement) divided by

the specimen’s cross-sectional area, measured using a digital caliper

after pausing the loading. The maximum strain for all specimens

was 0.1 (i.e., 1 mm / 10 mm). The average stiffness was calculated as

the maximum force at (1 mm displacement) divided by 10 mm

(the maximum deformation). The average tensile elastic modulus

was calculated as the average maximum stress divided by the average

maximum strain.
2.3 Quantitative UTE-MRI

All specimens were placed separately in 5 ml syringes as

shown in Figure 2A for MR imaging. The dissected specimens

were soaked in phosphate-buffered saline (PBS) for 1 h before

scanning to ensure similar levels of hydration in all specimens.

All syringes were filled with perfluoropolyether (Fomblin,

Ausimont, NJ, USA) to minimize dehydration and susceptibility

artifacts during MRI scans.

The UTE-MRI scans were performed on a 3 T MRI scanner

(MR750, GE Healthcare Technologies, WI, USA) using a

standard transmit/receive knee coil (GE Healthcare Technologies,

Transmit/Receive, 8 channels). The grouped syringes were

positioned horizontally inside the coil to ensure acetabular

labrum alignment parallel to B0. All MRI images were acquired

in the axial plane.

Two following sets of 3D UTE Cones MRI sequences were

performed, (1) T2* sequence with differing echo times (TEs) to

measure T2* values and (2) actual flip angle imaging (AFI)

with variable flip angle (VFA) sequences (AFI-VFA) to

measure T1 values (29). Data acquisition parameters for the

two quantitative UTE-MRI protocols are presented in Table 1.

Features of the 3D UTE Cones sequence have been described

in previous studies (30).
FIGURE 2

Quantitative UTE-MRI analyses in a representative human acetabular labru
placed in a standard 5 ml syringe, then they were fixed with tape together
the volume interest region (VOI) analyzed in MRI. (B) selected region of inte
image. (C) Single-component exponential fitting of T2* decay, and (D) T1 re
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UTE-MRI biomarkers were calculated in three representative

slices at the middle of each specimen (volume of interest, VOI is

indicated in Figure 2A) within global regions of interest (ROIs)

covering the entire cross-sectional area. For each slice, average

signal values within the ROI were used for T2* and T1

measurements using single-component exponential fitting

models. Then the values for three slices were averaged to obtain

the average value for each specimen.

All UTE-MRI measurements and models were performed

using in-house developed codes in MATLAB (version 2021, The

Mathworks Inc., Natick, MA, USA).
2.4 Statistical analysis

The normal distribution of all MRI and mechanical variables

was examined using the Kolmogorov-Smirnov test. All variables

were found to have non-normal distributions as expected because

of the limited number of specimens. Thus, Spearman’s rank

correlations were calculated between average UTE-MRI

quantifications and the acetabular labrum mechanical properties.

Statistical analyses were performed in MATLAB. P values below

0.05 were considered significant.
3 Results

Figures 2C,D show single-component exponential T2* and T1

fittings, respectively, for a representative acetabular labrum

specimen. The high signal obtained by UTE MRI leads to a well-

fitting of the actual data points.

Table 2 summarizes the mean, standard deviation (SD) of the

donor age and body mass index (BMI), UTE-T2* and -T1 values,

andmechanical properties of the studied acetabular labrum specimens.

The scatter plots, linear regression trendlines, and Spearman’s

rank correlation coefficients of the elastic modulus and stiffness on

UTE- T2* and -T1 values are presented in Figure 3. The elastic

modulus showed a significant inverse correlation with T2*
m specimen (from a 68-year-old male donor). (A) each specimen was
before the MRI scan. The middle third of the specimen is highlighted as
rest (ROI) for the same sample depicted schematically on the UTE-MRI
covery within the selected ROI.
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TABLE 1 Data acquisition parameters for quantitative UTE-MRI protocols.

Imaging
Protocol

Sequence parameters (TR/TE/FA)* Bandwidth
(kHz)

FOV
(mm2)

Matrix Slice thickness
(mm)

Slice
No

Scan time
(min)

3DUTE Cones T2* TR = 155 ms;
FA = 10°; fat saturation;
TEs = 0.032, 4.4, 8.8, 13.2,17.6, and 22ms

±62.5 130×130 300×300 2 40 4

3DUTE Cones
T1(AFI,VFA)**

AFI:
TE = 0.032 ms; TRs = 20 and 100 ms; FA = 45°;
VFA:
TE = 0.032 ms; TRs = 20 ms; FA = 5, 15, 30°

±62.5 130×130 300×300 2 40 10

*TR, repetition time; TE, echo time; FA, flip angle; T2*, T2 star.

**AFI, actual flip angle; VFA, variable flip angle.
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(R =−0.66, P < 0.01) and with UTE-T1 (R =−0.56, P = 0.05).

The stiffness of the specimens showed significant inverse

correlations with UTE-T2* (R =−0.53, P = 0.01) and UTE-T1

(R =−0.63, P = 0.02).
4 Discussion

This study was the first to focus on the assessment of

human acetabulum labrum’s mechanical properties using

quantitative UTE MRI. UTE-T2* and -T1 were selected as the

most common and less sophisticated techniques which are

closer to being translated into clinical applications (25–27).

Significant correlations between the mechanical properties

and quantitative UTE techniques highlight their potential

capabilities to non-invasively assess acetabular labrum

tissue quality.

UTE-T2* has been used previously to assess human femoral

condyle specimens from volunteers undergoing total knee

arthroplasty (TKA). Significantly lower T2* values were

observed in the moderate to severe OA group than in the

normal group (31). In a similar study on the tibial cartilage,

UTE-T2* was significantly higher in the early OA group vs. the

control group (32). Lower UTE-T1 values have been reported

for degenerated lumber discs as compared with normal ones in

another study (33). UTE-T2* has shown correlations with

mechanical and histological properties of other MSK tissues,

such as ACL (28, 34), articular cartilage (35, 36), and bone (37).

UTE-T1 also has shown correlations with the mechanical

properties of the ACL (28).

UTE T2* in the normal human acetabulum volunteers values

was reported 16.73–19.37 ms (24) which is in the range of the

values presented in our study. In another Ex vivo study,

histologically confirmed degenerated glenoid labra had increased
TABLE 2 Mean, standard deviation (SD), and range of the UTE-MRI, mechani

Age (y) BMI (kg/m2) T2* (ms) T
Mean ± SD 64.6±11.6 23.6±4.5 21.3±9.2 8

Min 48 18 9.49

Max 83 31 43.61

T2*, T2 star.
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UTE-T2* and decreased UTE-T1 values as compared with

normal labra (38).

The limitations of this study can be summarized in fifth

aspects. First, the number of samples was relatively small as is

the nature of pilot studies. Moreover, the acetabular labrum

specimens were from twelve donors and were without any

gross visible abnormality such as degeneration or tearing.

However, the presence of minor defects or microscopic tears

in the specimens was not examined in this study, which often

exists in most tissues from old donors. The inclusion of more

specimens with some degree of degeneration, which can be

confirmed by histopathology evaluation, is expected to

increase the generalizability of this study. Future well-

designed studies comparing quantitative UTE-MRI techniques

with histology measures of the acetabular labrum are also

required to understand such techniques’ capability to localize

the tissue degeneration. Second, the acetabular labrum

specimens were not scanned in their precise anatomical

direction in the body. Nevertheless, as the specimens were all

in the same direction, the orientation impact was assumed to

be the same on all specimens and did not impact the

correlation study presented here. Third, the performance of

the UTE MRI techniques for in vivo evaluation of acetabular

labrum has not been investigated in this study, which will be

the focus of future investigations. It should be noted that the

MR imaging of the acetabular labrum in vivo is highly

challenging. For example, the anatomical misidentification of

the sub-labral sulcus as a labral lesion in hip MRI images

(39, 40). Moreover, studies have also reported the complexity

of evaluating the morphology of postoperative labra to align

with preoperative labral tears, posing difficulties for

radiological assessments (41). Fourth, this study was

performed on ex vivo specimens after a single freeze-thaw

cycle, which may have influenced the results. However,
cal in the studied acetabular labrum specimens.

1 (ms) Young’s modulus (MPa) Stiffness (N/mm)
08.3±204 0.32±0.14 0.67±0.20

336.01 0.10 0.43

1135.64 0.70 1.02
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FIGURE 3

Scatter plot and linear regressions of mechanical characteristics on quantitative UTE-MRI analyses in human labrum specimen specimens. (A,B) T2*
(ms) values which showed a significant negative correlation with Young Modulus (Mpa) and Stiffness (N/mm) of the acetabular labrum, respectively, (C,
D) T1 (ms) values with a significant negative correlation with Young Modulus (Mpa) and Stiffness (N/mm) of the acetabular labrum, respectively.
Significance levels for these correlations were below 0.05.
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studies have shown that a single freeze-thaw cycle does not

significantly affect the biomechanical properties of other MSK

tissues (42). Fifth, the elastic modulus measurement on the

studied specimens was performed using tensile tests. However,

this does not rigorously mimic the in vivo forces over most

regions of the acetabular labrum, which is typically exposed

to a combination of compressive, compact, bending, and

tensile loading.
5 Conclusions

Two common quantitative UTE-MRI biomarkers, UTE-T2*

and UTE-T1 were investigated for their correlations with the

mechanical properties of human acetabulum labrum specimens.

Mechanical properties of the tissues showed significant inverse

correlations with UTE-T2* and UTE-T1. This study highlighted

the potential of UTE-MRI techniques for the acetabular labrum

mechanical assessment which can help improve labrum
Frontiers in Musculoskeletal Disorders 05
degeneration detection and monitoring which requires

further investigations.
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