
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
BRIEF RESEARCH REPORT article
Front. Mol. Neurosci.
Sec. Brain Disease Mechanisms
Volume 18 - 2025 | doi: 10.3389/fnmol.2025.1536409
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The sulfonylurea receptor 1 (SUR1) has been classified as a member of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily. SUR1, unlike the classic ABC transporters, assembles with Kir6.2, forming KATP channels to regulate the flux of potassium ions. In the central nervous system, SUR1 is weakly expressed in some brain regions but is induced by pathological conditions in the different cell types of the neurovascular unit. Therefore, we first analyzed the expression of SUR1 in various rat tissues and brain regions to identify SUR1 isoforms and their mRNA exon composition under physiological conditions. Later, we focused on the SUR1 expression in the brain and heart after ischemia/reperfusion. We observed two SUR1 isoforms (170 and 60-75 kDa) abundantly expressed in most rat tissues, except for the testis and brain, where basal expression of these isoforms was relatively low and exhibit a band of 100 kDa. Every exons coding for the functional domains of SUR1 mRNA were amplified from the tissues and brain regions analyzed.Results from in vitro and in vivo experiments indicated that SUR1 isoforms previously identified (170 and 60-75 kDa) were dramatically overexpressed in the brain after middle cerebral artery occlusion followed by reperfusion. In contrast, myocardial infarction followed by reperfusion significantly reduced SUR1 isoform expression in the heart. This study demonstrates the expression of at least two SUR1 isoforms in various tissues and suggests that ischemic processes may differentially regulate SUR1 expression depending on the tissue injured.
Keywords: sulphonylurea 1 receptor, SUR1, Brain Ischemia, Heart ischemia, Abcc8. 2
Received: 28 Nov 2024; Accepted: 28 Mar 2025.
Copyright: © 2025 Alquisiras-Burgos, Arrieta, Espinoza-Rojo, Salazar- Salgado, Antonino-Olguín, Sánchez-Mendoza, Sánchez-Aguilar, Ruiz-Tachiquín, Valdez-Salazar, Ortiz-Plata, Franco-Pérez, Hernandez-Cruz and Aguilera. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Penélope Aguilera, Manuel Velasco Suárez National Institute of Neurology and Neurosurgery, Mexico City, Mexico
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.