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Introduction

Monoamines, basic nitrogenous molecules containing one amine group, include

serotonin, adrenaline, noradrenaline, dopamine, and histamine. They are mainly

synthesized due to decarboxylation of amino acids or by transamination and amination of

ketones and aldehydes (Al-Kachak andMaze, 2023). They are important neurotransmitters

in the body, especially in the central nervous system, but also in the peripheral nervous

system, and the enteric nervous system.

Protein monoaminylation

Protein monoaminylation is the covalent bonding of biogenic monoamines to

glutamine residues in some proteins by a transamidation reaction. It was first described

by Heinrich Waelsch’s group in the 1950s (Sarkar et al., 1957; Al-Kachak and Maze, 2023).

This group showed that mono-and poly-amines can be included into proteins of livers

obtained from guinea pigs, mice, rats, and rabbits, with the help of calcium-dependent

transglutaminases (TGMs). In mammals nine isozymes of transglutaminases have been

delineated (Zhuang and Khosla, 2019). Human TGM2 is multi-functional and ubiquitous

and takes part in many cellular processes such as apoptosis, development, differentiation,

wound healing, and angiogenesis (Kim and Park, 2020). In the cell TGM2 is mainly located

in the cytosol, but also in the nucleus, the cell surface, and extracellularly (Keillor et al.,

2015). It has many functions depending on its localization and is allosterically stimulated

by calcium ions and deactivated by guanosine triphosphate (Keillor et al., 2015). Human

TGM2 comprises 687 amino acid residues with a four-domain structure and a molecular

weight of about 70 kDa (Kim and Park, 2020). TGMs cross-link the γ-carboxamide of a

glutamine residue and the ǫ-amino group of a lysine residue (Kim and Park, 2020), and

catalyze the monoaminylation of glutamine residues of target proteins (Jiang et al., 2021;

Al-Kachak and Maze, 2023). Since the work by Waelsch’s group, many proteins including

fibronectin, fibrinogen, actin, and myosin have been found to be monoaminylated (Bader,

2019).

Histone monoaminylation

Modifications of histones are a well-established epigenetic mechanism of regulation of

gene expression that can transduce environmental signals to modulate gene expression

(Vanzan et al., 2023; Wu et al., 2023). Histones undergo many dynamic and reversible

biochemical post-translational modifications (Kennelly et al., 2023). Histone acetylation
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FIGURE 1

(A) Schematic showing monoaminylation at the glutamine 5

position on the tail of histone H3 (H3Q5) a possible new epigenetic

mechanism in psychiatric disorders. The parts of the figure shown in

yellow are the histones around which the DNA strand shown in red

is coiled. TGM2, Transglutamine 2; Q, Glutamine (at position 5 of the

tail of histone H3). (B) Schematic of a portion of the tail of histone

H3 showing the presence of glutamine (Q) at position 5 (shown in

red) of the histone tail. Abbreviations: aa, amino acids. A, alanine; R,

arginine; S, serine; T, threonine; K, lysine; Q, glutamine.

and deacetylation are the best studied such modifications that

histones undergo. Others include methylation, phosphorylation,

sumoylation, ADP-ribosylation, citrullination, and proline

isomerisation (Vanzan et al., 2023). Histone modifications

can reduce the positive charges of histone tails and hence

reduce the binding affinity of histone tails to the negatively

charged DNA (Kennelly et al., 2023). Additionally, covalent

modifications of histones form extra binding sites for proteins

like ATP-dependent chromatin-remodeling complexes which

contain subunits that specifically attach to histones with specific

modifications. These complexes may enhance accessibility of

neighboring DNA sequences by modifying or removing histones.

The histone modifications and chromatin- remodeling complexes

can synergistically act to open up gene promoters and regulatory

regions, thereby permitting the binding of trans-factors, RNA

polymerase II, and general transcription factors (GTFs)(Kennelly

et al., 2023).

A relatively new type of histone modification is

monoaminylation (Figure 1). This was first shown in histones

from chicken erythrocytes by Ballestar et al. (1996). In 2019, Ian

Maze’s group using sophisticated techniques and methodologies

such as induced pluripotent stem cells, and preparation of

truncated and recombinant histones, showed that serotonylation

of glutamine happens at position 5 (Q5ser) on histone H3 in

organisms which make serotonin (Farrelly et al., 2019). These

workers showed that tissue TGM2 can catalyze the serotonylation

of nuclesosomes having histone H3 trimethylated lysine 4

(H3K4me3) leading to the formation of H3K4me3Q5ser. The

latter molecule shows a ubiquitous pattern of expression in

mammalian tissues, especially in the brain and gastrointestinal

tract, both of which are known to have large amounts of

serotonin. Studies across the genome of human serotonergic

neurons, murine developing brain, and cultured serotonergic

cells suggest that H3K4me3Q5ser nucleosomes are increased

in euchromatin, are responsive to differentiation of cells, and

associated with increased gene expression (Farrelly et al., 2019).

The Maze group also found that histone serotonylation increases

general transcription factor IID (TFIID) binding to H3K4me3

and augments transcription (Girault, 2020). It was also found

that cells which express ectopically a mutant of H3 which

cannot be serotonylated show markedly changed expression of

H3K3me3Q5ser-target loci, leading to differentiation deficits

(Farrelly et al., 2019). Hence, Maze and colleagues inferred

that there is a direct role for serotonin in permissive gene

expression that is different from its role in neurotransmission and

cell signaling.

The same group also showed that H3 serotonylation undergoes

dynamic control during placental development, which corresponds

to changes in gene expression that are known to affect important

metabolic processes (Chan et al., 2024). The workers used

transgenic mice to show that placental H3 serotonylation

depends on serotonin uptake by the serotonin transporter

(SERT). SERT deletion markedly decreases enrichment of

H3 serotonylation across the placental genome, and affects

neurodevelopmental networks of genes in early embryonic tissues

of the brain. The authors inferred that these data suggest a

new role for H3 serotonylation in gene transcription control

in the placenta at the interface of maternal physiology and

development of the fetal brain (Chan et al., 2024). However,

more research is necessary to completely determine how the

involvement of H3 serotonylation modulates tissue-specific

functions. Moreover, a full catalog of monoaminylated proteins

and their downstream effects on fetal neurodevelopment

could explain how new and unusual monoamine mechanisms

affect risk for neurodevelopmental disorders (Chan et al.,

2024).

Histamine, like serotonin and dopamine, is involved in

histone monoaminylation. The Maze group recently described H3

histaminylation which is also catalyzed by TGM2 and occurs at

the same position on H3 (Q5). The authors used a H3Q5his

antibody that they produced and validated in cells and brain

tissues and showed that H3Q5his concentrations are increased

at the sites of synthesis of histamine in the brain, namely,

tuberomammillary nucleus (TMN), and which changes according

to sleep-wake patterns. These changes were found to be affected

by drugs that influence sleep patterns. The authors also found

that TGM2 functions as a “writer” an “eraser” and a “rewriter”

of monoaminylation of H3. The authors also found, based on

several biochemical and structural studies, that H3Q5his reduces
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H3K4 methylation induced by the mixed lineage leukemia (MLL)

complex (a family of methyltransferases) (Zheng et al., 2025).

Monoaminylation of histones in
psychiatric disorders

Monoaminylation of histones has also been investigated

in psychiatric disorders. Maze’s group has investigated histone

serotonylation after stress and/or antidepressant exposures. The

workers used a combination of genome-wide and biochemical

studies in the dorsal raphe nucleus (DRN) of male and female

mice subjected to chronic social defeat stress, and also in the

DRN of patients with major depressive disorder (MDD). The

workers studied the effect of exposure to stress and MDD on

H3K4me3Q5ser and the association between H3K4me3Q5Ser

and expression of genes related to MDD. Moreover, the authors

investigated the stress-induced and MDD-linked control of

H3K4me3Q5ser after antidepressant (fluoxetine) exposures,

and used viral-mediated gene therapy in mice to decrease

H3K4me3Q5ser levels in the DRN and study the impact on

gene expression and behavior related to stress. They found

that H3K4me3Q5ser influences stress-induced transcriptional

plasticity. Chronically- stressed mice showed abnormal

H3K4me3Q5ser activity in the DRN, with antidepressant- and

viral-mediated disruption of this activity proving to be adequate

to reduce stress-induced expression of genes and behavior.

Corresponding patterns of H3K4me3Q5ser control were seen in

patients with MDD on- as compared to off- antidepressant therapy

at the time of death. Hence, the authors inferred that serotonin

has a role in stress and antidepressant- associated transcription

and behavior separate from its role in neurotransmission, and

important in clinical MDD and its drug therapy (Al-Kachak et al.,

2024).

Maze’s group also discovered in 2020 that dopamine forms

covalent bonds with histone H3 at glutamine residue 5 to form

H3Q5dop (Lepack et al., 2020). Dopamine markedly influences

learning andmemory, reward, substance abuse, andmotor function

(Chan and Maze, 2020). Lepack et al. (2020) used a combination

of liquid chromatography-mass spectrometry (LC-MS/MS) and

enzymatic assays to show that like histone serotonylation, histone

dopaminylation is catalyzed by TGM2 at H3Q5, and occurs

in both isolated form (H3Q5dop) and in conjunction with K4

trimethylation (H3K4me3Q5dop) and correlates with regulation of

transcription in the brain. In the ventral tegmental area (VTA),

a brain region where dopamine is synthesized and takes part

in behavioral reward, H3Q5dop concentrations were decreased

in the rat as well as in human post-mortem brain following

continuous use of cocaine. The authors found in the rat VTA that

dysregulation of H3Q5dop depends on the timing of cocaine intake

and withdrawal.

To better learn the functional effect of raised H3Q5dop

during abstinence, Lepack and colleagues delivered dominant viral

vectors into the VTA of rats to decrease H3Q5dop concentrations

after exposure to cocaine. RNA-sequencing on virally—affected

tissues showed that reduced H3Q5dop concentrations reverse

the pattern of transcription that is normally observed during

cocaine withdrawal. In addition, decreasing H3Q5dop prevented

cocaine-seeking behavior in rats with abnormal drug—induced

dopamine release into the nucleus accumbens, an important brain

reward region that receives a dopaminergic nerve supply from

the VTA. These findings suggested that dopamine has roles in

mediating abnormal gene expression that are independent of its

role in neurotransmission and that such roles are associated with

occurrence of vulnerability to substance abuse relapse.

In addition to psychiatric disorders, monoaminylation has

been noted in other disorders such as cancer (Li et al., 2024).

Currently themost commonlymonoaminylated amino acid residue

on histone tails is glutamine 5 on the tail of histone H3 (Li et al.,

2024), although it is possible that other amino acid residues are

also targeted.

Potential implications of histone
monoaminylation for treating
psychiatric disorders

Modified histones are known to be involved in the pathogenesis

of psychiatric disorders (Panariello et al., 2022). However, these

modifications involve the more well-known histone modifications

such as histone acetylation (Panariello et al., 2022). The work

discussed in the preceding sections above is the first to review

histone monoaminylation in the pathogenesis of psychiatric

disorders. This work is still very much in its infancy. However,

there is evidence suggesting that histone monoaminylation is

involved in the pathogenesis of psychiatric disorders. As discussed

in the preceding sections, dopaminylation of histone H3 in

the VTA plays a role in cocaine seeking (Lepack et al., 2020),

and histone serotonylation in the DRN contributes to stress-

and antidepressant (fluoxetine)-mediated gene expression and

behavior (Al-Kachak et al., 2024). It is possible that in addition

to the more well established histone modifications, histone

monoaminylation is also involved in the pathogenesis of these and

other psychiatric disorders.

There are several difficulties associated with the study and

interpretation of histone modifications in the brain. They include

(Park et al., 2022; Paul and Potter, 2024): the extreme complexity of

the brain; temporal variations in histone modifications; variations

of histone modifications according to brain tissue and cell type;

the complexity of laboratory techniques required; and difficulties

in determining whether findings are the cause or the effect of the

disease process.

As mentioned, histone monoaminylation is catalyzed

by TGM2. Inhibitors targeting TGM2 have been developed,

encompassing both reversible and irreversible types, and are

undergoing drug trials for use in conditions such as celiac sprue,

neurodegenerative disorders, and cancer (Song et al., 2017;

Badarau et al., 2015; Keillor and Johnson, 2021). The overall

efficacy of present psychotropic drugs are arguably no better than

the very first ones introduced more than fifty years ago, especially

at improving functional outcomes of patients (Paul and Potter,

2024). Hence, new and better such drugs are urgently needed (Paul

and Potter, 2024). The developments discussed in the current

article, that is, monoaminylation of histones catalyzed by TGM2,

are a possible new field of neuroscience for the development
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of psychotropic drugs. However, at present this is somewhat

speculative, and to date, even preclinical (phase 0) studies have

not been conducted in this area. Moreover, epigenetic mechanisms

of gene expression are interconnected and if abnormalities of

histone monoaminylation are present in a particular psychiatric

patient, there are likely to be other epigenetic abnormalities

as well (Aljabali et al., 2024), compounding the difficulties in

finding new and effective drugs acting epigenetically for treating

psychiatric disorders.
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