
fnmol-18-1499376 March 14, 2025 Time: 19:15 # 1

TYPE Mini Review
PUBLISHED 19 March 2025
DOI 10.3389/fnmol.2025.1499376

OPEN ACCESS

EDITED BY

Annelise E. Barron,
Stanford University, United States

REVIEWED BY

Akihito Yasuoka,
Seitoku University, Japan

*CORRESPONDENCE

Xiaoxin Chen
lchen@coriell.org

Guo-Fang Zhang
guofang.zhang@duke.edu

RECEIVED 23 September 2024
ACCEPTED 03 March 2025
PUBLISHED 19 March 2025

CITATION

Chen X, Cheng Q and Zhang G-F (2025)
Elevated propionate and its association with
neurological dysfunctions in propionic
acidemia.
Front. Mol. Neurosci. 18:1499376.
doi: 10.3389/fnmol.2025.1499376

COPYRIGHT

© 2025 Chen, Cheng and Zhang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Elevated propionate and its
association with neurological
dysfunctions in propionic
acidemia
Xiaoxin Chen1,2,3*, Qing Cheng4 and Guo-Fang Zhang5,6*
1Surgical Research Lab, Department of Surgery, Cooper University Hospital, Cooper Medical School
of Rowan University, Camden, NJ, United States, 2Coriell Institute for Medical Research, Camden, NJ,
United States, 3MD Anderson Cancer Center at Cooper, Camden, NJ, United States,
4Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC,
United States, 5Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology
Institute, Duke University, Durham, NC, United States, 6Division of Endocrinology, Metabolism
and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, United States

Propionate, a short-chain fatty acid (SCFA), has recently attracted attention

for its various health benefits. However, elevated levels of propionate in

certain pathological conditions can have adverse effects. Propionic acidemia

(PA) is a rare metabolic disorder caused by mutations in the propionyl-

CoA carboxylase (PCC) gene (PCCA or PCCB), leading to reduced PCC

activity and impaired propionyl-CoA metabolism. This metabolic block at

the PCC-mediated step results in the accumulation of propionyl-CoA and

its metabolites, including propionate, contributing to various complications,

such as neurological dysfunction, in patients with PA. This review examines

propionate synthesis, its physiological role, its metabolism in healthy individuals

and those with PA, and the pathological link between elevated propionate

levels and neurological dysfunctions in PA patients. A deeper understanding of

propionate metabolism under both normal and pathological conditions will help

clarify the full spectrum of its metabolic effects.

KEYWORDS

propionic acidemia, propionate, neurological dysfunction, microbiome, short-chain
fatty acids, rare metabolic diseases, metabolism

1 Introduction

Propionate, a short-chain fatty acid (SCFA) produced by the microbiome, is chemically
similar to acetate but follows a distinct metabolic pathway. While acetate supports energy
metabolism and fatty acid synthesis through the provision of acetyl-CoA, propionate
acts as an anaplerotic substrate, replenishing tricarboxylic acid (TCA) cycle intermediates
when cataplerosis depletes them (Wolever et al., 1991; Brunengraber and Roe, 2006). The
metabolic flux of propionyl-CoA entering the TCA cycle is significantly slower than that
of acetyl-CoA (Wang et al., 2024). However, anaplerosis is essential in organs with high
cataplerotic activity, such as the liver, kidneys, intestines, pancreas, and brain (Weidemann
et al., 1970; Mithieux and Gautier-Stein, 2014; Zhang et al., 2016; He et al., 2021; Marin-
Valencia et al., 2024). Moreover, propionate supplementation has been shown to offer
benefits beyond its role in anaplerosis, such as reducing lipogenesis, lowering serum
cholesterol levels, mitigating depressive-like behavior, and reducing carcinogenesis risk
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(Hosseini et al., 2011). However, propionate’s effects on health
can be double-edged, with its pathophysiological roles varying
depending on the health context. For instance, in propionic
acidemia (PA)—a recessive metabolic disorder caused by
mutations in the PCCA or PCCB genes—impaired propionyl-
CoA metabolism leads to a host of metabolic alterations. The
accumulation of propionate and the blockade of its metabolism
have synergistically detrimental effects on various organs, with
neurological dysfunctions being one of the most common
complications in PA patients (Marchuk et al., 2023).

In this minireview, we summarize the current understanding
of propionate sources, metabolism, and its pathological roles in
neurological dysfunctions when its metabolism is impaired in PA.

2 Propionate source

In addition to dietary sources, SCFAs are primarily produced
through the fermentation of dietary carbohydrates and certain
amino acids in the intestine (Louis and Flint, 2017). The intestinal
origin of propionate has been confirmed by many studies, including
our recent data showing that propionate levels in the portal vein
are approximately 50 times higher than that in circulating plasma
in a mouse study (Wang et al., 2024). Further evidence comes from
germ-free mice, which display extremely low propionate levels (70
times lower) in the portal vein compared to control mice, strongly
indicating that the majority of propionate is derived from the
microbiome (Wang et al., 2024).

The production of acetic, propionic, and butyric acid by the
gut microbiome occurs in a molar ratio of approximately 3:1:1
(Hosseini et al., 2011). For a 70 kg human, the gut microbiome
produces roughly 2 g of propionate per day (Morrison and
Preston, 2016; Killingsworth et al., 2020), with concentrations
reaching up to 10–30 mM in the proximal colon (Cummings
et al., 1987). Propionate is produced through several metabolic
pathways, including the succinate, acrylate, propanediol, and 2-
ketobutyrate pathways (Figure 1; Hosseini et al., 2011; Louis and
Flint, 2017). Among these, the succinate pathway is the most
prevalent in the human gut microbiota (Kundra et al., 2024). Thus,
propionate production by the microbiome can be influenced by
diet, probiotics, and antibiotics. Interestingly, our recent findings
show that a 23 h fasting significantly reduces microbiome-derived
propionate (He et al., 2024).

Propionate can also be generated through the hydrolysis of
propionyl-CoA. Acyl-CoA thioesterases are enzymes that catalyze
the hydrolysis of CoA esters, converting them into free acids and
CoA (Reaction formula 1) (Hunt and Alexson, 2002; Bai et al.,
2024). These enzymes, also referred to as acyl-CoA hydrolases or
palmitoyl-CoA hydrolases, help regulate intracellular levels of CoA
esters together with carnitine acyl-CoA transferase, preventing
the accumulation of acyl-CoAs, which cannot cross cellular
membranes.

Acyl− CoA + H2O→ Fatty acid + Coenzyme A (1)

The hydrolysis of propionyl-CoA to propionate is not a
reversible reaction of short-chain acyl-CoA synthetases (ACSSs).
The activation of propionate to propionyl-CoA by a major
isozyme (ACSS3) requires ATP (Yoshimura et al., 2017). These

two opposing reactions complicate the assessment of propionate
production from various metabolic sources. Consequently,
using 13C-labeled propionate to measure the contributions of
the microbiome, amino acids, and other sources to propionate
production may be misleading due to the hydrolysis of propionyl-
CoA to propionate (Thompson et al., 1990). Furthermore,
overnight fasting may underestimate microbiome-derived
propionate production, as indicated in our recent experiment with
Pcca−/−(A138T) mice, an animal model for PA (He et al., 2024).

3 Physiological levels of propionate
and propionyl-CoA

The intestinal microbiome produces significant amounts of
SCFAs, including propionate (∼200 µM in the portal vein).
However, circulating blood levels of propionate are much lower,
approximately 0.4–5 µM, compared to acetate, which ranges from
50 to 200 µM (Bose et al., 2019; Kiasat et al., 2023). This difference
in circulating levels of propionate and acetate is consistent with
their corresponding acyl-CoA and acylcarnitine levels in tissues,
where the C3/C2 (either acyl-CoA or acylcarnitine form) ratio is
roughly 0.1 (Zhao et al., 2022).

The healthy liver efficiently metabolizes propionate, resulting
in low systemic exposure in other organs (Wang et al., 2024).
Given the liver’s high capacity to metabolize propionate, dietary
propionate supplementation is not expected to substantially
increase the circulating levels of propionate in healthy subjects.
However, in metabolic conditions like PA, where liver metabolism
of propionate is compromised, circulating propionate can rise
markedly, reaching millimolar levels and leading to increased
exposure in peripheral tissues (Wang et al., 2024).

4 Physiological functions of
propionate

Propionate is considered beneficial to health and plays multiple
physiological roles in the human body. For example, it promotes
enteric smooth muscle contractions and modulates colonic motility
(Mitsui et al., 2005). Additionally, propionate stimulates the
synthesis of host defense peptides, which are critical in the body’s
first line of defense against bacteria, fungi, parasites, and enveloped
viruses (Sunkara et al., 2012). The metabolism of propionate is
associated with glucose production and energy metabolism (Jones
et al., 1997). Through a series of reactions, propionate is first
converted to propionyl-CoA before ultimately being converted to
succinyl-CoA (Deng et al., 2009; Jin et al., 2015; Wilson et al., 2017;
Wang et al., 2018). Succinyl-CoA is a substrate in the TCA cycle
and is further metabolized to oxaloacetate, which is a substrate
for glucose synthesis. Thus, dietary propionate could impact the
TCA cycle and gluconeogenesis (Brunengraber and Roe, 2006;
Killingsworth et al., 2020).

Interestingly, propionate produced by the microbiome has
been shown to improve various aspects of energy metabolism,
such as reducing adiposity and body weight. This is achieved
through the following mechanisms: (1) Propionate stimulates
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FIGURE 1

Propionate synthesis in microbiome. Four pathways (acrylate pathway in gray, succinate pathway in blue, 2-oxobutyrate pathway in orange, and
1,2-propanediol pathway in purple) lead to the synthesis of propionate in microbiome. PEP, phosphoenolpyruvate; Dihydroxyacetone-P,
dihydroxyacetone phosphate.

intestinal gluconeogenesis via a gut-brain neural circuit involving
the fatty acid receptor FFAR3 (De Vadder et al., 2014).
(2) Increased intestinal propionate has also been linked to reduced
stress behaviors in mice (Burokas et al., 2017) and attenuated
reward-based eating behaviors via striatal pathways in humans
(Byrne et al., 2016). (3) Propionate exhibits antilipogenic and
cholesterol-lowering effects by competitively inhibiting acetate
uptake by liver cells (Delzenne and Williams, 2002) and reducing
cholesterol biosynthesis (Arora et al., 2011). (4) Propionate may
also help reduce obesity by promoting the secretion of PYY
and GLP-1 hormones through binding and activating G-protein
coupled receptors (GPR41 and GPR43) from enteroendocrine
cells, which induce satiety, reduce energy intake, and promote
weight loss (Arora et al., 2011; Killingsworth et al., 2020;
Zhang et al., 2022).

Propionate has also demonstrated immune-modulatory and
anti-inflammatory effects (Langfeld et al., 2021). Its regulation of
the immune system occurs primarily through two key mechanisms:
(1) Activation of G-protein coupled receptors for the SCFA receptor
family, and (2) Inhibition of histone deacetylases (Tobin et al.,
2021). Deficiency of propionate has been linked to an increased
risk of asthma and allergies, underscoring its protective role in
immune function (Bottcher et al., 2000; Ivashkin et al., 2019;
Roduit et al., 2019).

5 Propionate metabolism in
propionic acidemia

The first step of propionate metabolism is its activation
into propionyl-CoA by ACSSs, specifically the ACSS3 isoform

(Yoshimura et al., 2017). Propionyl-CoA, an anaplerotic substrate,
enters the TCA cycle for complete metabolism. Propionate
metabolism is highly efficient, particularly in the liver, maintaining
circulating propionate at low levels (0.4–5 µM). However, this
metabolism is disrupted when propionyl-CoA carboxylation is
impaired, as seen in patients with PA. A reliable biomarker of
PA is elevated propionate levels in both blood and urine, as
observed in PA patients and mouse models, although propionate
is often underreported due to the need for advanced analytical
techniques (Wang et al., 2018). The precise mechanism by which
PCC deficiency leads to elevated propionate remains unclear.

Our recent work demonstrated that ACSS3 activity in the
liver is attenuated in Pcca−/− (A138T) mice (Wang et al., 2018).
As the liver is the primary organ in metabolizing propionate
derived from the microbiome, the reduction in ACSS3 could
contribute to the impaired metabolic disposal of propionate and
its subsequent elevation. Another potential source of propionate
is the hydrolysis of propionyl-CoA. Under normal conditions,
intracellular propionyl-CoA levels are much lower than acetyl-
CoA. Thus, the contribution of propionyl-CoA hydrolysis to
propionate levels is likely minimal. However, in PA, when
propionyl-CoA accumulates to levels comparable to acetyl-CoA,
the contribution of propionyl-CoA hydrolysis to propionate
production may increase. Despite this, it remains unclear how
much propionate is produced from propionyl-CoA hydrolysis in
PA. Addressing this question is critical to better understanding the
pathophysiology of PA.

If propionyl-CoA hydrolysis were highly efficient, the
accumulation of propionyl-CoA might not take place the primary
issue, and the elevated propionate or other metabolites could
instead be the main disease-causing factor. However, recent
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studies have shown that increasing coenzyme A synthesis via drug
activators alleviates metabolic stress caused by propionyl-CoA
accumulation (Subramanian et al., 2021; Subramanian et al., 2023).
This suggests that even propionyl-CoA hydrolysis to propionate
may occur, it is likely not a major contributor to overall propionate
production or the regulation of propionyl-CoA levels.

6 Neurological dysfunctions
associated with PA

While propionate has been shown to offer health benefits,
its excess levels can be pathological. For instance, individuals
with periodontal disease exhibit elevated levels of propionate
in their saliva and may be at increased risk for developing
Alzheimer’s disease (AD) (Killingsworth et al., 2020). Emerging
evidence suggests that excess propionate, along with an increase in
propionate-producing bacteria, may play a role in the development
of dementia, particularly in AD (Arora et al., 2011).

In PA, where the PCC enzyme is impaired, propionate levels
can rise significantly, reaching millimolar concentrations. The
metabolic toxicity associated with these elevated propionate levels
in PA has been well-documented (Shchelochkov et al., 1993;
Marchuk et al., 2023), though the specific mechanisms behind
the damage remain largely unclear. PA patients are subject to
various complications (Marchuk et al., 2023). In addition to low
muscle tone, cardiomyopathy, and pancreatitis, PA patients often
present with a variety of neurological symptoms. These include
psychomotor retardation, dystonia, developmental and speech
delays, dementia, visual hallucinations, psychosis, seizures, stroke,
coma, hypotonia, athetosis, optic neuropathy, acute hemiparesis,
and other neurological impairments (Scholl-Burgi et al., 2009;
Schreiber et al., 2012; Shuaib et al., 2012; Dejean de la Batie
et al., 2014; Witters et al., 2016; AlGhamdi et al., 2018; Pfeifer
et al., 2018; Almuqbil et al., 2019). Patients may also experience
chronic psychological and cognitive sequelae, frequently leading to
intellectual disability. Autism spectrum disorder has been reported
in approximately 21% of PA patients (Witters et al., 2016; Cotrina
et al., 2020).

Neurological impairments are observed more frequently in
late-onset PA compared to early-onset cases (Jiang et al.,
2022). Diagnosis Diagnostic imaging via magnetic resonance
imaging typically reveals bilateral basal ganglia abnormalities,
varying degrees of cisternal and sulcal widening, diffusion
restriction, asymmetric atrophy, delayed myelination, corpus
callosum dysplasia, volume loss in the vermis, gray matter
vacuolization, and supratentorial white matter edema (Shuaib et al.,
2012; AlGhamdi et al., 2018; Pfeifer et al., 2018; Jiang et al., 2022).

7 Pathological mechanisms of
neurological dysfunctions in PA

7.1 Metabolic disruptions

Figure 2 illustrates the current understanding of how
propionate and its metabolites contribute to neurological

dysfunctions observed in PA patients. The neurological
manifestations in PA most likely stem from the metabolic
consequences of elevated propionate and its metabolites
(Scholl-Burgi et al., 2009; Schreiber et al., 2012). PA-related
metabolic stroke, often caused by metabolic acidosis or
hyperammonemia, contributes to acute neurological events
(Almuqbil et al., 2019). Methylcitrate, a metabolite elevated in
PA, has been shown to decrease glutamate oxidation by inhibiting
glutamate dehydrogenase, as well as induce mitochondrial
permeability transition. The reduction in glutamate oxidation
and mitochondrial ATP generation are key factors in the
neurological dysfunctions seen in PA (Amaral et al., 2016). In
addition to inhibiting glutamate dehydrogenase, propionate and its
metabolites also inhibit other TCA cycle enzymes such as pyruvate
dehydrogenase, oxoglutarate dehydrogenase, and succinyl-CoA
ligase, further compromising energy metabolism (Schreiber et al.,
2012). These disruptions in energy metabolism particularly affect
areas like the basal ganglia, which are highly energy-dependent and
thus more vulnerable to damage from elevated propionate levels (Ji
et al., 2022).

7.2 Persistent neurological damage

Despite lifelong dietary management, some PA patients develop
late-onset bilateral optic neuropathy, suggesting a persistent
pathological role of propionate in neurological dysfunctions
(Williams et al., 2009). The neurotoxic effects of propionate have
been observed in both animal models and human patients (Wyse
et al., 1998; Colin-Gonzalez et al., 2015). For example, propionate
has been shown to inhibit Na+, K+-ATPase activity in rat brain
cortex, which may contribute to neurological dysfunctions in PA
(Wyse et al., 1998). At concentrations equal to or lower than those
found in the blood and brain of PA patients, propionate markedly
affects the phosphorylation of cytoskeletal proteins in the cerebral
cortex. Alterations in these proteins may disrupt cellular structure,
leading to neurodegeneration (de Mattos-Dutra et al., 2000; de
Almeida et al., 2006). Elevated propionate levels inhibit GABA
transaminase, leading to the accumulation of GABA in the brain.
This results in reduced neuronal activity, manifesting as lethargy
(Morland et al., 2018).

Propionate also reduces ganglioside content in the cerebral
cortex, which could contribute to brain damage in PA. This is
similar to the effects seen with methylmalonic acid treatment,
reinforcing the notion that brain damage is likely due to propionate
rather than propionyl-CoA, which accumulates at much lower
levels in methylmalonic acidemia (Trindade et al., 2002). High
concentrations of propionate in the brain, as seen in animal
models, lead to abnormal behaviors such as delayed habituation and
repetitive motor activity (Brusque et al., 1999; Cotrina et al., 2020).
These findings suggest that early postnatal propionate exposure
results in long-term behavioral deficits.

7.3 Oxidative stress

Oxidative stress is another driver in PA-related neurological
damage. Propionate has been shown to stimulate lipid peroxidation
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FIGURE 2

Detrimental effects of accumulated propionate and its metabolites in brain in propionic acidemia (PA). SUC-CoA, succinyl-CoA; MM-CoA,
methylmalonyl-CoA; GABA, gamma-aminobutyric acid. Accumulated methylcitrate inhibits energy metabolism within the tricarboxylic acid (TCA)
cycle, while elevated levels of propionylglutamate impair ammonium disposal via the urea cycle. The various toxic effects of accumulated
propionate are highlighted in orange.

in brain tissue, leading to free radical generation that contributes
to neurological dysfunctions (Fontella et al., 2000; Rigo et al.,
2006; Ribas et al., 2010). In the hippocampus, chronic propionate
exposure leads to spatial performance impairments, which are
mitigated by ascorbic acid, an antioxidant (Pettenuzzo et al., 2002).
Additionally, intrastriatal injection of propionate induces seizures
and increases protein carbonyl content in the striatum, effects
that are prevented by MK-801, an NMDA receptor antagonist,
suggesting a role of NMDA receptors in PA associated oxidative
damage and convulsions (Rigo et al., 2006).

7.4 Epigenetic modifications

Furthermore, propionate may alter neuronal gene expression
by increasing histone acetylation (Nguyen et al., 2007). In vitro
studies show that while propionate can be metabolized by glial cells,
neurons lack this ability, potentially due to a lack of propionyl-
CoA synthetase or mitochondrial transporters for propionate.
However, exposure to propionate increases histone acetylation
in both neurons and astrocytes, suggesting that neurons may
be particularly vulnerable to chronically elevated propionate
levels in PA (Nguyen et al., 2007). The epigenetic effects of
elevated propionate levels remain largely unexplored, presenting
a promising area for future research, as both propionyl-CoA
and propionate could influence the propionylation, acetylation of

proteins and histones and gene transcription (Chapman et al., 2015;
Lagerwaard et al., 2021; Park et al., 2023; Yang et al., 2023).

In summary, the metabolic toxicity of elevated propionate
in PA involves multiple pathological mechanisms, including
mitochondrial dysfunction, oxidative stress, and disruptions in
gene expression.

8 Therapeutic perspective targeting
propionate metabolism in PA

Since chronically elevated propionate is a key factor in the
neurological dysfunction associated with PA, treatment strategies
should focus on reducing propionate synthesis and enhancing its
metabolic disposal.

To reduce propionate synthesis, two main approaches have
been reported: (1) Antibiotics: These are used to inhibit gut
microbiota, thereby reducing microbial production of propionate,
and (2) Carnitine supplementation: Propionyl-CoA can be
converted to propionylcarnitine by carnitine acetyltransferase
or to propionate by propionyl-CoA hydrolase, both of which
help regulate cellular propionyl-CoA levels. Supplementing
with L-carnitine supports the conversion of propionyl-CoA to
propionylcarnitine, reducing propionate production.
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To increase propionate disposal, several strategies have
emerged. Firstly, pharmacological activation of CoA synthesis:
This strategy has been shown to increase propionyl-CoA flux
into the TCA cycle, reducing metabolic stress in PA mice
(Armstrong et al., 2021; Subramanian et al., 2021; Subramanian
et al., 2023). Secondly, liver transplantation: As the primary site
of propionate metabolism, a healthy liver can metabolize 99%
of propionate from the portal vein. Liver transplantation has
been shown to improve neurological functions in PA patients by
preventing metabolic decompensation and reducing propionate-
related metabolites, such as methylcitrate and 3-hydroxypropionate
(Nagao et al., 2013). Although no direct propionate data was
reported, hepatic disposal of propionate is expected to improve.
However, propionyl-CoA may still accumulate in other organs
deficient in PCC, potentially leading to localized increases in
propionate levels. Thirdly, mRNA enzyme replacement therapy:
Recent advancements offer the potential to restore PCC activity and
improve propionate metabolism. While this strategy shows promise
as a future treatment option, current methods still face challenges
with side effects (Jiang et al., 2020; Koeberl et al., 2024).

9 Summary

Propionate, a SCFA, is beneficial to health when present at
moderate levels and metabolized normally. However, elevated
propionate levels or impaired propionate metabolism in PA can
lead to harmful effects and various complications, including
neurological dysfunctions. Significant progress has been made
in understanding the pathological mechanisms linking elevated
propionate to neurological dysfunctions in patients with PA.
However, several areas require further investigation, including
propionate production from propionyl-CoA hydrolysis in the
brain, cellular levels of propionate in the brain, and the impact of
propionate/propionyl-CoA on protein and histone acylation.
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