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Background: Insomnia (ISM) is one of the non-traditional drivers of 
atherosclerosis (AS) and an important risk factor for AS-related cardiovascular 
disease. Our study aimed to explore the shared pathways and diagnostic 
biomarkers of ISM-related AS using integrated bioinformatics analysis.

Methods: We download the datasets from the Gene Expression Omnibus 
database and the GeneCards database. Weighted gene co-expression network 
analysis and gene differential expression analysis were applied to screen the AS-
related gene set. The shared genes of ISM and AS were obtained by intersecting 
with ISM-related genes. Subsequently, candidate diagnostic biomarkers were 
identified by constructing protein–protein interaction networks and machine 
learning algorithms, and a nomogram was constructed. Moreover, to explore 
potential mechanisms, a comprehensive analysis of shared genes was carried 
out, including enrichment analysis, protein interactions, immune cell infiltration, 
and single-cell sequencing analysis.

Results: We successfully screened 61 genes shared by ISM and AS, of which 
3 genes (IL10RA, CCR1, and SPI1) were identified as diagnostic biomarkers. A 
nomogram with excellent predictive value was constructed (the area under curve 
of the model constructed by the biomarkers was 0.931, and the validation set 
was 0.745). In addition, the shared genes were mainly enriched in immune and 
inflammatory response regulation pathways. The biomarkers were associated 
with a variety of immune cells, especially myeloid immune cells.

Conclusion: We constructed a diagnostic nomogram based on IL10RA, CCR1, 
and SPI1 and explored the inflammatory-immune mechanisms, which indicated 
new insights for early diagnosis and treatment of ISM-related AS.
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1 Introduction

Insomnia (ISM) is a most common sleep disorder all over the 
world, which seriously affects people’s quality of life and may even 
endanger health. Its most common symptoms are difficulty initiating 
and maintaining nocturnal sleep, decreased sleep quality, and reduced 
sleep duration (Sutton, 2021). As the pace of modern life increases, the 
incidence of ISM has increased, which often occurs simultaneously 
with obesity, diabetes mellitus, cardiovascular disease, etc. (Taylor 
et al., 2007; Madari et al., 2021). Some survey studies found that the 
incidence and the death risk of cardiovascular disease are significantly 
increased in the ISM patient population (Daghlas et  al., 2019; 
Svensson et al., 2021). However, the pathogenesis is poorly understood.

Atherosclerosis (AS), the most common pathological basis of 
cardiovascular disease, is a chronic inflammatory vascular lesion with 
multifactorial associations (Libby, 2021). Several studies have 
indicated that short sleep duration and poor sleep quality are 
associated with enhanced arterial stiffness and AS development (Pan 
et al., 2022). Compared to subjects with 7–8 h of high-quality sleep, 
the risk of developing AS was found to be increased by 27% in those 
with less than 6 h of sleep and by 34% in subjects with fragmented 
sleep (Domínguez et al., 2019). It may be related to the inflammatory 
response evoked by ISM. It has been found that sleep deprivation 
increases serum levels of prostaglandin D2, induces accumulation of 
circulating neutrophils and cytokine storms, and causes multi-organ 
dysfunction (Sang et al., 2023). Chronic sleep loss initiates a systemic 
inflammatory response and produces significant increases in plasma 
levels of C-reactive protein, tumor necrosis factor-α receptor 1, and 
interleukin-6 (IL-6) (Shearer et al., 2001; Meier-Ewert et al., 2004). 
Moreover, excessive inflammation by ISM disrupts the normal 
rhythms of the hypothalamic–pituitary–adrenal axis, causes disorders 
of glucolipid metabolism, and raises the risk of diabetes and 
hyperlipidemia (Lim, 2019; Zhang et al., 2024). These are key risk 
factors for the development of AS. However, in the initial period of 
AS, patients normally have no obvious symptoms, which greatly 
challenges the diagnosis and treatment of AS. Therefore, finding more 
specific diagnostic markers for ISM patients with AS, and carrying out 
earlier treatment interventions is of great clinical significance.

In this study, based on ISM and AS gene expression data published 
in the Gene Expression Omnibus (GEO) and the GeneCards 
databases, we  used a systems bioinformatics approach to explore 
shared gene pathways and diagnostic markers between ISM and AS, 
with the aim of identifying new potential diagnostic and therapeutic 
strategies for AS patients secondary to ISM.

2 Methods

2.1 Data collection and processing

The data analysis process of our study is shown in Figure 1. Three 
microarray datasets (GSE100927, GSE28829, and GSE208668) were 
downloaded from the GEO database1 (Barrett et  al., 2013) of the 
National Center for Biotechnology Information (NCBI) and a 

1 https://www.ncbi.nlm.nih.gov/geo/

single-cell RNA sequencing (scRNA-seq) dataset (GSE253903). 
The basic information about the datasets is shown in 
Supplementary Table S1. The GSE100927 dataset contains 69 human 
arterial samples with AS lesions and 35 without (Steenman et al., 
2018). The GSE28829 dataset contains 13 samples of early AS plaques 
and 16 samples of advanced (Döring et al., 2012). The GSE208668 
contains 17 mononuclear cells of peripheral blood samples from 
patients with ISM and 25 from healthy individuals (Piber et al., 2022). 
In GSE208668, patients included were aged 60 years and above, with 
insomnia ≥3 times per week for >3 months, and had not suffered from 
other sleep disorders or chronic diseases. Removal of batch effects and 
normalization in microarray datasets was carried out by the 
“normalizeBetweenArrays” function of the R software “Limma” 
package (Supplementary Figure S1). The GSE253903 pre-processed 
by Cellranger (10X Genomics) contains 6 carotid AS plaques from 
symptomatic patients (Bashore et  al., 2024). We  searched and 
downloaded a collection of ISM-related genes in the GeneCards 
database2 (Safran et al., 2010) by the keyword “insomnia” and filtered 
the top 30% of genes (total 1,952) for subsequent analyses according 
to the “Relevance score.”

2.2 Weighted gene co-expression network 
analysis and identification of key module 
genes

WGCNA is a systems biology technique that reveals gene 
association patterns in different samples and identifies gene sets that 
have a significant correlation with phenotypes based on associations 
between gene sets and between gene sets and phenotypes. After 
normalization and removing the batch effect of the original datase, the 
identification was performed using the R software “WGCNA” package. 
The “goodSamplesGenes” function was used to check the unqualified 
genes and samples, and then the “pickSoftThreshold” function was 
used to pick the appropriate soft threshold power (β = 2) to construct 
the “unsigned” co-expression pattern. Finally, the gene modules were 
discovered using hierarchical clustering, and a cluster dendrogram 
was obtained using “plotDendroAndColors.” The module eigengenes 
(MEs) of different modules were obtained in the first principal 
component of the modules. Then, the module-trait correlation 
(Pearson correlation) was assessed based on the association between 
MEs and the clinical traits. The modules of highest relevance to the 
trait were selected, Module Membership (MM: the correlation 
coefficient of gene expression and MEs) and Gene Significance (GS: 
the correlation coefficient of gene expression and trait) coefficients 
were calculated (the thresholds: MM > 0.80 and GS > 0.50).

2.3 Analysis of differently expressed genes

The “Limma” package was used to identify the DEGs in the gene 
set obtained by WGCNA. The significance threshold was set at 
adjusted p < 0.05 and | log2 (fold change) | > 0.50. The filter results were 
visualized in a volcano plot and a heatmap by the “ggplot2” package 

2 https://www.genecards.org/
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FIGURE 1

Flowchart depicting of the analysis process.
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and “pheatmap” package. The “VennDiagram” package was used to 
visualize shared genes between gene sets.

2.4 Functional enrichment analysis

The Gene Ontology (GO) term (BP, biological process; CC, 
cellular component; and MF, molecular function) enrichment analysis 
(significance p < 0.05 and q < 0.05), the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis (p < 0.05 and 
q < 0.05), and the Gene Set Enrichment Analysis (GSEA) (p < 0.05 and 
q < 0.05) were carried out using the “clusterProfiler” package (version 
4.10.0). The enrichment results were visualized using the “ggplot2” 
package and “enrichplot” package.

2.5 Construction of protein–protein 
interaction network

We constructed the PPI network on the STRING database 
(version 12.0) (Szklarczyk et  al., 2023)3 (Minimum interaction 
requirement score: medium confidence = 0.400) and imported the 
results of the network into Cytoscape software (version 3.10.1) 
(Otasek et  al., 2019) for visualization. To filter key sub-network 
modules from the PPI network, we utilized the Molecular Complex 
Detection (MCODE) plugin in Cytoscape (parameters: degree 
cutoff = 2, Node Score Cutoff = 0.2, K-Core = 2, max.Depth = 100). The 
genes in the key module were identified as the hub genes, which were 
used to further filter the diagnostic markers.

2.6 Machine learning algorithms

The least absolute shrinkage and selection operator (LASSO) 
regression model (a logistic regression method for filtering variables 
to enhance predictive performance) was constructed based on the 
“glmnet” package, and the minimum target covariate mean (lambda.
min) was determined to filter the candidate biomarkers. The random 
forest (RF) model was constructed by the “randomForest” package, 
and the “MeanDecreaseAccuracy” and “MeanDecreaseGini” scores 
were calculated as the importance scores of the candidate biomarkers. 
Finally, the shared hub genes screened by the two models were used 
as candidate biomarkers.

2.7 Receiver operating characteristics 
curve and nomogram construction

Using the “ggpubr” package, the expression of candidate 
biomarkers in the GSE208668 and GSE28829 validation sets was 
compared and visualized in the box diagram. Using the “pROC” 
package, the diagnostic value of the diagnostic biomarkers was 
assessed by constructing the ROC, calculating the area under the 
curve (AUC), and calculating the 95% confidence interval. Nomogram 

3 https://cn.string-db.org/

was constructed using the R software “rms” package and its diagnostic 
efficiency was assessed by calculating the AUC.

2.8 Immune cell infiltration analysis

Cell-type identification by estimating relative subsets of RNA 
transcript (CIBERSORT) is a computational method used to translate 
a normally differentiated gene expression matrix into an infiltrating 
immune cell proportion. Using the CIBERSORT.R script (Newman 
et al., 2015), the relative proportions of the infiltration of 22 immune 
cells in each sample were calculated and depicted in the bar diagram. 
The comparison of the differential expression of each immune cell 
between the AS group and the controls is shown by the box diagram. 
The correlation between diagnostic biomarkers and immune cells 
(spearman correlation) was calculated using the “corrplot” package.

2.9 Single-cell RNA sequencing data 
analysis

After downloading the dataset (GSE253903), it was analyzed by 
the “Seurat” package (version 5.0.1). Quality control of the data was 
carried: gene counts per cell in the range of 200–2,500 and a 
percentage of mitochondrial genes less than 5%. Next, the data were 
normalized using the NormalizeData function, the first 2000 highly 
variable genes were selected using the “vst” method in the 
FindVariableFeatures function, the data were scaled using the 
ScaleData function, and the clustering analysis was performed using 
the RunPCA function for cluster analysis. We utilized the “harmony” 
package (version 1.2.0) to eliminate batch effects. Clustering and 
dimensionality reduction were carried out using FindNeighbors, 
FindClusters, and RunTSNE functions (dim = 1:20, resolution = 0.5) 
(Supplementary Figures S2B,C). Subsequently, the cell clusters were 
visualized using the DimPlot function for visualization. The 
FindAllMarkers function was utilized to identify the top three marker 
genes for per cluster. Cell cluster annotation was performed using a 
strategy of automatic annotation combined with manual correction. 
Firstly, cell types were annotated using the “SingleR” package (version 
2.4.1), and HumanPrimaryCellpronasData downloaded from the 
“celldex” package (version 1.12.0) was used as the reference datasets. 
Then, cell types were identified in the CellMarker 2.0 database (Hu 
et al., 2023)4 using the marker genes for each cell cluster. The cell types 
of each cluster were visualized using DimPlot and DotPlot functions. 
We utilized the FeaturePlot and VlnPlot functions for visualization to 
clarify the cellular localization of diagnostic biomarkers.

2.10 Statistical analysis

R software (version 4.3.2) (R Core Team, 2023)5 and RStudio 
software (version 2023.12.1)6 were used for data analysis and drawing. 
The Wilcoxon test was used to compare the differences between the 

4 http://117.50.127.228/CellMarker/

5 https://www.r-project.org/

6 https://posit.co/products/open-source/rstudio/
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two groups in the test sets. Statistical significance was inferred when 
p-value < 0.05.

3 Results

3.1 Identification of the AS-related genes

The most strongly related gene modules and gene sets in the AS 
samples were identified by WGCNA. The most acceptable soft 
thresholding power (β = 2, R2 = 0.930) was chosen based on scale 
independence and average connectivity (Figure 2A). A total of 7 gene 
modules were generated in the soft threshold, and the cluster tree 
diagram of the modules was constructed (Figure  2B). Then, 
we  evaluated the correlation between gene modules and AS 
(Figure 2C). The results showed the strongest positive correlation 
between the turquoise module (ME turquoise) and AS (correlation 
coefficient r = 0.71, p = 3e-17), whereas the blue module (ME blue) had 
the strongest negative correlation (r = −0.75, p = 1e-19). In addition, 
we found a strong correlation between MM and GS in the turquoise 
module (r = 0.71, p < 1e-200) and the blue module (r = 0.81, p < 1e-200) 
(Figures 2D,E), which indicated a significant correlation between the 
module genes and AS. Therefore, we filtered the total of 1,502 genes 
(MM > 0.8 and GS > 0.5) from the two key modules for 
subsequent analysis.

To filter out genes with a stronger correlation with AS, we analyzed 
the differential expression of the key module genes. A total of 1,069 
DEGs were identified, of which 747 were up-regulated and 322 were 
down-regulated (Figure  2F). The heatmap demonstrated that the 
expression of these genes was significantly different in the AS and 
control groups (Figure 2G). Therefore, the DEGs were identified as a 
set of AS-related genes.

3.2 Identification of the ISM and AS shared 
genes and shared pathways

After taking the intersection of the set of ISM-related genes 
searched from the GeneCards database with the set of AS-related 
genes, 61 genes were identified as the shared genes of ISM and AS 
(Figure 3A). Enrichment analyses of shared genes included GO, 
KEGG, and GSEA. The GO analysis revealed that the shared genes 
were majorly enriched for the following functions: (1) biological 
processes, regulation of innate immune response, regulation of 
inflammatory response, regulation of neuron projection 
development, and immune response-activating signaling pathway; 
(2) cellular component, secretory granule lumen, cytoplasmic vesicle 
lumen, vesicle lumen, and endocytic vesicle; (3) molecular function, 
cytokine receptor activity, immune receptor activity, peptide 
binding, and amide binding (Figures 3B–D). The KEGG analysis 
revealed that the shared genes were majorly enriched in the 
following pathways: cytokine-cytokine receptor interaction, 
efferocytosis, Janus kinase-signal transducer and activator of 
transcription (JAK–STAT) signaling pathway, chemokine signaling 
pathway, and lipid and atherosclerosis (Figure  3E). The GSEA 
revealed that the shared genes were significantly enriched in JAK–
STAT signaling pathway and cytokine-cytokine receptor interaction 
(Figure 3F). These results indicate that inflammation and immune 

responses may have a vital effect on the development of AS in 
ISM patients.

3.3 Construction of PPI networks and 
identification of the hub genes

To identify the hub genes of ISM-related AS, we uploaded the 
above shared genes to the STRING database, constructed a PPI 
network, and visualized it in Cytoscape software. After removing the 
genes that did not interact with other shared genes, a PPI network 
containing 41 nodes and 89 edges was constructed (Figure 4A). Then, 
4 key modules were identified from the PPI network using the 
MCODE plugin in Cytoscape (Figures 4B–E). Briefly, module 1 was 
comprised of 7 genes, including CD4, AIF1, IL10RA, CCR1, HCK, 
SPI1, and CSF3R. Module 2 comprised 3 genes, including CASP1, 
APOE, and NCF1. Module 3 comprised 3 genes, including MSH5, 
XRCC3, and BLM. Module 4 comprised 3 genes, including GNS, 
GLB1, and HEXB. Obviously, module 1, containing 7 nodes and 21 
edges, had the most complex interrelationships. Thus, it was identified 
as the hub module, and the 7 genes in module 1 were identified as the 
hub genes. The hub genes have complex interactions with each other, 
which may have a key role in ISM-accelerated AS.

3.4 Selection of candidate diagnostic 
biomarkers for ISM-related AS using 
machine learning

The hub genes of ISM and AS may contribute to the diagnosis of 
ISM-related AS patients; therefore, we further selected the diagnostic 
biomarkers using machine learning. The LASSO regression analysis 
identified the 6 genes with the lowest binomial deviation among the 
hub genes with the best fit to the regression model (Figures 5A,B). In 
addition, we  screened the hub genes using the RF algorithm and 
selected the genes with the top 5 of “MeanDecreaseAccuracy” and 
“MeanDecreaseGini” scores (Figures 5C,D). After intersecting the 
results of the above two machine learning algorithms, the 4 candidate 
diagnostic biomarker genes were selected, including AIF1, IL10RA, 
CCR1, and SPI1 (Figure 5E).

3.5 Validation of expression levels and 
assessment of diagnostic value of 
candidate diagnostic biomarkers and 
construction of the nomogram

All 4 candidate diagnostic markers (AIF1, IL10RA, CCR1, and 
SPI1) were significantly up-regulated in the test set GSE100927 (AS), 
and the AUCs of the ROCs were over 0.9 (Figures 6A,B). However, in 
validation sets GSE208668 (ISM) and GSE28829 (AS), it was found 
that the expression trend of AIF1 was different in the two diseases and 
the differential expression in GSE28829 was not statistically 
significant, while IL10RA, CCR1, and SPI1 were up-regulated and the 
differences were statistically significant (Figures  6C,D). Then, the 
diagnostic value was assessed by constructing the ROCs and 
calculating the AUCs. Notably, IL10RA, CCR1, and SPI1 had 
satisfactory diagnostic value: in GSE208668, IL10RA, AUC = 0.779, 
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FIGURE 2

Identification of AS-related genes by WGCNA combined with the Limma strategy. (A) Soft thresholding power (β) selection via scale independence and 
average connectivity. (B) Cluster dendrogram of gene clusters or modules associated with atherosclerosis. (C) The heatmap depicting correlation 
between modules and clinical traits in AS. The top number represents the correlation coefficient, and the bottom number represents the p value in the 
squares. (D,E) The correlation between module membership and gene significance in AS regarding the most positively (turquoise module) and 
negatively (blue module) correlated modules. (F) The volcano plot of all DEGs in key modules of AS, with red and blue dots referring to significant up- 
and down-regulated DEGs. (G) The heatmap of the significant up- and down-regulated DEGs. Red and blue grids represent significant up- and down-
regulated DEGs. ME, module eigenvectors; cor, correlation; WGCNA, weighted gene co-expression network analysis; AS, atherosclerosis.

https://doi.org/10.3389/fnmol.2024.1477903
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnmol.2024.1477903

Frontiers in Molecular Neuroscience 07 frontiersin.org

FIGURE 3

Identification and enrichment analysis of ISM and AS shared genes. (A) The venn diagram depicting the 61 shared genes of ISM and AS. The shared 
genes were displayed on the right labels. (B–D) GO analysis of shared genes (B, biological process; C, cellular component; D, molecular function). The 
top 10 enriched GO categories are visualized via a bar diagram. The X and Y axes represent the gene ratio and different ontologies. The color denotes 
the p-value. (E) KEGG analysis of shared genes. The top 20 enriched KEGG categories are visualized via bubble diagram. The X and Y axes represent the 
gene ratio and different ontologies. The circle size denotes gene count, whereas the color, p-value. (F) GSEA analysis of shared genes. Only two 
enriched GSEA categories of a p-value < 0.05 are visualized. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set 
Enrichment Analysis.
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95%CI: 0.639–0.919; CCR1, AUC = 0.786, 95%CI: 0.647–0.925; SPI1, 
AUC = 0.901, 95%CI: 0.809–0.994; in GSE28829, IL10RA, 
AUC = 0.918, 95%CI: 0.800–1.000; CCR1, AUC = 0.952, 95%CI: 0.857–
1.000; SPI1, AUC = 0.837, 95%CI: 0.670–1.000 (Figures  6E,F). 
Therefore, we finally identified IL10RA, CCR1, and SPI1 as diagnostic 
biomarkers. Moreover, to enhance the feasibility of clinical application, 
the 3 diagnostic markers were utilized to construct the nomogram 
(Figure 6G). In the nomogram, the expression level of each gene was 
scored accordingly, and the total score was used to predict the 
probability of AS. Finally, in the test and validation datasets of AS, the 
AUC of the nomogram was 0.931 (95% CI: 0.882–0.979) and 0.745 
(95% CI: 0.545–0.946), indicating satisfactory diagnostic efficacy 
(Figure 6H).

3.6 Immune cell infiltration analysis

Since the functional and pathway enrichment results of the shared 
genes indicated a potential link between inflammatory-immune with 
ISM-related AS, we analyzed the characteristics of 22 types of immune 
cells in AS samples using the CIBERSORT algorithm (Figure 7A). In 
particular, the proportions of B cells memory, T cells regulatory 
(Tregs), T cells gamma delta, Macrophages M0, and Mast cells 
activated were significantly increased in AS samples (all p < 0.05), 
while the proportions of B cells naive, plasma cells, T cells CD4 
memory resting, T cells CD4 memory activated, monocytes, 
macrophages M1, dendritic cells activated, and mast cells resting were 
significantly decreased (all p < 0.05) (Figure  7B). Moreover, 
we analyzed the correlation between gene expression of the three 

diagnostic biomarkers and the proportions of immune cell infiltration 
and found that the expression of IL10RA, CCR1, and SPI1 were all 
significantly positively correlated with the proportions of macrophages 
M0, T cells gamma delta, and mast cells activated (all p < 0.05) and 
negatively correlated with the proportions of T cells CD4 memory 
resting, monocytes, and macrophages M1 (all p < 0.05) (Figure 7C). 
The diagnostic biomarker genes had the highest correlation 
coefficients with macrophages M0 proportion (IL10RA, 0.758; CCR1, 
0.695; SPI1, 0.774). These results suggest that there may be important 
interactions between diagnostic biomarkers and various immune cells.

3.7 Identification of IL10RA, CCR1, and SPI1 
expression in AS plaques based on the 
scRNA-seq data

To more precisely describe the immune cell traits and identify 
the cell types with significant expression of IL10RA, CCR1, and SPI1 
in AS plaques, we  carried out bioinformatics analysis of the 
scRNA-seq dataset (GSE253903). After quality control, screening, 
normalization, and removal of batch effects from the raw data 
(Supplementary Figure S2A), we performed dimensionality reduction 
and clustering analysis based on gene expression profiles, and finally 
obtained a total of 17 cell clusters (Figure 8A). Then, cell annotations 
identified 11 cell types: common myeloid progenitor (CMP), 
neutrophil, monocyte, macrophage, myeloid dendritic cell (mDC), 
plasmacytoid dendritic cell (pDC), B cell, T cell, natural killer (NK) 
cell, endothelial cell, and smooth muscle cell (Figures 8B,C). Cell 
expression analysis of the diagnostic marker genes revealed that 

FIGURE 4

Protein–protein interaction (PPI) network construction and hub genes selection. (A) The PPI network shows the total interactions of the shared genes 
of ISM and AS. (B–E) Module 1–4. Filtering key interaction modules from PPI networks via the MOCDE algorithm. MOCDE, molecular complex 
detection.
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FIGURE 5

Identification of candidate diagnostic biomarkers for ISM-related AS by machine learning methods. (A,B) LASSO regression analysis was applied to 
screen diagnostic biomarkers based on the 7 hub genes. The hub genes with the minimum binominal deviance were identified as the most suitable 
candidate genes. (C,D) RF algorithm used to rank the importance of 7 Hub genes. The top 5 genes in the importance ranking graph (D) were identified 
as the most suitable candidate genes. (E) The Venn diagram depicting common candidate diagnostic markers of LASSO and RF. ISM, insomnia; AS, 
atherosclerosis; LASSO, least absolute shrinkage and selection operator; RF, random forest; AIF1, allograft inflammatory factor 1; IL10RA, interleukin 10 
receptor subunit alpha; CCR1, C-C motif chemokine receptor 1; SPI1, Spi-1 proto-oncogene.
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FIGURE 6

Validation of expression levels and assessment of the diagnostic value of candidate diagnostic biomarkers and nomogram establishment. 
(A) Expression comparison of 4 candidate biomarkers (AIF1, IL10RA, CCR1, and SPI1) in GSE100927. (B) The ROC curves of the candidate biomarkers in 
GSE100927. The AUCs and 95% CIs are displayed at the bottom. (C-D) Expression comparison of the candidate biomarkers in GSE208668 and 
GSE28829. (E,F) The ROC curves of 3 diagnostic biomarkers (IL10RA, CCR1, and SPI1) in GSE208668 and GSE28829. The AUCs and 95% CIs are 
displayed at the bottom. (G) The nomogram was established based on the diagnostic biomarkers. Each of the diagnostic biomarkers corresponds to a 
score. The total score of the biomarkers is used to predict the risk of AS in a population with ISM. (H) The ROC curve of the nomogram in AS datasets 
(GSE100927 and GSE28829). The AUC and 95% CI are displayed at the bottom. ISM, insomnia; AS, atherosclerosis; ROC, receiver operating 
characteristics curve; AUC, area under the curve; CI, confidence interval; AIF1, allograft inflammatory factor 1; IL10RA, interleukin 10 receptor subunit 
alpha; CCR1, C-C motif chemokine receptor 1; SPI1, Spi-1 proto-oncogene.
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IL10RA was mainly expressed in monocyte, mDC, pDC, B cell, T cell 
and NK cell, CCR1 in Monocyte and mDC, and SPI1 in CMP, 
neutrophil, monocyte, macrophage and mDC (Figures 8D,E). These 
results indicated that the diagnostic biomarker genes were 
predominantly expressed in immune cells in AS plaques, with CCR1 
and SPI1 expression especially clustered in myeloid immune cells.

4 Discussion

Existing studies have shown a potential link between ISM and AS 
(Pan et al., 2022; Sigurdardottir et al., 2023). Insomnia challenges the 
body’s immune system leading to a prolonged state of abnormal 
inflammatory activation (Irwin et al., 2016; Sang et al., 2023), and 
chronic inflammation is a key factor in the development of AS (Lawler 
et al., 2021). Currently, the causal relationship between ISM and AS 

cannot be established. Therefore, identifying the common features of 
these two disorders could help to explore the causal relationship 
between them and develop new effective diagnostic and preventive 
strategies. In this study, we explored the common disease pathways 
and diagnostic markers involved in ISM and AS using bioinformatic 
analysis, and found that aberrant activation of inflammatory-immune 
pathways might be  the potential mechanism for ISM-accelerated 
AS. More importantly, the 3 biomarkers closely related to 
inflammation and immunity (IL10RA, CCR1, and SPI1) were 
identified, and a nomogram was constructed, which demonstrated a 
satisfactory clinical predictive value. In addition, we found that the 
diagnostic biomarkers were strongly correlated with the infiltration of 
multiple immune cells and were predominantly expressed in immune 
cells in AS plaques, among which CCR1 and SPI1 were centrally 
expressed in myeloid immune cells. It provides insights to further 
explore the mechanism of ISM-accelerated AS.

FIGURE 7

Immune cell infiltration in atherosclerotic plaque from patients with AS. (A) The relative proportion of 22 types of immune cells in AS and control 
samples is shown as a column proportion diagram. (B) Box-plot of the proportion of 22 types of immune cells. *p  <  0.05, **p  <  0.01, ***p  <  0.001, ns 
p  ≥  0.05. (C) The correlation between 3 diagnostic biomarkers (IL10RA, CCR1, and SPI1) and the proportion of 22-type immune cells in AS is displayed 
as a heatmap. AS, atherosclerosis; IL10RA, interleukin 10 receptor subunit alpha; CCR1, C-C motif chemokine receptor 1; SPI1, Spi-1 proto-oncogene.
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FIGURE 8

Identification of IL10RA, CCR1, and SPI1 expression in AS plaque cells based on single-cell sequencing data (GSE253903). (A) The tSNE visualization of 
clustering revealing 17 cell clusters. (B) The tSNE visualization of the identification of 11 cell types from the 17 cell clusters. Cluster identities: 7, CMP; 11, 
Neutrophil; 2, Monocyte; 6, Macrophage; 10, mDC; 9, pDC; 5,14, B cell; 0,12,15, T cell; 1, NK cell; 3,4,8,13, Endothelial cell; 16, Smooth muscle cell. 
(C) The bubble plot of the top 3 marker genes for each cell cluster. (D) The tSNE visualization of the 3 diagnostic biomarker (IL10RA, CCR1, and SPI1) 
expression in cell clusters. (E) The violin plot of the 3 diagnostic biomarker expression in cell clusters. IL10RA, interleukin 10 receptor subunit alpha; 
CCR1, C-C motif chemokine receptor 1; SPI1, Spi-1 proto-oncogene; AS, atherosclerosis; CMP, common myeloid progenitor; mDC, myeloid dendritic 
cell; pDC, plasmacytoid dendritic cell; NK cell, natural killer cell; tSNE, t-Distributed Stochastic Neighbor Embedding.
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As the signaling cascade response representative and one of the 
central cellular communication nodes, the JAK–STAT signaling 
pathway contains more than 50 cytokines and growth factors, such as 
interferon, interleukin, colony-stimulating factors, hormones, etc. (Hu 
et al., 2021). This pathway can be involved in immune regulation, cell 
proliferation, differentiation and apoptosis, hematopoietic and tumor 
proliferation, and has been associated with the development of a variety 
of diseases, including inflammatory diseases, immune diseases, cancers, 
and hematological disorders (Philips et al., 2022). Recently, it was shown 
that sleep deprivation in rats activated the JAK–STAT signaling pathway, 
causing an inflammatory response and atrophy of the rat biting muscle 
(Gomes Galvani et al., 2021). Conversely, interventions that inhibit this 
pathway improved the activated inflammatory response in animal 
models of obstructive sleep apnea (Hsiao et al., 2024). In addition, the 
JAK–STAT signaling pathway is closely related to AS. Interferon-γ 
activates the JAK–STAT signaling pathway by interacting with Janus 
kinase 1 (JAK1) and JAK2 to result in AS (Boshuizen and de Winther, 
2015). Crucially, inhibitors of the JAK–STAT pathway ameliorate AS 
exacerbated by lipopolysaccharide, making it a potential therapeutic 
target (Hashimoto et al., 2020). Therefore, we believe that the JAK–
STAT signaling pathway may be a key bridge linking ISM and AS.

The interleukin 10 receptor subunit alpha (IL10RA) encodes the 
protein that is the receptor of interleukin 10 (IL-10), which mediates the 
immunosuppressive signaling of IL-10, thereby inhibiting the synthesis 
of pro-inflammatory cytokines (Sabat et al., 2010). Several studies have 
found that poor sleep quality (Yang et al., 2023) and sleep deprivation 
(Zhai et  al., 2021) were positively associated with the blood IL-10 
concentration, and chronic circadian dysregulation also increased IL-10 
(Wright et al., 2015). Similarly, IL10RA expression was upregulated in 
AS plaques of coronary and carotid arteries (Cagnin et  al., 2009). 
Increasing the concentration of IL-10 in vivo by delivering IL-10 mRNA 
drugs to exert the anti-inflammatory effects of IL10RA may be  a 
promising strategy for anti-AS therapy (Gao et al., 2023). C-C motif 
chemokine receptor 1 (CCR1) encodes a 7-transmembrane protein 
similar to the G protein-coupled receptor, which is expressed on a 
variety of immune cells and is involved in inflammatory signaling and 
leukocyte recruitment in inflammatory responses (Tsou et al., 1998; 
Horuk, 2001). There is limited evidence for a relationship between 
CCR1 and ISM, but genetic studies have found that a single-nucleotide 
polymorphism in CCR1 (rs3181077) was more prevalent in patients 
with early narcolepsy, which is a chronic neurologic sleep disorder 
(Ouyang et al., 2020). However, CCR1  in monocytes stimulated by 
platelet factor 4 (Fox et al., 2018) or C-C motif chemokine ligand 5 
(Jehle et al., 2018) causes monocytes to migrate and recruit on the 
vascular endothelium, promoting the vascular inflammatory response. 
This is critical in early plaque formation in AS. Therapeutic strategies 
targeting CCR1 and its associated chemokine pathways are also 
extremely potential in cardiovascular disease treatment (Márquez et al., 
2021). Spi-1 proto-oncogene (SPI1) encodes an ETS structural domain 
transcription factor, which regulates hematopoietic cell fate by directly 
controlling gene expression through the binding of gene regulatory 
elements, and is required for the later stages of myeloid and 
B-lymphocyte development (Pham et al., 2013). SPI1 exhibits a wide 
range of functional regulatory roles and has been associated with a 
variety of immune and inflammatory diseases (Fan et al., 2023; Liu et al., 
2023; Xie et  al., 2023). Remarkably, sufficient sleep also regulates 
hematopoiesis and prevents the development of AS (McAlpine et al., 
2019). In some studies, SPI1 has been predicted to be  a potential 

transcription factor for AS-related genes, intervening in AS by 
regulating gene expression (Cui et al., 2023; Zhang et al., 2023). In recent 
years, with the proposed atherogenesis theories of “clonal hematopoiesis” 
(Polizio et al., 2023) and “smooth muscle cell tumor-like changes” (Pan 
et al., 2024), the function and mechanism of SPI1 in the formation of 
AS deserves more intensive studies.

Mature atherosclerotic plaques contain a variety of immune cell 
types, among which myeloid cells (including monocytes, neutrophils, 
macrophages, mDCs, etc.) are key participants in atherosclerosis, and 
the alteration of the balance of pro- and anti-inflammatory myeloid 
cells in the arterial vessel wall is strongly related to the development 
of AS (Chistiakov et al., 2019; Vallejo et al., 2021). Hyperactivation of 
myeloid cells leads to reactivation of T cells and the production of 
large amounts of proatherosclerotic cytokines (Peshkova et al., 2017). 
It was found that knocking out certain specific genes in mouse 
myeloid cells significantly limited the inflammatory response and 
reduced the development of AS (Doddapattar et al., 2022; Singla et al., 
2022). Moreover, a mendelian randomization study found that 
immune cell characteristics of monocytes and mDCs were associated 
with an increased risk of insomnia (Han et al., 2024). Sleep loss affects 
the distribution of myeloid cell subsets and induces the development 
of inflammation and cell senescence (Liu et al., 2021). As such, it 
seems that immune cells, especially myeloid cells, may be an important 
mediator linking ISM and AS.

However, there are several limitations to our study. First, the 
diagnostic biomarkers we identified were derived from the analysis of 
arterial tissue samples, although they were mainly expressed in 
immune cells. For translation to clinical applications, expanded 
sample sizes and types are needed to further explore the expression of 
diagnostic markers in the various tissues, especially in blood samples. 
Second, although we suggested the potential pathways and validated 
the 3 diagnostic biomarkers, our study began with the analysis of the 
public data sets, and more basic and clinical experiments will 
be necessary to validate the results in the future.

5 Conclusion

Our study identified that the immune-inflammatory response has 
an important role in ISM-related AS. Three diagnostic biomarkers 
were identified by machine learning algorithms, and the nomogram 
was constructed to provide an early diagnosis of clinical 
ISM-associated AS in the clinic. In addition, the diagnostic biomarkers 
were strongly associated with the myeloid immune cells, suggesting 
potential therapeutic strategies.
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