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Introduction: Diffuse high-grade gliomas are the most common malignant adult 
neuroepithelial tumors in humans and a leading cause of cancer-related death 
worldwide. The advancement of high throughput transcriptome sequencing 
technology enables rapid and comprehensive acquisition of transcriptome data 
from target cells or tissues. This technology aids researchers in understanding 
and identifying critical therapeutic targets for the prognosis and treatment of 
diffuse high-grade glioma.

Methods: Spatial transcriptomics was conducted on two cases of isocitrate 
dehydrogenase (IDH) wild-type diffuse high-grade glioma (Glio-IDH-wt) and 
two cases of IDH-mutant diffuse high-grade glioma (Glio-IDH-mut). Gene 
set enrichment analysis and clustering analysis were employed to pinpoint 
differentially expressed genes (DEGs) involved in the progression of diffuse high-
grade gliomas. The spatial distribution of DEGs in the spatially defined regions 
of human glioma tissues was overlaid in the t-distributed stochastic neighbor 
embedding (t-SNE) plots.

Results: We identified a total of 10,693 DEGs, with 5,677 upregulated and 5,016 
downregulated, in spatially defined regions of diffuse high-grade gliomas. 
Specifically, SPP1, IGFBP2, CALD1, and TMSB4X exhibited high expression in 
carcinoma regions of both Glio-IDH-wt and Glio-IDH-mut, and 3 upregulated 
DEGs (SMOC1, APOE, and HIPK2) and 4 upregulated DEGs (PPP1CB, UBA52, 
S100A6, and CTSB) were only identified in tumor regions of Glio-IDH-wt and Glio-
IDH-mut, respectively. Moreover, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and gene ontology (GO) enrichment analyses revealed that upregulated 
DEGs were closely related to PI3K/Akt signaling pathway, virus infection, and 
cytokine-cytokine receptor interaction. Importantly, the expression of these 
DEGs was validated using GEPIA databases. Furthermore, the study identified 
spatial expression patterns of key regulatory genes, including those involved 
in protein post-translational modification and RNA binding protein-encoding 
genes, with spatially defined regions of diffuse high-grade glioma.

Discussion: Spatial transcriptome analysis is one of the breakthroughs in the 
field of medical biotechnology as this can map the analytes such as RNA 
information in their physical location in tissue sections. Our findings illuminate 
previously unexplored spatial expression profiles of key biomarkers in diffuse 
high-grade glioma, offering novel insight for the development of therapeutic 
strategies in glioma.
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1 Introduction

Diffuse high-grade gliomas are among the most aggressive 
primary brain tumors, characterized by invasive growth, rapid 
progress, incomplete resection challenges, frequent recurrence, and 
poor prognosis (Jo et al., 2023). Intratumoral heterogeneity poses 
the greatest obstacle in treating these tumors (Comba et al., 2021), 
influencing clinical presentation, treatment efficacy, sensitivity 
variations, and drug resistance. While multimodal treatment 
strategies, including surgical resection, radiotherapy, 
chemotherapy, targeted drug therapy, and supportive care (Luo 
et al., 2023), have improved patient prognosis, the median survival 
time remains a bleak 14.6 months (Zou et al., 2013). Therefore, 
identifying effective therapeutic targets is crucial to enhance 
patient outcomes.

Recent advancements in sequencing technologies have 
revolutionized tumor research (Nakagawa and Fujita, 2018). 
Biomarker studies, evolving from single-omics to multi-omics 
integration (encompassing genomics, transcriptomics, epigenetics, 
microbiome, metabolomics, proteomics, and radiomics), have 
enhanced diagnosis and prognostic capabilities across various cancers 
(Qi et al., 2020). Multi-omics approaches have revealed the immune 
response mechanisms in gliomas (Cheng et al., 2021; Johnson et al., 
2022), uncovering novel biomarkers for treatment response prediction 
and prognosis. High-throughput sequencing of gene expression 
profiles aids personalized treatment strategies (Goodwin et al., 2016), 
yes lack spatial cellular information crucial for understanding cell 
differentiation and interactions during tumorigenesis (Ståhl 
et al., 2016).

Spatial transcriptome sequencing, an emerging technique, 
integrates gene expression with cellular spatial information, offering 
new insight into tumor heterogeneity, microenvironment, and 
immunity of tumors (Du et  al., 2023; Wang X. et  al., 2023). For 
example, Berglund et  al. (2018) highlighted NR4A1 as highly 
expressed in the reactive stroma of prostate cancer sections. Wang 
F. et al. (2023), demonstrated the enrichment of MCAM+ fibroblasts 
in liver metastatic tumors using scRNA-seq combined with spatial 
transcriptomics, revealing their role in promoting CD8_CXCL13 cell 
generation via the Notch pathway, potentially accelerating liver 
metastatic colorectal cancer development. Spatial transcriptome 
sequencing also annotates tissue components, unveiling previously 
unexplored heterogeneity landscapes. Moreover, recent work 
integrating scRNA-seq with spatial transcriptomics across 16 
glioblastomas confirmed chemotactic attraction of cancer-associated 
fibroblasts (CAFs) toward glioblastoma stem cells (GSCs), wherein 
CAFs enriched GSCs via upregulation of osteopontin and hepatocyte 
growth factor (Jain et al., 2023). Similarly, another study showed that 
spatial transcriptomics revealed niche-specific enrichment and 
vulnerabilities of radial glial stem-like cells in malignant gliomas 
(Ren et  al., 2023). Zhao et  al. (2023) reported that combining 
scRNA-seq and spatial transcriptome identified BARD1 as a potential 
therapeutic target for glioblastoma patients. Of note, spatial 
transcriptomics can not only present an overall view of the immune 
microenvironment in glioma, but also be used to explore the dynamic 
development and spatial specificity of immune cells in the 
microenvironment (Buehler et al., 2023; Sun et al., 2023). Therefore, 
spatial transcriptome technology may help us to capture 

genome-wide readouts across biological tissue space and identify 
therapeutic biomarkers that may have prognostic significance 
in glioma.

In this study, we  utilize spatial transcriptome sequencing to 
delineate comprehensive spatial characteristics of diffuse high-grade 
glioma. Specifically, we  identify potential therapeutic targets from 
spatially defined regions of IDH wild-type and mutant high-grade 
glioma, validating these targets through public databases. Additionally, 
our analysis uncovers key regulatory genes in ubiquitination, RNA 
binding protein, and kinase influencing the spatial biology of high-
grade glioma. These findings provide potential targets for prognosis 
and precision therapy in glioma management.

2 Materials and methods

2.1 Sample information

Two formalin-fixed paraffin-embedded (FFPE) tissues of patients 
with IDH-wild-type diffuse high-grade glioma (Glio-IDH-wt) and two 
FFPE tissues of patients with IDH-mutant diffuse high-grade glioma 
(Glio-IDH-mut) were collected for further spatial transcriptome RNA 
sequencing. This study involving human FFPE samples was reviewed 
and approved by The Second Affiliated Hospital of Kunming Medical 
University (No: APPROVED-PJ-SCIENTIFIC-2024-71).

2.2 Spatial sequencing library preparation 
(FFPE-V2)

Formalin-fixed, paraffin-embedded (FFPE) samples passing the 
RNA quality control (DV200 > 30%) were used for spatial 
transcriptomic construction and sequencing. 5-micron thick sections 
were mounted onto a Visium Gene Expression slide (10X Genomics), 
baked at 42°C for 3 h, and dried in a desiccator at room temperature 
overnight. For deparaffinization, the slide was incubated at 60°C for 
2 h, immersed in xylene, and rehydrated in an ethanol gradient. 
Hematoxylin–eosin staining (H&E) staining was then performed using 
Mayer’s hematoxylin (Millipore Sigma), bluing reagent (Dako, Agilent), 
and alcoholic eosin (Millipore Sigma). Stained slides were scanned 
under a microscope, followed by decrosslinking using 0.1 N HCl and 
TE Buffer (pH 9.0) to release RNA that was sequestered by formalin. 
The stained slide was incubated with a Human whole transcriptome 
probe panel and then transferred to Cytassist (10X Genomics).

A human whole transcriptome probe panel (10X) that consisted of 
three pairs of specific probes (5′ containing Small RNA Read 2S and 3′ 
containing poly-A) for mostly genes was hybridized to RNA. Probe pairs 
were then ligated to seal the junctions between them and to form the 
single-stranded ligation products. The samples were treated with RNase 
and permeabilized to release the ligation products. A poly-A portion of 
the products was then captured by the poly (dT) regions of the capture 
probes percolated on the Visium slide that also includes an Illumina 
Read 1, spatial. Barcode, and unique molecular identifier (UMI). Probes 
were extended to produce spatially barcoded ligated probe products and 
released from the slide for indexing via Sample Index PCR and final 
library construction and sequencing. Visium Spatial Gene Expression 
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libraries consisted of Illuminapaired-end sequences flanked with P5/P7. 
The 16-bp Spatial Barcode and 12-bp UMI were encoded in Read 1, 
while Read 2S was used to sequence the ligated probe insert.

2.3 Sequencing data processing

After sequencing, raw fastq files, and bright field H&E images are 
processed by Space Ranger (version 2.1.0) to align to genome GRCh38 
(downloaded from 10× Genomics, version 2020-April). Expression 
matrices and spatial coordinate files generated by Space Ranger are 
used for the next analysis.

2.4 Normalization, integration, and 
clustering of spatial transcriptomic data

We used Seurat (Hao et  al., 2021) (version 4.3.0) to perform 
normalization, integration, and clustering. Expression matrices are 
read into the R environment, and a Seurat object is created for each 
sample. The expression count matrices are normalized using the Seurat 
function SCTransform with the parameter variable.features.n = 9,000, 
while leaving other parameters as default. Subsequently, we used the 
Seurat function FindClusters to cluster each sample and annotate them 
with H&E images. These four Seurat objects are integrated using the 
Seurat functions SelectIntegrationFeatures, PrepSCTIntegration, 
FindIntegrationAnchors, and IntegrateData.

For the function SelectIntegrationFeatures, we use the customized 
parameter nfeatures = 9,000. In FindIntegrationAnchors, we  set 
customized parameters normalization. Method = “SCT,” 
reduction = “rpca,” k.anchor = 4, and dims = 1:30. Similarly, in 
IntegrateData, we  set customized parameters normalization. 
Method = “SCT” and dims = 1:50. Other parameters are set as default. 
Finally, the function RunTSNE is used to perform dimension reduction.

2.5 Cell type identification by RCTD

We utilized RCTD (Cable et al., 2022) for cell type identification. 
Single-cell data are obtained from the Broad Institute with accession 
code SCP503 (Richards et al., 2021). Raw count data are input into 
RCTD and run with the parameter doublet_mode set to “doublet.”

2.6 Differentially expressed genes and 
enrichment analysis

To analyze the expression of DEGs between the tumor area and 
normal tissue adjacent to the tumor area (NAT) of Glio-IDH-wt and 
Glio-IDH-mut, we use the Seurat function FindMarkers to perform the 
Wilcox rank sum test between Glio-IDH-wt tumor cell densely 
populated area and Glio-IDH-mut tumor cell densely populated area 
against NAT. Genes with avg_log2FC > 1, p_val_adj < 0.05 and genes 
with avg_log2FC < −1, p_val_adj < 0.05 are used to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis with R package clusterProfiler (Wu et al., 
2021) (version 4.8.3) with function enrichGO and enrichKEGG. For 
Venn diagram showed in Figure 1B, we choose differentially expressed 

genes with p_val_adj < 0.05, avg_log2FC > 1 and pct.1 > pct.2. In our 
dataset, genes with significantly higher expression in tumor cell densely 
populated area compared to NAT were selected, as well as the increased 
level of genes in tumor tissues compared with normal tissues in the 
online database (GEPIA) (Tang et al., 2019). Meanwhile, the correlation 
between DEGs and overall survival were analyzed using GEPIA 
database. For differential expression analysis between Glio-IDH-wt and 
Glio-IDH-mut tumor area, we first remove spots from Normal tissue 
adjacent to the tumor area, blood vessel rich area, and junction area. 
Then Seurat function FindMarkers with parameter min.pct > 0.3 is used 
for analysis. Genes with avg_log2FC > 0.5, p_val_adj < 0.05, pct.1 > 0.3 
and pct.2 > 0.3 are used for GO enrichment analysis. Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2) data are downloaded and 
illustrated with the Python package GEPIA (version 0.3).

2.7 Module score analysis

For the gene module score, we  use the Seurat function 
AddModuleScore to calculate. The ubiquitin gene list is obtained from 
iUUCD (Zhou et al., 2018).1 The kinase gene list is downloaded from 
KLIFS (Kanev et  al., 2021).2 RNA binding protein gene lists are 
downloaded from previous studies (Wang et al., 2020). All gene lists 
used in this study are uploaded as Supplementary material.

3 Results

3.1 Spatial distribution profile of 
Glio-IDH-wt and Glio-IDH-mut

The spatial distribution profile of Glio-IDH-wt (n = 2) and Glio-
IDH-mut (n = 2) was analyzed using a structured workflow (Figure 2A). 
Each section’s spatial clustering was determined using hematoxylin and 
eosin staining and cell markers, with four samples categorized into 4 
distinct clusters through t-distributed stochastic neighbor embedding 
(tSNE) plots (Figures 2B,C). These clusters included blood vessel-rich 
area, tumor cell densely populated area, normal tissue adjacent to 
tumor area, and junction area. Additionally, biomarkers associated 
with glioma progression (TP53, EGFR, and FERMT1) and glioma stem 
cells (CD44, S100A4, and SOX2) were examined across different spatial 
regions of both Glio-IDH-wt and Glio-IDH-mut (Figure  2D). 
Specifically, TP53, CD44, and S100A4 were mainly enriched in the 
tumor area and blood vessel-rich area of Glio-IDH-wt, and tumor cell 
densely populated area of Glio-IDH-mut, EGFR was mainly enriched 
in tumor area of Glio-IDH-wt and junction area of Glio-IDH-mut, 
FERMT1 was mainly enriched in tumor cell densely populated area of 
Glio-IDH-wt and tumor area of Glio-IDH-mut, SOX2 was mainly 
enriched in tumor cell densely populated area of Glio-IDH-wt and 
tumor cell densely populated area and tumor area of Glio-IDH-mut, 
while these genes were not detected in normal tissue adjacent to tumor 
area of Glio-IDH-mut. In summary, the spatially defined region of four 
diffuse high-grade glioma samples is reasonable and reliable.

1 http://iuucd.biocuckoo.org/

2 https://klifs.net/
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FIGURE 1

Spatial Profile of Glio-IDH-wt and Glio-IDH-mut. (A) Workflow of glioblastoma sample collection, spatial transcriptomics experiment, and data analysis; 
(B) Spatial cluster identities of 4 glioblastoma samples, colored by spatial region (bottom); (C) tSNE plot of 4 glioblastoma samples, colored by spatial 

(Continued)
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3.2 Cell type analysis of spatially defined 
regions

To enhance the characterization of tissue heterogeneity in both 
Glio-IDH-wt and Glio-IDH-mut, we  performed a sub-clustering 
analysis of cell type across various spatial regions. As depicted in 
Figure 3, normal brain cells were primarily found in the normal tissue 
adjacent to the tumor area and junction area of Glio-IDH-mut, glioma 
cells were distributed in the tumor cell densely populated area, blood 
vessel-rich area, and tumor area of both Glio-IDH-wt and Glio-
IDH-mut, as well as the percentage of immune cells in the tumor cell 
densely populated area and tumor area of Glio-IDH-mut were higher 
than those in the Glio-IDH-wt.

3.3 Differentially expressed gene analysis of 
Glio-IDH-wt and Glio-IDH-mut

To address the lack of effective therapeutic targets for diffuse high-
grade glioma, we identified the expression profiles of DEGs in Glio-
IDH-wt and Glio-IDH-mut using the Seurat function FindMarkers 
and clustering package. Our analysis results showed that 6,759 DEGs 
(3,648 upregulated and 3,111 downregulated) in the cancerous tissues 
of Glio-IDH-wt (Supplementary Table S1). Conversely, a total of 7,435 
DEGs (4,113 upregulated and 3,322 downregulated) were identified 
in the cancerous tissues of Glio-IDH-mut compared to adjacent 
normal tissues (Figure 1A; Supplementary Table S2). Venn diagrams 
identified a total of 1,922 upregulated DEGs in spatially defined tumor 
regions of both Glio-IDH-wt and Glio-IDH-mut (Figure  1B). 
Meanwhile, a total of 1,491 DEGs were only enhanced in the umor 
regions of Glio-IDH-wt and 1,773 upregulated DEGs in tumor regions 
of Glio-IDH-mut. Additionally, tSNE plots showed that the 
upregulated DEGs were mainly distributed in the spatially defined 
tumor cell densely populated area of both Glio-IDH-wt and Glio-
IDH-mut (Figure  1C). Moreover, the top  3 upregulated DEGs 
(SMOC1, APOE, and HIPK2) of Glio-IDH-wt and the top  4 
upregulated DEGs of Glio-IDH-mut (PPP1CB, UBA52, S100A6, and 
CTSB) and both Glio-IDH-wt and Glio-IDH-mut (SPP1, IGFBP2, 
CALD1, and TMSB4X) in glioblastoma multiforme (GBM) and brain 
lower grade glioma (LGG) were evaluated using the GEPIA database 
(Supplementary Figure S1), and these upregulated DEGs showed 
significant correlations with overall survival (Supplementary Figure S2).

3.4 Biological pathway enrichment analysis 
of upregulated DEGs in Glio-IDH-wt and 
Glio-IDH-mut

Based on the above results, the main functional pathways and 
biological mechanisms by which DEGs play a critical role in the 
onset and progression of diffuse high-grade gliomas are the next 
major thing we  urgently need to understand, so we  performed 

KEGG analysis and GO analysis on this basis. KEGG enrichment 
analysis revealed that the upregulated DEGs in tumor areas of both 
Glio-IDH-wt and Glio-IDH-mut were mainly enriched in eight 
pathways, including PI3K/Akt signaling pathway, human 
papillomavirus infection, cytokine-cytokine receptor interaction, 
cytoskeleton in muscle cells, focal adhesion, human cytomegalovirus 
infection, regulation of actin cytoskeleton, and human T-cell 
leukemia virus 1 infection (Figure 4A). Meanwhile, the upregulated 
DEGs in tumor areas of Glio-IDH-mut were enriched in five 
pathways, including MAPK signaling pathway, tight junction, 
NOD-like receptor signaling pathway, protein processing in 
endoplasmic reticulum, and JAK–STAT signaling pathway, while five 
pathways were enriched in tumor areas of Glio-IDH-wt such as 
relaxin signaling pathway, staphylococcus aureus infection, endocrine 
resistance, melanoma, and cholesterol metabolism (Figure  4B). 
Additionally, GO enrichment analysis (biological process) revealed 
that these upregulated DEGs in both Glio-IDH-wt and Glio-
IDH-mut were mainly enriched in pathways such as positive 
regulation of cell adhesion, mononuclear cell differentiation, positive 
regulation of cytokine production, regulation of cell–cell adhesion, 
leukocyte cell–cell adhesion, cytokine-mediated signaling pathway, 
and epithelial cell proliferation (Figure 4C). For Glio-IDH-mut, the 
upregulated DEGs were enriched in biological pathways such as 
muscle system process, cell growth, response to oxidative stress, 
positive regulation of protein localization, and negative regulation 
of phosphorus metabolic process (Figure 4D). For Glio-IDH-wt, the 
upregulated DEGs were enriched in biological pathways including 
axonogenesis, cellular process involved in reproduction in 
multicellular organism, alcohol metabolic process, steroid metabolic 
process, organic acid biosynthetic process, and developmental 
maturation (Figure 4D).

3.5 Functional role of ubiquitination, RNA 
binding protein, and kinase in the 
progression of Glio-IDH-wt and 
Glio-IDH-mut

Protein post-translational modification, such as ubiquitination and 
phosphorylation, constitute essential molecular mechanisms influencing 
the malignant behaviors of cancer cells and are crucial in various tumor 
developments (Pan and Chen, 2022). Meanwhile, the advancement of 
proteomics and epigenetics has identified numerous RNA-binding 
proteins, offering potential therapeutic targets for glioma (Liu et al., 
2024). As expected, GO enrichment analysis illustrated the upregulated 
DEGs in tumor area of Glio-IDH-wt were mainly enriched in cell 
growth, response to oxidative stress, activation of immune response, 
response to decreased oxygen levels, DNA-binding transcription factor 
binding, intrinsic apoptotic signaling pathway, immune response-
regulating signaling, ubiquitin-like protein ligase binding, and negative 
regulation of phosphorylation compared with the Glio-IDH-mut group 
(Figure 5A; Supplementary Table S3). Combining the current research 

region (bottom) and Glio-IDH-wt and Glio-IDH-mut, respectively. Each point indicates one spot of spatial transcriptomics; (D) Expression pattern of 
glioblastoma marker genes (TP53, EGFR, and FERMT1) and glioblastoma stem cell (GSC) markers (CD44, S100A4, and SOX2).

FIGURE 1 (Continued)

https://doi.org/10.3389/fnmol.2024.1466302
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnmol.2024.1466302

Frontiers in Molecular Neuroscience 06 frontiersin.org

hotspots and our research interests, we decided to take the ubiquitination, 
RNA binding protein, and kinase as the emphasis of subsequent 
research. Correspondingly, tSNE plots illustrated heightened expression 
of key regulatory genes in ubiquitination and RNA binding proteins 
within spatially defined tumor regions of both Glio-IDH-wt and Glio-
IDH-mut (Figures 5B,C) Conversely, the expression of key regulatory 
genes in kinase was enhanced in the normal tissue adjacent to the glioma 
tumor. Moreover, the gene lists associated with ubiquitination, RNA 
binding protein, and kinase were shown in Supplementary Table S4. 
These findings suggested that aberrant protein post-translational 
modification and dysregulation of RNA-binding proteins play an 
important role in the progression of diffuse high-grade gliomas.

4 Discussion

High-throughput sequencing of cancer patient gene expression 
can significantly enhance personalized and precise treatment 
strategies for clinicians (Morganti et al., 2019). Most current studies 
primarily focus on identifying overall gene expression differences 
between cancerous tissues and adjacent non-tumor tissues, lacking 

spatial information on complex tissue structures that could 
elucidate spatial specificity in gene expression (Marx, 2021). The 
landscape of tumor research has been transformed by advancements 
in sequencing techniques, yet conventional methods fail to 
integrate gene expression data with spatial cellular information. In 
contrast, spatial transcriptome sequencing, an emerging sequencing 
technique distinct from RNA-sequencing (RNA-seq) and single-
cell RNA-seq (scRNA-seq), provides spatial context to gene 
expression data, offering insights into cellular positional 
relationship with tissue sections (Burgess, 2019; Wagner et  al., 
2019). In this study, spatial transcriptomic technology was 
employed to explore spatial heterogeneity in diffuse high-grade 
gliomas, characterizing their spatial features and comparing key 
DEGs between Glio-IDH-mut and Glio-IDH-wt, as well as within 
the tumors.

Our study identified 5,677 upregulated and 5,016 downregulated 
DEGs between tumor and non-tumor tissues of diffuse high-grade 
gliomas, highlighting notable upregulated genes such as SMOC1, 
APOE, HIPK2, PPP1CB, UBA52, S100A6, CTSB, SPP1, IGFBP2, 
CALD1, and TMSB4X. Previous studies have validated that these 
upregulated DEGs, except for SMOC1 and UBA52, were associated 

FIGURE 2

Cell type identification with RCTD. (A) tSNE plot colored by cell type weights of normal brain cells (left), tumor cells (middle), and immune cells (right); 
(B) Ridge plot of cell type weights of normal brain cells (left), tumor cells (middle), and immune cells (right), grouped by spatial region.
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FIGURE 3

Identification of differentially expressed genes (DEGs) and their related pathways in both Glio-IDH-wt and Glio-IDH-mut. (A) Volcano plot showing DEGs 
between tumor area and normal tissue adjacent to the tumor area. Genes with average log2(Fold change) > 1 and adjusted p-value < 0.01 have higher 
expression levels in the tumor area and are colored with red in the volcano plot. Genes with average log2(Fold change) < −1 and adjusted p-value < 0.01 have 
higher expression levels in normal tissue adjacent to the tumor area and colored with blue in the volcano plot; (B) A Venn diagram of upregulated DEGs in 
tumor tissues of both Glio-IDH-wt and Glio-IDH-mut; (C) tSNE plot of upregulated DEGs in spatially defined region of both Glio-IDH-wt and Glio-IDH-mut.
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FIGURE 4

Spatial and functional characterization of DEGs in Glio-IDH-wt and Glio-IDH-mut. Dot plot of enriched KEGG (A,B) and GO (C,D) terms for upregulated 
DEGs in tumor area of Glio-IDH-wt and Glio-IDH-mut. Genes with avg_log2FC  >  1, p_val_adj  <  0.05 and genes with avg_log2FC  <  −1, p_val_adj  <  0.05 
are used to perform GO and KEGG enrichment analysis.
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with poor prognosis in malignant tumors and presented limited 
treatment options (Zhang et al., 2014; Abdulla et al., 2017; An et al., 
2021; Hu et al., 2021; Liu et al., 2021; Lin et al., 2022; Conte et al., 2023; 
Zhang Z. et al., 2024; Zhang X. et al., 2024). In gliomas, SMOC1 (Wang 
J. et al., 2021), S100A6 (Hong et al., 2023), CTSB (Ma et al., 2022), 
SPP1 (Chen et al., 2019), and IGFBP2 (Moore et al., 2009) serve as a 
potential therapeutic target in glioma. Similarly, APOE-mediated lipid 
transport may represent a new therapeutic target in brain tumors 
(Nicoll et al., 2003). Sardina et al. (2023) summarized that HIPK2 may 

serve as a therapeutic target and diagnostic or prognostic marker in 
neurological disorders. PPP1CB has been shown to serve as an 
oncogene in high-grade glioma by activating the Ras-ERK, JAK3-
STAT3, and PI3K-Akt pathways (Chiarle et al., 2008; Aghajan et al., 
2016). UBA52, one of the genes associated with ubiquitin, encodes a 
fusion protein consisting of ubiquitin at the N-terminus and ribosomal 
protein L40 at the C-terminus (Dubois et al., 2020; Cockram et al., 
2021), which has been reported to contribute to the development and 
progression of various tumors, including colorectal cancer (Zhou 

FIGURE 5

Spatial transcriptomics resolves the key regulatory genes in ubiquitination, RNA binding protein, and kinase in Glio-IDH-wt and Glio-IDH-mut. (A) GO 
enrichment of genes which upregulating in IDH wildtype tumor areas, compared to IDH mutant tumor areas; (B) tSNE plot colored by the gene 
module ubiquitin, RBP, and kinase, grouped by spatial region; (C) Spatial map of gene module scores for ubiquitin, RBP, and kinases.
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et al., 2019) and non-small cell lung cancer (Wang et al., 2019). Other 
studies have demonstrated that S100A6 (Qi et al., 2023), CTSB (Zhang 
et  al., 2020), and CALD1 (Ma et  al., 2024) have been proven to 
promote cancer cell malignant phenotypes, such as proliferation, 
migration, invasion, and epithelial-mesenchymal transition. 
Numerous studies have proved that SPP1-positive macrophages act as 
metastasis accelerators that promote tumor progression (Liu et al., 
2023; Du et al., 2024). A recent study showed that cancer-associated 
fibroblast-associated gene IGFBP2 facilitated glioma progression by 
activation of M2 macrophage polarization (Zhang X. et al., 2024). 
However, the functional role of SMOC1, APOE, HIPK2, UBA52, 
S100A6, CTSB, SPP1, IGFBP2, CALD1, and TMSB4X in the onset and 
progression of diffuse high-grade glioma remains unclear.

Exiting studies have linked aberrant activation of the PI3K/
Akt pathway (Barzegar Behrooz et  al., 2022), human 
papillomavirus infection (Limam et al., 2020), cytokine-cytokine 
receptor interaction (Wang J. J. et al., 2021), and human T-cell 
leukemia virus 1 infection (Jin et  al., 2006) with glioma 
development and progression. In our analysis, we observed similar 
results, where upregulated DEGs in tumor regions of both Glio-
IDH-wt and Glio-IDH-mut exhibited enrichment in pathways 
such as PI3K/Akt, human papillomavirus infection, cytokine-
cytokine receptor interaction, human T-cell leukemia virus 1 
infection, cytoskeleton in muscle cells, focal adhesion, human 
cytomegalovirus infection, regulation of actin cytoskeleton, and 
human T-cell leukemia virus 1 infection. Meanwhile, the 
upregulated DEGs of Glio-IDH-mut were mainly enriched in 
“MAPK signaling pathway,” “tight junction,” “NOD-like receptor 
signaling pathway,” “protein processing in endoplasmic reticulum,” 
and “JAK–STAT signaling pathway.” Previous studies have proved 
that activation of the MAPK pathway (Pan et  al., 2023), 
endoplasmic reticulum stress (Markouli et al., 2020), NOD-like 
receptor pathway (Chen et  al., 2024), and JAK–STAT pathway 
(Zhang et al., 2019) accelerated glioma progression. Our results 
also showed that the enrichment analysis results of upregulated 
DEGs of Glio-IDH-wt were mainly enriched in the relaxin 
signaling pathway, staphylococcus aureus infection, endocrine 
resistance, melanoma, and cholesterol metabolism. Several studies 
have proved that the relaxin pathway may serve as a potential 
therapeutic approach to control malignant tumors (Neschadim 
et al., 2015; Klonisch et al., 2017). Cuervo et al. (2010) found that 
staphylococcus aureus infection may increase mortality in cancer 
patients. Wang T. et al. (2023), reported that cholesterol transport 
served as a novel potential target pathway for IDH-mut glioma. 
Moreover, GO analysis revealed that the upregulated DEGs of 
both Glio-IDH-wt and Glio-IDH-mut were related to positive 
regulation of cell adhesion, mononuclear cell differentiation, 
positive regulation of cytokine production, regulation of cell–cell 
adhesion, epithelial cell proliferation, and so on, which is 
consistent with the former studies (Wu et al., 2019). Furthermore, 
GO analysis found that axonogenesis, cellular process involved in 
reproduction in multicellular organism, alcohol metabolic 
process, steroid metabolic process, organic acid biosynthetic 
process, and developmental maturation were enriched in Glio-
IDH-wt, whereas Glio-IDH-mut showed enrichments of muscle 
system process, cell growth, response to oxidative stress, positive 
regulation of protein localization, and negative regulation of 
phosphorus metabolic process. The above results indicated that 

these DEGs play a crucial role in the development and progression 
of diffuse high-grade gliomas.

Post-translational modification of proteins is a crucial regulatory 
mechanism that alters their physical and chemical properties, 
conformation, and binding ability of proteins, thus affecting their 
activity, stability, and function (Su et al., 2017). Research on protein 
post-translational modification in malignant tumors, such as glioma, 
currently emphasizes on phosphorylation, ubiquitination, 
glycosylation, and acetylation. These modifications regulate protein 
function, modulate signaling pathways, and impact downstream gene 
expression, affecting cancer cell proliferation, invasion, apoptosis, 
drug resistance, and chemotherapy sensitivity (Han et al., 2018; Cao 
and Yan, 2020). Moreover, protein post-translational modification is 
a significant focus in epigenetic research, and recent studies highlight 
its relevance to glioma pathogenesis, offering diagnostic and 
therapeutic targets (Pienkowski et al., 2023). Our study reveals that 
key regulatory genes involved in ubiquitination and RNA binding 
protein were highly expressed in spatially defined tumor regions of 
both Glio-IDH-wt and Glio-IDH-mut, while key regulatory genes in 
kinase were predominantly enhanced in adjacent normal tissue. 
We  identified the top  6 key regulatory genes in ubiquitination 
(TRIM54, PPARG, KLHL35, DNAI1, WDR78, and CORO1A), RNA 
binding protein (ENO2, LGls3, HSP90AA1, HSPA1B, and HK2), and 
kinase (KALRN, LRRK1, MET, PDK1, PET, and TRIB3). Notably, 
these genes, such as PPARG, HK2, and PDK1, play critical roles in the 
regulation of aerobic glycolysis in cancer cells, which is associated with 
the IDH phenotype in GBM cells (Strickland and Stoll, 2017; Dong 
et al., 2023; Venneti et al., 2023).

In conclusion, our systematic investigation of spatially distributed 
DEGs in diffuse high-grade gliomas identified 10 key genes and their 
associated signaling pathways. These findings are supported by 
existing literature and databases linking these differential genes to 
malignant tumor progression. This study contributes to the 
development of personalized treatment strategies for diffuse high-
grade gliomas. However, the functional role and underlying 
mechanism of SMOC1, HIPK2, UBA52, S100A6, PPP1CB, CALD1, 
and TMSB4X in the occurrence and development of diffuse high-
grade gliomas was still unknown. This is also the main point of our 
future research.
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