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Objective: This study aims to systematically evaluate the efficacy of bone 
marrow mesenchymal stem cell-derived exosomes (BMSCs-Exo) in improving 
spinal cord injury (SCI) to mitigate the risk of translational discrepancies from 
animal experiments to clinical applications.

Methods: We conducted a comprehensive literature search up to March 2024 
using PubMed, Embase, Web of Science, and Scopus databases. Two researchers 
independently screened the literature, extracted data, and assessed the quality 
of the studies. Data analysis was performed using STATA16 software.

Results: A total of 30 studies were included. The results indicated that BMSCs-
Exo significantly improved the BBB score in SCI rats (WMD  =  3.47, 95% CI 
[3.31, 3.63]), inhibited the expression of the pro-inflammatory cytokine TNF-
α (SMD  =  -3.12, 95% CI [−3.57, −2.67]), and promoted the expression of anti-
inflammatory cytokines IL-10 (SMD  =  2.76, 95% CI [1.88, 3.63]) and TGF-β 
(SMD  =  3.89, 95% CI [3.02, 4.76]). Additionally, BMSCs-Exo significantly reduced 
apoptosis levels (SMD  =  −4.52, 95% CI [−5.14, −3.89]), promoted the expression 
of axonal regeneration markers NeuN cells/field (SMD  =  3.54, 95% CI [2.65, 
4.42]), NF200 (SMD  =  4.88, 95% CI [3.70, 6.05]), and the number of Nissl bodies 
(SMD  =  1.89, 95% CI [1.13, 2.65]), and decreased the expression of astrogliosis 
marker GFAP (SMD  =  −5.15, 95% CI [−6.47, −3.82]). The heterogeneity among 
studies was primarily due to variations in BMSCs-Exo transplantation doses, with 
efficacy increasing with higher doses.

Conclusion: BMSCs-Exo significantly improved motor function in SCI rats by 
modulating inflammatory responses, reducing apoptosis, inhibiting astrogliosis, 
and promoting axonal regeneration. However, the presence of selection, 
performance, and detection biases in current animal experiments may 
undermine the quality of evidence in this study.
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1 Background

Spinal cord injury (SCI) is one of the most severe neurological 
disorders, with over 27 million individuals affected worldwide and a 
continually increasing disease burden (GBD 2016 Neurology 
Collaborators, 2019). Following a primary traumatic event, secondary 
injury events ensue, including but not limited to ischemia, 
hemorrhage, blood-spinal cord barrier disruption, edema, and 
oxidative stress. These factors accelerate neuronal necrosis and axonal 
degeneration (Aslan et al., 2009; Haque et al., 2017; Anjum et al., 
2020). Current treatments for SCI primarily involve surgery, 
medication, hyperbaric oxygen therapy, and physical therapy (Flack 
et al., 2022). However, due to poor plasticity of the central nervous 
system and the limited regenerative capacity of neurons, no effective 
treatments can fully restore neurological function after injury (de 
Almeida et  al., 2023). Consequently, exploring new therapeutic 
approaches is of paramount importance.

In recent years, mesenchymal stem cells (MSCs) have garnered 
significant attention due to their multidirectional differentiation 
potential, low immunogenicity, of isolation and expansion, and 
paracrine potential (Vismara et al., 2017; He et al., 2021). MSCs exert 
therapeutic effects by mitigating blood-spinal cord barrier damage 
and neuronal apoptosis, promoting angiogenesis and axonal 
regeneration, and inhibiting astrogliosis and inflammatory responses 
(O'Shea et al., 2017; Lv et al., 2021). However, further research has 
revealed several limitations of MSCs, including limited targeting 
ability, low transplant survival rates, immune rejection, genetic 
variation, involvement in tumor formation, and ethical concerns 
(Herberts et al., 2011; Liu et al., 2019; Andrzejewska et al., 2021; Shang 
et al., 2022b). Additionally, the proliferation of glial cells forming scars 
hinders the integration, differentiation, and axonal growth of MSCs 
in the lesioned area (Clifford et al., 2023; Huang et al., 2023). Recent 
evidence increasingly suggests that the therapeutic effects of MSCs are 
primarily due to the release of trophic factors through paracrine 
mechanisms, particularly exosomes, which promote neural 
regeneration by modulating the inflammatory microenvironment 
rather than by differentiating and replacing lost cells at the injury site 
(Maldonado-Lasunción et al., 2018; Liau et al., 2020). Key signaling 
pathways such as MyD88/TRAF6 and IRF5, extracellular matrix 
components (e.g., type IV collagen, fibronectin, laminin), and 
molecules like STAT3 and PTEN also play significant roles. These 
molecules and pathways collectively participate in the various 
mechanisms by which exosomes contribute to SCI repair (Li D. et al., 
2018; Chang et al., 2021; Fan et al., 2021). Exosomes offer similar 
therapeutic benefits to direct MSC transplantation without eliciting 
multiple adverse reactions, making them a potential substitute for 
stem cell transplantation (Zhang et  al., 2018; Xian et  al., 2019). 
Compared to MSCs, MSC-derived exosomes (MSCs-Exo) possess 
unique advantages, including the inability to self-replicate (thus 
reducing tumorigenic risk), nano-scale size facilitating blood–brain 
barrier penetration, high biocompatibility and low immunogenicity, 
widespread availability, ease of isolation and storage, and engineering 
capabilities. These features make MSCs-Exo more effective than MSCs 
in repairing SCI (Phinney and Pittenger, 2017; Zhang et al., 2019; Guy 
and Offen, 2020; Milbank et al., 2021; Watanabe et al., 2021; Zhuang 
et al., 2021).

Currently, BMSCs-Exo is a key focus in spinal cord injury (SCI) 
repair research and has been extensively studied in animal models of 

SCI. However, there is a lack of systematic reviews/meta-analyses 
(SRs/MAs) summarizing its therapeutic effects. Therefore, this study 
aims to comprehensively investigate the role of BMSCs-Exo in SCI 
repair through SRs/MAs, providing the latest evidence for future 
research and clinical translation.

2 Materials and methods

This study follows the PRISMA 2020 guidelines, a set of 
reporting standards for systematic reviews and meta-analyses, 
which include a 27-item checklist and a flow diagram designed to 
enhance the transparency and reporting quality of the research, 
ensuring the reliability of the results. The study protocol has been 
registered on the PROSPERO website (www.crd.york.ac.uk/
PROSPERO/, CRD42024531749). The registration process included 
creating an account, filling out a form with detailed information on 
the study’s title and methods, uploading relevant documents, 
submitting for review, and obtaining a unique registration number 
to ensure transparency and reproducibility. Additionally, this study 
established detailed inclusion and exclusion criteria based on the 
PICOS (Population, Intervention, Comparison, Outcome, Study 
design) principles, as outlined below.

2.1 Inclusion/exclusion criteria

2.1.1 Study subjects
The inclusion criteria encompass rat models of SCI, without 

restriction on the breed of the animal or the method of injury 
induction. Rats are the most commonly used animal models for SCI 
due to their injury and repair mechanisms being more similar to 
humans, standardized modeling procedures, and lower costs (Kjell 
and Olson, 2016).

2.1.2 Interventions
The intervention includes exosomes derived from BMSCs, with 

no restrictions on the route of administration or dosage of 
the exosomes.

2.1.3 Control measures
Administer the same volume of saline or phosphate-buffered 

saline as given to the experimental group, or simply perform the 
modeling without administering any medication.

2.1.4 Outcome measures
 1) Basso-Beattie-Bresnahan (BBB) locomotor function score: The 

BBB score is a standard scale widely used to assess the degree 
of motor function recovery in SCI rats, ranging from 0 
(complete paralysis) to 21 (normal function) (Basso 
et al., 1996).

 2) Inflammatory response: Evaluation of the expression levels of 
pro-inflammatory factors TNF-α and anti-inflammatory 
factors IL-10 and TGF-β.

 3) Apoptosis levels: Detection of the extent of apoptosis in spinal 
cord tissue using TUNEL staining.

 4) Neuroregeneration and astrogliosis: Assessment of 
neuroregeneration-related markers (such as NeuN, NF200, and 
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Nissl body counts) and astrogliosis-related markers (such 
as GFAP).

2.1.5 Study type
Inclusion of randomized controlled trials, without restriction on 

whether allocation concealment or blinding was implemented.

2.2 Data sources

Under the guidance of experienced librarians, PubMed, Embase, 
Web of Science, and Scopus databases were searched using a 
combination of subject terms and free terms. The search period 
ranged from the inception of the databases to March 2024. The search 
terms used were as follows: “bone marrow mesenchymal stem cell*” 
OR “BMSCs” OR (“bone” AND “mesenchymal stem cells”) AND 
(“exosome*” OR “exosomes” OR “exosomal” OR “extracellular vesicle” 
OR “extracellular vesicles” OR “extracellular particle” OR “extracellular 
particles” OR “microvesicle” OR “microvesicles” OR “Shedding 
Microvesicle” OR “Shedding Microvesicles” OR “Secretory Vesicle” 
OR “Secretory Vesicles” OR “Cell-Derived Microparticle” OR “Cell-
Derived Microparticles” OR “microbubble” OR “microbubbles” OR 
“apoptotic body” OR “apoptosis bodies”) AND (“Spinal cord injury” 
OR “Spinal injury” OR “Spinal Cord Trauma” OR “Spinal Cord 
Transection” OR “Spinal Cord Laceration” OR “Post-Traumatic 
Myelopathy” OR “Spinal Cord Contusion”). The detailed search 
process for each database is provided in Supplementary Table S1.

2.3 Literature screening and data extraction

Two trained researchers independently screened the literature and 
extracted data according to the inclusion/exclusion criteria, with 
cross-verification. If two researchers have a disagreement regarding 
the inclusion/exclusion of a particular study or the extraction of 
certain information, a third researcher will assist in making the final 
judgment. Initially, researchers reviewed titles and abstracts to 
preliminarily select literature that met the inclusion criteria, followed 
by full-text retrieval for further confirmation. Information was then 
extracted based on a pre-designed data extraction form, including the 
following: 1) Basic characteristics of included studies: Author, 
publication year, country, study type, species of rats, gender, weight, 
age, sample size of experimental and control groups, model type, 
source of exosomes, diameter, transplantation route, and 
transplantation dosage. 2) Outcome measures: BBB score, 
inflammatory response, apoptosis levels, neuroregeneration, and 
astrogliosis. 3) Key elements for assessing risk of bias.

2.4 Risk of bias assessment

Two trained researchers independently assessed the risk of bias in 
the included studies using the SYRCLE risk of bias tool for animal 
studies. This tool is an assessment tool specifically designed for animal 
studies to systematically evaluate the risk of bias within the research. 
It covers ten domains across six aspects: selection bias, performance 
bias, detection bias, attrition bias, reporting bias, and other biases. 

These items help determine whether there are biases in the study’s 
design and implementation, thereby enhancing the reliability and 
reproducibility of animal experiments (Hooijmans et al., 2014). Each 
researcher conducted their assessments independently, followed by 
cross-verification. Disagreements were resolved through discussion or 
by consulting a third party. The assessment results were categorized as 
“Yes,” “No,” or “Unclear,” corresponding to “low,” “high,” and 
“uncertain” risk of bias, respectively.

2.5 Statistical analysis

Statistical analyses were performed using STATA 16 software. The 
principle of performing a Meta-analysis in STATA software involves 
using the “meta” or “metan” command to combine the effect sizes and 
standard errors from multiple independent studies. By applying either 
a fixed-effects model or a random-effects model, it assesses the pooled 
effect size. It also utilizes heterogeneity tests (such as Q statistics and 
I2) and visual tools like forest plots to provide a comprehensive 
conclusion on a specific issue. When a particular outcome measure is 
reported in different studies, STATA software integrates these results 
to derive the final effect size. As all outcome measures were continuous 
variables, meta-analyses were conducted using standardized mean 
difference (SMD) or weighted mean difference (WMD). The specific 
approach depended on the consistency of measurement methods and 
reporting standards across studies.

 1) BBB score: Due to consistent measurement methods and 
reporting standards, WMD was used for meta-analysis.

 2) Inflammatory response: The methods for measuring outcome 
indicators vary, including ELISA, WB, and qPCR; thus, SMD 
was employed for the meta-analysis.

 3) Apoptosis levels: Despite all studies using TUNEL staining, the 
reporting methods varied (e.g., number of apoptotic cells vs. 
percentage), so SMD was used for meta-analysis.

 4) Neuroregeneration and astrogliosis: Due to varied measurement 
methods (e.g., immunohistochemistry, immunofluorescence 
staining, WB, HE staining), SMD was used for meta-analysis.

Heterogeneity among study results was assessed using the χ2 test 
and quantified with the I2 statistic. If I2 < 50% and p > 0.05, indicating 
acceptable heterogeneity, a fixed-effects model was used for meta-
analysis. Otherwise, subgroup or sensitivity analyses were conducted 
to explore sources of heterogeneity. If heterogeneity could not 
be resolved, a random-effects model was used. The significance level 
was set at α = 0.05.

3 Results

3.1 Literature search results

A preliminary search identified 449 animal studies on BMSCs-Exo 
treatment for SCI. After removing 198 duplicate records, 251 articles 
remained. A preliminary screening of titles and abstracts led to the 
exclusion of 195 articles that did not meet the inclusion criteria. The 
full texts of the remaining 56 articles were then reviewed in detail, 
resulting in the inclusion of 30 studies that met the standards (Huang 
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et al., 2017; Wang et al., 2018; Li et al., 2019; Liu et al., 2019; Lu et al., 
2019; Yu et al., 2019; Zhao et al., 2019; Zhou et al., 2019; Gu et al., 
2020; Li et al., 2020; Chang et al., 2021; Chen et al., 2021; Cheng et al., 
2021; Han et al., 2021; Huang et al., 2021; Luo et al., 2021; Nakazaki 
et al., 2021; Nie and Jiang, 2021; Zhang et al., 2021; Jia et al., 2021a,b; 
He et al., 2022; Wang et al., 2022; Zhou et al., 2022; Lu et al., 2023; 
Nakazaki et al., 2023; Shao et al., 2023; Liang et al., 2024; Tang et al., 
2024; Yang et al., 2024). The literature screening process is illustrated 
in Figure 1.

3.2 Basic information of included studies

All 30 included studies were randomized controlled trials, 
published between 2017 and 2024. The species of rats used included 
Sprague–Dawley rats (25 studies) and Wistar rats (5 studies). Sixteen 
studies used male rats, nine used female rats, and five did not report 
the sex of the rats. The rats’ weights ranged from 150 g to 260 g, with 
seven studies not reporting the weights. The ages of the rats ranged 
from 6 to 12 weeks, with seven studies not reporting the ages. Sample 

sizes ranged from 8 to 80 rats. The SCI was located at the T10 segment 
in all studies. Of these, 26 studies used a spinal cord contusion model, 
2 used a spinal cord hemisection model, 1 used a spinal cord 
compression model, and 1 used a spinal cord transection model. 
BMSCs were all derived from allogeneic rat bone marrow tissue. The 
diameter of exosomes ranged from 20 to 200 nm, with nine studies 
not reporting the diameter. Exosome transplantation routes included 
tail vein injection (26 studies), intrathecal injection (2 studies), 
subdural transplantation (1 study), and hydrogel-loaded implantation 
at the lesion site (1 study). Exosome transplantation doses ranged 
from 100 to 200 μg, with three studies not reporting the dosage. The 
basic information of the included studies is detailed in Table 1.

3.3 Risk of bias assessment results

Although all 30 included studies were randomized controlled 
trials, only one study explicitly reported the specific method of 
randomization (random number table), while the remaining 29 
studies did not clarify their randomization methods. Eighteen studies 

FIGURE 1

Flowchart of literature screening.
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reported similar baseline characteristics, such as sex, weight, and age 
of the rats. None of the studies explicitly reported whether blinding 
was implemented for animal caretakers and/or researchers. However, 
21 studies reported randomizing the placement of animals during the 
experiment. Only three studies randomly selected animals for 
outcome assessment, while 22 studies employed blinding during the 
measurement or evaluation of outcomes. No animals died or were lost 
during the modeling and treatment periods. Although study protocols 
were not available, all studies clearly reported their expected 
outcomes. The results of the risk of bias assessment are detailed in 
Figure 2.

3.4 Meta-analysis results

3.4.1 BBB scores
All 30 studies reported BBB scores. The fixed-effect model meta-

analysis indicated that rats in the BMSCs-Exo group had significantly 
higher BBB scores compared to the placebo group (WMD = 3.47, 95% 
CI [3.31, 3.63]), suggesting that BMSCs-Exo significantly improve motor 
function in rats with SCI. However, the I-squared value was 80.9% and 
p = 0, indicating substantial heterogeneity among the studies. Therefore, 
we performed a subgroup analysis based on exosome transplantation 
dose. We categorized the doses into four groups: 100 μg, 120 μg, 200 μg, 
and an unreported dose group. The subgroup analysis showed a 
significant reduction in heterogeneity, with I-squared values in all 
subgroups falling below 50%, suggesting that exosome transplantation 
dose was the primary source of heterogeneity. Additionally, the subgroup 
analysis revealed a positive correlation between the exosome 
transplantation dose and BBB scores, as shown in Figure 3.

3.4.2 Inflammatory response
A total of 14 studies reported the expression levels of TNF-α. The 

fixed-effect model meta-analysis showed that the BMSCs-Exo group 
had significantly lower TNF-α expression levels compared to the 
placebo group (SMD = −3.12, 95% CI [−3.57, −2.67]), indicating that 
BMSCs-Exo significantly inhibited the expression of pro-inflammatory 
factors (the overall meta-analysis results are not shown in Figure 4). 
Due to the high heterogeneity among the studies (I-squared = 75.3%, 
p = 0.032), we conducted a subgroup analysis based on the exosome 
transplantation dose. The subgroup analysis showed that heterogeneity 
was significantly reduced, with I-squared values in all subgroups being 
below 50%, indicating that the exosome transplantation dose was the 
primary source of heterogeneity. Furthermore, the subgroup analysis 
showed that as the exosome transplantation dose increased, the 
expression levels of TNF-α in rats gradually decreased, as shown in 
Figure 4.

Five studies reported the expression levels of IL-10 and TGF-β. The 
meta-analysis results indicated that compared to the placebo group, the 
BMSCs-Exo group had significantly higher expression levels of IL-10 
(SMD = 2.76, 95% CI [1.88, 3.63]) and TGF-β (SMD = 3.89, 95% CI [3.02, 
4.76]), suggesting that BMSCs-Exo significantly promoted the expression 
of anti-inflammatory factors post-SCI. See Figure 4 for details.

3.4.3 Apoptosis levels
A total of 14 studies reported the levels of apoptosis in SCI tissue. 

The fixed-effect model meta-analysis showed that the BMSCs-Exo 
group had significantly lower levels of apoptosis compared to the 

placebo group (SMD = −4.52, 95% CI [−5.14, −3.89]), indicating that 
BMSCs-Exo significantly inhibited the extent of apoptosis post-SCI 
(the overall meta-analysis results are not shown in Figure 5). Although 
there was considerable heterogeneity among the studies 
(I-squared = 47.3%, p = 0.102), it was within an acceptable range 
(I-squared <50%). Nevertheless, we performed a subgroup analysis 
based on the exosome transplantation dose to explore its impact on 
apoptosis. The subgroup analysis showed that as the exosome 
transplantation dose increased, the level of apoptosis in rat spinal cord 
tissue significantly decreased. See Figure 5 for details.

3.4.4 Neural regeneration and astrogliosis
We included three outcome measures related to neural 

regeneration: NeuN cells/field (5 studies), NF200 (4 studies), and the 
number of Nissl bodies (4 studies). The fixed-effect model meta-
analysis revealed that, compared to the placebo group, the BMSCs-Exo 
group showed significantly higher levels of NeuN cells/field 
(SMD = 3.54, 95% CI [2.65, 4.42]), NF200 (SMD = 4.88, 95% CI [3.70, 
6.05]), and the number of Nissl bodies (SMD = 1.89, 95% CI [1.13, 
2.65]), indicating that BMSCs-Exo significantly promoted neural 
regeneration after SCI. Detailed results are presented in Figure 6.

For astrogliosis, we included one outcome measure, GFAP. The 
fixed-effect model meta-analysis demonstrated that the expression 
level of GFAP in the BMSCs-Exo group was significantly lower 
compared to the placebo group (SMD = −5.15, 95% CI [−6.47, 
−3.82]), suggesting that BMSCs-Exo significantly inhibited 
astrogliosis after SCI. See Figure 6 for detailed results.

Additionally, the meta-analysis of the lesion area showed that 
BMSCs-Exo significantly reduced the lesion area in SCI rats 
(SMD = −5.93, 95% CI [−7.10, −4.75]). Detailed results are presented 
in Figure 6.

3.4.5 Publication bias detection
Generally, detecting publication bias is meaningful when there are 

10 or more studies reporting an outcome measure. Therefore, 
we  performed a publication bias test for the BBB score outcome 
measure. The results indicated that the funnel plot was asymmetric, 
suggesting the potential presence of publication bias in the current 
research field. Please refer to Supplementary Figure S1.

4 Discussion

Following SCI, a series of secondary pathophysiological 
changes occur, including inflammation and neuronal apoptosis at 
the injury site, which subsequently leads to the formation of cavities 
and astrocytic scars, inhibiting axonal regeneration. Therefore, 
reversing these pathological processes is crucial for promoting SCI 
repair. For SCI patients, the restoration of sensory and motor 
functions is a core goal to improve their quality of life (Shang et al., 
2022b). Our meta-analysis, based on 30 randomized controlled 
trials, indicates that BMSCs-Exo significantly enhances motor 
function in rats post-SCI. This strongly demonstrates the 
therapeutic potential of BMSCs-Exo. Previous meta-analysis has 
shown that exosomes can significantly improve motor function in 
SCI animals (Yi and Wang, 2021; Shang et al., 2024). Our study, 
however, focuses more specifically on exosomes derived from 
BMSCs-Exo and includes only rat SCI models, thereby reducing 
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TABLE 1 The basic information of the included studies.

No. Author Year Country Type of 
study

Species Gender Body 
weight

Age Sample 
size

Injury 
segment

Types of 
models

Types of 
exosomes

Source of 
exosomes

Exosome 
diameter

Transplantation 
way

Transplant 
dose

1 He 2022 China RCT SD rat – 220 g 6 weeks 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 100 μg

2 Liang 2024 China RCT SD rat Male 200–260 g 6–8 weeks 20/20 T10 Contusion BMSCs Bone marrow of 

SD rat

52.25–149.25 nm Tail veins 100 μg

3 Chang 2021 China RCT SD rat Male 220–260 g Adult 12/12 T10 Contusion BMSCs Bone marrow of 

SD rat

30–150 nm Intrathecal injection –

4 Zhou 2019 China RCT Wistar rat Male 200–250 g Adult 4/4 T10 Spinal cord 

hemisection

BMSCs Bone marrow of 

Wistar rat

40–160 nm Tail veins 100 μg

5 Shao 2023 China RCT SD rat – – 6–8 weeks 12/12 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 200 μg

6 Yu 2019 China RCT SD rat Female 230–250 g – 20/20 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 100 μg

7 Chen 2021 China RCT SD rat Female – 6 weeks 6/6 T10 Oppression BMSCs Bone marrow of 

SD rat

50–100 nm Tail veins 200 μg

8 Lu 2023 China RCT SD rat Female – 6 weeks 8/8 T10 Contusion BMSCs Bone marrow of 

SD rat

30–200 nm Tail veins 100 μg

9 Luo 2020 China RCT SD rat Female 170–220 g 12 weeks 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

50–150 nm Tail veins 200 μg

10 Wang 2018 China RCT SD rat Male 200–250 g Adult 25/25 T10 Contusion BMSCs Bone marrow of 

SD rat

30–150 nm Tail veins 200 μg

11 Li 2019 China RCT SD rat Male – – 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 100 μg

12 Li 2019 China RCT Wistar rat Male 150–200 g Adult 50/50 T10 Contusion BMSCs Bone marrow of 

Wistar rat

– Tail veins 200 μg

13 Cheng 2021 China RCT SD rat – – Adult 6/6 T10 Contusion BMSCs Bone marrow of 

SD rat

30–150 nm Hydrogel loading 200 μg

14 Yang 2023 China RCT SD rat Male 200–260 g 6–8 weeks 30/30 T10 Contusion BMSCs Bone marrow of 

SD rat

30–150 nm Tail veins 100 μg

15 Nakazaki 2023 USA RCT SD rat Male 190–225 g Adult 12/12 T10 Contusion BMSCs Bone marrow of 

SD rat

60–200 nm Tail veins 200 μg

16 Gu 2020 China RCT SD rat Male 220–260 g Adult 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

30–150 nm Tail veins 200 μg

(Continued)
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TABLE 1 (Continued)

No. Author Year Country Type of 
study

Species Gender Body 
weight

Age Sample 
size

Injury 
segment

Types of 
models

Types of 
exosomes

Source of 
exosomes

Exosome 
diameter

Transplantation 
way

Transplant 
dose

17 Zhao 2019 China RCT Wistar rat Male 200–250 g Adult 23/23 T10 Spinal cord 

hemisection

BMSCs Bone marrow of 

Wistar rat

20–150 nm Tail veins 100 μg

18 Jia 2019 China RCT SD rat Male 200–250 g Adult 25/25 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 200 μg

19 Wang 2022 China RCT Wistar rat Female – – 10/10 T10 Contusion BMSCs Bone marrow of 

Wistar rat

– Intrathecal injection –

20 Nakazaki 2021 USA RCT SD rat Male 185–215 g Adult 17/14 T10 Contusion BMSCs Bone marrow of 

SD rat

25–140 nm Tail veins –

21 Nie 2021 China RCT SD rat – 190–220 g – 24/24 T10 Transection BMSCs Bone marrow of 

SD rat

50–150 nm Tail veins 100 μg

22 Huang 2017 China RCT SD rat Male 180–220 g Adult 15/15 T10 Contusion BMSCs Bone marrow of 

SD rat

20–130 nm Tail veins 100 μg

23 Liu 2018 China RCT SD rat Female 170–220 g Adult 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

20–150 nm Tail veins 200 μg

24 Zhou 2022 China RCT SD rat Female 200–250 g 12 weeks 40/40 T10 Contusion BMSCs Bone marrow of 

SD rat

Average 100 nm Tail veins 200 μg

25 Jia 2021 China RCT SD rat Male 230–250 g – 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 120 μg

26 Zhang 2021 China RCT SD rat Male 200–230 g 8 weeks 8/8 T10 Contusion BMSCs Bone marrow of 

SD rat

Average 99.02 nm Tail veins 200 μg

27 Han 2021 China RCT Wistar rat Female 200–250 g 6–8 weeks 8/8 T10 Contusion BMSCs Bone marrow of 

Wistar rat

Average 100 nm Subdural 100 μg

28 Tang 2024 China RCT SD rat – – – 6/6 T10 Contusion BMSCs Bone marrow of 

SD rat

70–120 nm Tail veins 120 μg

29 Huang 2021 China RCT SD rat Female 200–250 g 10 weeks 20/20 T10 Contusion BMSCs Bone marrow of 

SD rat

30–200 nm Tail veins 100 μg

30 Jia 2019 China RCT SD rat Male 230–250 g – 10/10 T10 Contusion BMSCs Bone marrow of 

SD rat

– Tail veins 120 μg
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inter-study heterogeneity and making the results more reliable. 
Additionally, we  explored the effects of BMSCs-Exo on 
inflammation, apoptosis, neural regeneration, and astrogliosis—
important areas that previous studies focusing solely on motor 
function had not addressed.

Apoptosis and inflammatory responses are major events in 
secondary SCI. Neuronal apoptosis plays a critical role in the 
functional outcomes and prognosis of SCI, and it is primarily 
regulated by the upstream Bcl-2 family and downstream caspase 
family. Among these, the anti-apoptotic protein Bcl-2 and the 
pro-apoptotic protein Bax are common markers of apoptosis (Huang 
et  al., 2017). Numerous studies have shown that BMSCs-Exo can 
significantly reduce the expression levels of apoptotic proteins such as 
Bax, cleaved caspase-3, and cleaved caspase-9, while promoting the 
expression of the anti-apoptotic protein Bcl-2 (Adams and Cory, 1998; 
Lin et al., 2006; Li et al., 2019). These findings are consistent with the 
results of our meta-analysis, which revealed a significant reduction in 
neuronal apoptosis rates in injured spinal cord tissue following 
BMSCs-Exo treatment. These results, in combination with BBB scores, 
suggest that BMSCs-Exo facilitates the recovery of motor function by 
inhibiting neuronal apoptosis (Li et al., 2019). The activation of the 
Wnt/β-Catenin signaling pathway plays a crucial role in suppressing 
neuronal apoptosis after acute SCI (Gao et al., 2015; Li X. et al., 2018). 
Li et al. (2019) discovered that BMSCs-Exo inhibits cell apoptosis by 
activating the Wnt/β-Catenin signaling pathway, thereby reducing the 
protein expression levels of caspase-3 and caspase-9 in neurons, and 
increasing the expression of Bcl-2. Additionally, BMSCs-Exo activates 
cellular autophagy by upregulating autophagy-related proteins (such 
as LC3IIB), reducing neuronal apoptosis, and promoting neural 

function recovery (Gu et al., 2020). However, the specific mechanisms 
remain unclear. Some studies have found that BMSCs-Exo enhances 
autophagy-related protein expression and inhibits NLRP3 
inflammasome activation in macrophages/microglia through the 
miR-21a-5p/PELI1 axis. This can improve motor function recovery 
and alleviate neuroinflammation following SCI (Gu et al., 2024).

The inflammatory response is also crucial in the onset and 
progression of SCI (Xu et al., 2018). Inflammation is a significant 
cause of secondary SCI, further impairing neuronal function and 
exacerbating neural cell damage. The inflammatory response is 
intensified by the release of immune cells and inflammatory factors 
(Anjum et  al., 2020). After SCI, the blood–brain barrier is 
compromised, leading to the infiltration of neutrophils into the spinal 
cord area. Neutrophils, as the earliest circulating immune cells to 
arrive at the injury site during the acute phase, release proteases such 
as elastase and myeloperoxidase through degranulation, along with 
reactive oxygen species. These substances damage spinal cord tissue 
and contribute to the formation of fibrotic scars, which hinder axonal 
regeneration (Dolma and Kumar, 2021). Moreover, neutrophils can 
upregulate the expression of inflammatory cytokines like TNF-α and 
IL-1β, exacerbating neuronal damage (Pan et al., 2002; Han et al., 
2015). Based on a comprehensive analysis of previous research results, 
BMSCs-Exo significantly reduces the expression levels of the 
pro-inflammatory cytokine TNF-α in spinal cord injury tissues while 
markedly increasing the expression levels of the anti-inflammatory 
cytokines IL-10 and TGF-β (He et al., 2022; Liang et al., 2024; Yang 
et  al., 2024).This demonstrates the potent regulatory capability of 
BMSCs-Exo on the post-SCI inflammatory microenvironment. The 
regulation of the inflammatory response in SCI involves the 

FIGURE 2

Meta-analysis results of bias risk assessment in included studies.
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modulation of inflammatory cells such as microglia, astrocytes, and 
macrophages, as well as pro-inflammatory cytokines. Tail vein 
injection of BMSCs-Exo can significantly downregulate levels of 
pro-inflammatory cytokines like TNF-α and IL-1β, while upregulating 
levels of anti-inflammatory cytokines like IL-10, thereby exerting an 
anti-inflammatory effect (Huang et al., 2017). However, the efficacy of 
BMSCs-Exo may vary depending on the dosage and administration 
route. Currently, there is a lack of clear evidence regarding the 
differences in efficacy between high and low doses of BMSCs-Exo. 
Additionally, different administration routes, such as intrathecal or 
intravenous injection, may affect the distribution and targeting of 
BMSCs-Exo in the injured spinal cord. Therefore, future research 
should focus on optimizing dosage and administration routes to 
maximize the therapeutic effects of BMSCs-Exo. Additionally, 
BMSCs-Exo exerts anti-inflammatory and neuroprotective effects by 

downregulating the phosphorylation of the NF-κB P65 subunit, 
thereby inhibiting the differentiation of astrocytes into the A1 
phenotype (Wang et  al., 2018; Liu et  al., 2019; Wu et  al., 2021). 
BMSCs-Exo also mitigates the inflammatory response in SCI rats by 
inhibiting the expression of TLR4 downstream genes MyD88 and 
TRAF6, thereby suppressing the release of NF-κB (Fan et al., 2021). 
Furthermore, BMSCs-Exo enhances neuronal regeneration and 
improves motor function in SCI rats by inhibiting the expression of 
caspase 1 and IL-1β, thereby reducing pyroptosis (Zhou et al., 2022). 
Moreover, BMSCs-Exo provides protective effects against SCI by 
binding to M2-type microglia, inhibiting the synthesis and release of 
complement mRNA and the activation of NF-κB (Lankford et al., 
2018; Zhao et al., 2019). Chang et al. (2021) found that intervention 
with BMSCs-Exo in SCI model mice targets and negatively regulates 
IRF5 to inhibit the differentiation of microglia into the M1 phenotype 

FIGURE 3

Meta-analysis results of BBB score.
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and the secretion of inflammatory factors. Other studies have pointed 
out that intravenously injected BMSCs-Exo can be  taken up by 
M2-type macrophages at the injury site, thereby modulating the 
inflammatory response at the injury site. The mechanism involves 
increasing the secretion of anti-inflammatory factors and preventing 
the transformation of M2-type macrophages into the M1 type (Lo 
Sicco et al., 2017; Lankford et al., 2018; Wang et al., 2018). These 
studies indicate that BMSCs-Exo can reduce secondary injury and 
promote SCI repair through anti-inflammatory and anti-apoptotic 
mechanisms. However, its therapeutic effects are still in the 
experimental research stage and have not yet been explored in 
clinical settings.

The ultimate goal of various therapies for treating SCI is to 
promote the recovery of neural function. After SCI occurs, axonal 
rupture often happens, leading to the interruption of multiple 
intercellular signaling pathways, which directly affects the 

reconstruction of the spinal cord nervous system function. In this 
process, apoptotic or necrotic nerve cells release inflammatory 
factors, resulting in a large number of neutrophils and astrocytes 
congregating around the injured central nervous system (CNS) to 
repair the damage (Fawcett et al., 2012). These immune cells and glial 
cells accumulate in the CNS and secrete an excess of extracellular 
matrix (such as type IV collagen, fibronectin, and laminin), forming 
a glial scar that is difficult to remove (O'Shea et al., 2017; Lv et al., 
2021). While astrogliosis is crucial for sealing off the injury site and 
restoring tissue integrity, it often becomes excessively prominent after 
SCI. The formation of glial scars can stimulate the production of 
GFAP, which in turn activates the RhoA signaling pathway. The RhoA 
signaling pathway plays a crucial role in cytoskeletal remodeling, 
growth cone collapse, and inhibition of axon regeneration. The 
growth cone is a dynamic structure at the tip of a neuron’s axon, 
responsible for sensing the external environment and guiding axon 

FIGURE 4

Meta-analysis results of the inflammatory response.
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growth (Franze, 2020). When RhoA is activated, it affects actin fiber 
contraction through ROCK, leading to growth cone collapse, thereby 
hindering axon extension and inhibiting neuron regeneration 
(Karimi-Abdolrezaee and Billakanti, 2012; Tsujioka and Yamashita, 
2021). Therefore, inhibiting astrogliosis as much as possible while 
promoting axonal regeneration is an innovative and effective strategy 
for repairing SCI. Li et al. found that BMSCs-Exo can activate the 
ERK1/2, STAT3, and CREB signaling pathways, all of which are 
classic pathways for neuronal and axonal regeneration (Ferrer-
Molina et al., 2018). Xu et al. (2019) discovered that miRNA-19 and 
miRNA-21 in exosomes can regulate apoptosis and differentiation of 
neuronal cells in rats with spinal cord injury by targeting and 
inhibiting PTEN expression. However, the study did not explore the 
underlying mechanisms further. In vivo experiments demonstrated 
that BMSCs-Exo promote neural regeneration after SCI by activating 
the PI3K/AKT pathway, as evidenced by an increase in the number 
of Nissl bodies and high expression of NF200 in SCI tissues following 
BMSCs-Exo intervention (Luo et al., 2021). This is consistent with 
our findings, where the BMSCs-Exo group showed a significant 
increase in NF200 and the number of Nissl bodies compared to the 
groups given saline or phosphate-buffered saline. Conversely, the 
expression level of GFAP, a marker associated with astrogliosis, was 
significantly reduced. This demonstrates the significant promoting 
effect of BMSCs-Exo on neural regeneration and their inhibitory 

effect on astrogliosis. Additionally, Han et  al. (2021) found that 
TGF-β in BMSCs-Exo enhances the expression of Smad6, inhibiting 
the excessive differentiation of neural stem cells into astrocytes and 
promoting neuronal regeneration. In fact, although exosomes have a 
significant therapeutic effect on spinal cord injury (SCI), the specific 
therapeutic mechanisms and targets are not yet fully understood. 
Currently, most studies focus on the role of miRNAs. Recently, some 
miRNAs such as miRNA-486, miRNA-21, and miRNA-126 have been 
identified as potential new targets for SCI treatment (Jee et al., 2012; 
Hu et  al., 2013, 2015). Exosomes can penetrate the blood–brain 
barrier or the blood-spinal cord barrier, thereby enhancing the 
therapeutic effects of miRNAs (Ding et al., 2019). For example, Liu 
et al. found that exosomes carrying miRNA-216a-5p significantly 
improve therapeutic potential by inhibiting the TLR4/NF-κB pathway 
and activating the PI3K/Akt pathway, thus shifting microglia from a 
pro-inflammatory M1 phenotype to an anti-inflammatory M2 
phenotype (Liu et  al., 2020). Similarly, Zhou et  al. (2019) 
demonstrated that miRNA-21-modified BMSCs-Exo significantly 
promote functional recovery, reduce lesion volume, and decrease 
apoptosis, primarily by downregulating the expression of the 
pro-apoptotic gene FasL. Further research [31570818] also revealed 
that miRNA-21 enhances cell viability and inhibits apoptosis by 
targeting the PTEN/PDCD4 signaling pathway. These findings not 
only uncover the potential mechanisms of exosomes in SCI treatment 

FIGURE 5

Meta-analysis results of apoptosis levels.
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but also provide an important basis for developing new therapeutic 
strategies in the future.

4.1 Strengths and limitations

As the first research investigating the repair of spinal cord injury 
(SCI) using BMSCs-Exo, this study focuses on a rat SCI model, 
comprehensively exploring the effects of BMSCs-Exo on motor 
function, inflammatory response, apoptosis, glial scar formation, and 
axonal regeneration after SCI. This lays a foundation for further 
research and clinical translation of BMSCs-Exo. However, the current 
animal experiments have limitations in random grouping, allocation 
concealment, blinding, outcome measurement, and reporting, which 
increase the risk of selection bias, implementation bias, and 
measurement bias. Additionally, the inclusion of only English 
literature may result in language bias, and the omission of grey 
literature and conference abstracts may lead to publication bias. It is 
worth noting that due to the limited data detected and reported in the 
included studies, we only incorporated certain indicators related to 
inflammation, apoptosis, nerve regeneration, and astrocyte 

proliferation. In reality, there are many more indicators that could 
reflect the role of BMSCs in SCI, but current studies have not fully 
reported these, which is an area for improvement in future 
animal experiments.

4.2 Research prospects

Our subgroup analysis of different transplant doses successfully 
reduced heterogeneity between studies, indicating that transplant dose 
is a major factor affecting treatment outcomes. This aligns with 
findings from Shang et al. (2022a,c), who observed that higher doses 
of exosomes produce better therapeutic effects. Higher doses of 
exosomes significantly enhance SCI treatment by providing more 
repair factors, boosting anti-inflammatory effects, promoting 
angiogenesis, optimizing cell communication, and offering 
neurotrophic support. Additionally, the timing, frequency, and 
measurement of outcomes related to exosome transplantation may 
also impact treatment efficacy. Studies vary widely in their dosing 
frequency, with some using single doses and others employing 
multiple administrations. Multiple doses can maintain exosome 

FIGURE 6

Meta-analysis results of nerve regeneration and astrogliosis.
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concentrations at the injury site, thereby enhancing efficacy, but 
frequent dosing may increase treatment complexity and cost. Future 
research should explore the effects of different dosing frequencies on 
BMSCs-Exo efficacy to identify the optimal regimen. The route of 
administration also plays a significant role in BMSCs-Exo 
effectiveness. Intrathecal injection can directly target the spinal cord 
injury site, improving bioavailability and efficacy, whereas intravenous 
injection, although more convenient, may reduce exosome 
concentrations at the injury site due to systemic distribution (Yang 
et al., 2022). Future studies should compare the efficacy of different 
administration routes to optimize strategies. Due to limited data, 
further subgroup analyses are not currently feasible. There are also 
variations in how different studies explore the neuroprotective and 
reparative mechanisms of BMSCs-Exo. Some focus on modulating 
inflammation, reducing cell apoptosis, inhibiting glial scar formation, 
and promoting axon regeneration (Ren et al., 2020; Fan et al., 2021; 
Liu et al., 2021); while others emphasize angiogenesis and neural/glial 
differentiation (Gabr et al., 2015). These differences may stem from 
variations in study design, animal models, and exosome sources. Thus, 
future research needs to standardize doses, frequencies, and routes, 
and further investigate the specific mechanisms of BMSCs-Exo to 
reduce heterogeneity and improve comparability. The source of 
exosomes also affects therapeutic outcomes. Autologous BMSCs-Exo 
transplantation, derived from the patient’ s own cells, has good 
immunocompatibility, reducing immune rejection and enhancing 
treatment safety and efficacy. In contrast, allogeneic BMSCs-Exo, 
which are more widely available and easier to produce on a large scale, 
may carry a risk of immune rejection. Despite the promising effects of 
exosomes, further validation is needed to determine if these findings 
can be effectively translated to clinical practice. Overall, research on 
BMSCs-Exo for SCI treatment is still in the exploratory phase, with a 
limited number of studies primarily using rodent models, especially 
Sprague–Dawley rats. Given the anatomical differences between 
human and rodent spinal cords (e.g., differences in SCI area and 
neural complexity), there is a need to expand research to include 
larger animal models.

5 Conclusion

BMSCs-Exo can regulate multiple signaling pathways and reduce 
cytokine levels, significantly improving the inflammatory response in 
SCI rats, inhibiting neuron apoptosis and astrocyte proliferation, and 
promoting axonal regeneration, thereby enhancing motor function 
recovery. Higher doses of exosomes yield better therapeutic effects. 
However, the presence of selection bias, implementation bias, and 
measurement bias in animal experiments reduces the evidence quality 
of this study. Future research should standardize the implementation 
and reporting of animal experiments and conduct more high-quality 
studies to further explore the efficacy and mechanisms of BMSCs-Exo.
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