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Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear

perception of sound waves. Major risk factors for SNHL include genetic

mutations, exposure to noise, ototoxic medications, and the aging process.

Previous research has demonstrated that inflammation, oxidative stress,

apoptosis, and autophagy, which are detrimental to inner ear cells, contribute

to the pathogenesis of SNHL; however, the precise mechanisms remain

inadequately understood. The endoplasmic reticulum (ER) plays a key role in

various cellular processes, including protein synthesis, folding, lipid synthesis,

cellular calcium and redox homeostasis, and its homeostatic balance is essential

to maintain normal cellular function. Accumulation of unfolded or misfolded

proteins in the ER leads to endoplasmic reticulum stress (ERS) and activates

the unfolded protein response (UPR) signaling pathway. The adaptive UPR

has the potential to reestablish protein homeostasis, whereas the maladaptive

UPR, associated with inflammation, oxidative stress, apoptosis, and autophagy,

can lead to cellular damage and death. Recent evidence increasingly supports

the notion that ERS-mediated cellular damage responses play a crucial role

in the initiation and progression of various SNHLs. This article reviews the

research advancements on ERS in SNHL, with the aim of elucidating molecular

biological mechanisms underlying ERS in SNHL and providing novel insights for

the treatment.

KEYWORDS
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1 Introduction

Sensorineural hearing loss (SNHL) is one of the most common types of hearing loss
(HL), which affects social interactions and increases the likelihood of developing dementia
and depression (Li et al., 2014; Mener et al., 2013; Livingston et al., 2020). SNHL is
mainly caused by the impairment of non-renewable hair cells (HCs) and spiral ganglion
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neurons (SGNs) in the inner ear. Congenital gene mutations
(Lv et al., 2021), prolonged noise exposure (Guo et al., 2021;
Liberman, 2017), utilization of ototoxic medications (He et al.,
2017; Lang et al., 2005; Liu et al., 2019), and aging (Bao and
Ohlemiller, 2010; He et al., 2021; Kujawa and Liberman, 2015)
are the major risk factors for SNHL. Hitherto, the specific
pathophysiologic mechanisms of SNHL remain unclear. Since
there is currently no effective treatment for almost all SNHL,
patients can usually only rectify their hearing impairment through
hearing aids and cochlear implants, but the patient experience
is not ideal (Giraudet et al., 2018; Petit et al., 2023; Ferguson
et al., 2017). Although different species of SNHL have distinct
pathophysiologic mechanisms, their potential mechanisms often
involve inner ear gene mutations, oxidative stress, apoptosis,
inappropriate inflammation, and autophagy (Wong and Ryan,
2015). Accumulated data indicate that endoplasmic reticulum
stress (ERS) plays a role in the above cellular processes and is
involved in a variety of disease processes (Zhang et al., 2024).
Recently, more and more studies have been conducted on the
role of ERS in various types of SNHL, indicating that ERS
plays a role in SNHL, which has potential therapeutic benefits
for predicting pharmacological manipulations targeting ERS
(Wu J. et al., 2020).

The endoplasmic reticulum (ER) in eukaryotes is an organelle
comprising a continuous membrane; it is responsible for the
processing, folding, and transportation of secreted and membrane-
bound proteins, as well as the regulation of intracellular Ca2+

concentrations and formation of cell membrane lipids (Schwarz
and Blower, 2016). It is believed that glucose deficiency,
abnormal calcium regulation, hyperglycemia, hyperlipidemia,
viral infections, and hypoxia contribute to the production and
accumulation of unfolded/misfolded proteins (UFP/MFP), which
leads to ERS (Fedoroff, 2006; Feldman et al., 2005; Fonseca
et al., 2011; Görlach et al., 2006; Iurlaro and Muñoz-Pinedo,
2016; Kaufman et al., 2002; Sawada et al., 2008; Zhang and
Wang, 2012). To restore ER homeostasis, the adaptive unfolded
protein response (UPR) is activated (Hetz et al., 2020). However,
when ERS is severe, oxidative stress, apoptosis, inflammation,
and autophagy downstream of maladaptive UPR are activated
and amplified, leading to cell damage or death (Iurlaro and
Muñoz-Pinedo, 2016). It has been identified that ERS-induced
cell death was involved in a variety of diseases, including
neurodegenerative disorders (Duran-Aniotz et al., 2017; Valdés
et al., 2014), cardiovascular ailments (Ren et al., 2021), and
liver damage disorders (Zhang et al., 2022). In addition to
the previously mentioned areas, research has highlighted the
critical role of ERS in various forms of SNHL, including
genetic, drug-induced, age-related, and noise-induced SNHL
(Jia et al., 2018; Wen et al., 2021; Lee et al., 2021). The
involvement of ERS across these diverse types of SNHL suggests
its widespread and significant influence in this domain, although
comprehensive reviews detailing the entire underlying mechanism
remain lacking. Therefore, this review aims to elucidate the
mechanisms and identify potential novel therapeutic targets of
ERS in inner ear cells, hereby enhancing our understanding
the role of ERS in SNHL and offering new perspectives for
the treatment.

2 Molecular mechanisms underlying
ERS

The key process of ERS is the UPR, which is mediated
mainly by three transmembrane protein receptors located on the
ER: pancreatic endoplasmic reticulum kinase (PERK), inositol-
requiring enzyme 1α (IRE1α), and activating transcription factor
6 (ATF6). Typically, these three proteins combine with the heat
shock protein 70 family member BiP (also referred to as GRP78)
to maintain ER homeostasis. When ER homeostasis is disrupted,
leading to ERS, BiP dissociates from its receptor proteins and binds
to UFP/MFP, triggering oligomerization and phosphorylation
of the three UPR receptor proteins (Ron and Walter, 2007).
Cumulative UFP/MFP is degraded by ubiquitination via the
endoplasmic reticulum-associated degradation (ERAD; Hetz et al.,
2015). However, the adaptive capacity of the UPR is finite. When
ERS is hard to mitigate within the cell, the pro-cell death responses
downstream of the maladaptive UPR are activated and amplified,
leading to tissue and organ damage (Figure 1; Hetz et al., 2020).

2.1 The IRE1α, PERK, and ATF6 signaling
pathways

IRE1α, a conserved ERS receptor expressed extensively in the
ER membrane, comprises an N-terminal ER lumenal structural
domain, a transmembrane region, and a C-terminal cytoplasmic
region. The cytoplasmic region contains a site-specific nucleic acid
endonuclease structural domain and a serine/threonine-protein
kinase structural domain. During ERS, IRE1α detects UFP/MFP
via its N-terminal luminal structural domain, separates from BiP
and undergoes dimerization and phosphorylation, which activates
the RNase structural domain. The activated IRE1α specifically
recognizes and cleaves mRNA encoding X box binding protein
1 (XBP1), thereby initiating splicing of XBP1 mRNA to generate
an XBP1 protein with transcription factor activity (Calfon et al.,
2002; Shen et al., 2001; Yoshida et al., 2001). XBP1 upregulates
the expression of genes related to protein transport, folding,
secretion, and degradation (e.g., ERAD) in response to ERS and
promotes adaptive cell survival (Kaufman, 2002; Yücel et al., 2019).
IRE1α also breaks down a segment of mRNA via regulated IRE1-
dependent decay (RIDD), thereby reducing the protein burden in
the ER (Chen and Brandizzi, 2013). PERK is an ER transmembrane
protein belonging to the serine/threonine kinase family and
activated by its phosphorylation and dimerization, which in turn
leads to phosphorylation of eukaryotic translation initiation factor
2 subunit-α (eIF2α), thereby reducing translation of most proteins
and lowering the ER load (Ron and Walter, 2007; Kaufman,
2002). Phosphorylated elF2α promotes the expression of activating
transcription factor 4 (ATF4; Blais et al., 2004; Harding et al., 1999).
At the early stage of UPR, ATF4 upregulates the transcriptional
expression of ER chaperone proteins to restore ER homeostasis.
In the prolonged UPR state, ATF4 binds to UPR components and
promotes the expression of C/EBP homologous protein (CHOP)
to induce ATP depletion, oxidative stress, and apoptosis (Prasad
and Greber, 2021). ATF4 also upregulates the expression of growth
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FIGURE 1

The UPR initiated by ERS in SNHL. Activation of the UPR is regulated by three transmembrane protein receptors: PERK, IRE1α, and ATF6. When

UFP/MFP accumulates in the ER, BiP dissociates from PERK, IRE1α, and ATF6, after which it participates in the processing of UFP/MFP. PERK and

IRE1α are activated by dimerization and phosphorylation. PERK phosphorylates eIF2α reducing protein translation. IRE1α exerts nucleic acid

endonuclease activity and splices XBP1 mRNA. Meanwhile, IRE1α also breaks down a segment of mRNA via a biological mechanism known as

regulated IRE1-dependent decay (RIDD), reducing the protein burden in the ER. ATF6 is spliced into ATF6P50 by the Golgi apparatus to exert its

biological activity. The three activated receptor proteins also start the transcription of UPR in the nucleus. The cell damage and death responses

downstream of UPR (e.g., oxidative stress, apoptosis, inflammation, and autophagy) can act on HCs, SGNs, and stria vascularis, which in turn leads to

SNHL (figure drawn by Figdraw).

arrest and DNA damageinducible 34 (GADD34), which inhibits
phosphorylation of eIF2α via negative feedback (Hetz et al., 2020).
ATF6 is a type II transmembrane protein in the ER. In the case of
ER homeostasis imbalance, ATF6 separates from BiP and enters
the Golgi via vesicle transport, liberating a 50 kDa basic leucine
zipper fragment known as “ATF6p50,” a process facilitated by site-1
protease (S1P) and site-2 protease (S2P). ATF6p50 is transported
to the nucleus, resulting in the upregulation of UPR-associated
proteins such as XBP1, CHOP, and ERAD components, thereby
regulating protein homeostasis in cytoplasm (Haze et al., 1999; Ye
et al., 2000; Jin et al., 2017).

2.2 ERS and oxidative stress, apoptosis,
inflammation, and autophagy

An imbalance in redox homeostasis is one of the characteristics
of ERS (Ron and Walter, 2007). CHOP can increase the expression
of target genes such as ER oxidoreductase 1α (ERO1α) and
GADD34, leading to the generation of oxidative stress. GADD34
induces the generation of reactive oxygen species (ROS) by
upregulating synthesis of protein (Han et al., 2013; Marciniak et al.,
2004). ERO1α is essential for the formation of disulfide bonds,
which contribute to protein folding and transfer of electrons to

Frontiers inMolecularNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnmol.2024.1443401
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnmol.2024.1443401

FIGURE 2

Schematic diagram of ERS signaling in the control of oxidative stress, apoptosis (A), and inflammation (B). (A) In the PERK pathway, CHOP activates

GADD34 and ERO1α to respectively increase the formation of proteins and disulfide bonds, thereby leading to oxidative stress. CHOP also induces

apoptosis by activating caspase-12 or inhibiting the activity of Bcl-2 and Bcl-xL. NRF2 is activated by PERK to inhibit oxidative stress. ATF6p50

increases apoptosis by up-regulating the expression of XBP1 and CHOP through the PERK pathway. The IRE1α/JNK pathway inhibits apoptosis by

suppressing the activity of Bcl-2 and Bcl-xL. (B) In the PERK pathway, NRF2 and phosphorylated elF2α activate NF-κB to induce inflammation, and

CHOP increases the expression of IL-23. In the IRE1α pathway, JNK increases the expression of IL-6 and TNF-α, and XBP1s increase the expression of

IFN-β. ERS can result in the opening of the IP3R channel, thereby activating the NLRP3 inflammasome (figure drawn by Figdraw).

molecular oxygen, thereby promoting the oxidation of ER proteins
(Chen et al., 2015; Ramming et al., 2015). In addition, the UPR plays
a role in PERK-mediated activation of nuclear factor erythroid
2-related factor (NRF2), which helps maintain glutathione levels,
buffering the accumulation of ROS (Cullinan and Diehl, 2004;
Cullinan et al., 2003; Figure 2A).

It is widely recognized that ERS-induced apoptotic signaling
is mediated mainly by IRE1, PERK, and ATF6, which regulate
B-cell lymphoma 2 (Bcl-2) family proteins directly or indirectly
to activate intrinsic and caspase-induced apoptotic pathways.
CHOP is considered to be an important factor in inducing
apoptosis: not only does CHOP inhibit the expression of anti-
apoptotic genes such as Bcl-2 (Tabas and Ron, 2011), but also
activates the apoptosis-specific molecule caspase-12 in the ER
by activating ERO1α, thereby initiating apoptosis activated by
other caspase proteins (Gu et al., 2016; Wu H. et al., 2020;
Nakagawa et al., 2000). Activated IRE1α recruits and activates
the adapter molecule (i.e., TRAF2) of apoptosis signal-regulating
kinase 1 (ASK1) and upregulates phosphorylation of c-Jun N-
terminal kinase (JNK), which inhibits the expression of Bcl-2 and
B-cell lymphoma-extra large (Bcl-xL), thereby promoting apoptosis
(Urano et al., 2000; Saveljeva et al., 2015). ATF6p50 increases
apoptosis by up-regulating the expression of XBP1 and CHOP
through the PERK pathway (Yoshida et al., 2000). Studies have
shown that apoptosis caused by overexpression of CHOP and
GRP78, as well as activation of caspase-12, is associated with
kidney injury (Gao et al., 2014; Kong et al., 2013). In another
study in auditory cells, researchers demonstrate that ERS not only

activates the apoptotic pathway mediated by caspase-3/caspase-
9 but also induces receptor-interacting serine/threonine-protein
kinase 1 (RIPK1)-mediated necroptosis (Saveljeva et al., 2015;
Kishino et al., 2019; Figure 2A).

ERS and the UPR are involved extensively in inflammatory
signaling. PERK activates NRF2 and phosphorylates eIF2α to
upregulate the expression of nuclear factor kappa B (NF-κB),
thereby inducing inflammation (Deng et al., 2004; Ma et al.,
2024). IRE1 binds to the TRAF2-JNK pathway to induce pro-
inflammatory cytokine expression (e.g., IL-6 and TNF-a; Kawasaki
et al., 2012). Under conditions of ERS, the opening of the Ca2+

channel inositol 1,4,5-triphosphate receptor type 3 (IP3R) leads to
active transport of Ca2+ between the ER andmitochondria, thereby
activating the NLRP3 inflammasome (Li et al., 2020). In addition,
XBP1 and CHOP stimulate inflammatory cytokine production
directly by binding to cytokine promoter and enhancer elements
(Goodall et al., 2010; Smith et al., 2008; Figure 2B).

Autophagy maintains cellular homeostasis in eukaryotes
through the degradation and recycling of intracellular biomolecules
and damaged organelles (Yang et al., 2016). Autophagy is linked to
ERS and regulated by the UPR. Under hypoxia-induced ERS, ATF4,
and CHOP increased the expression of microtubule-associated
protein 1 light chain 3β (MAP1LC3B) and autophagy-regulated
gene 5 (ATG5), thereby promoting autophagy (Rouschop et al.,
2010). The PERK pathway induces autophagy by inhibiting the
activity of mammalian target of rapamycin complex 1 (mTORC1),
a core factor that inhibits autophagy, through the ATF4-mediated
expression of Sestrin2 and DDIT4 genes (Brüning et al., 2013; Jin
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et al., 2009). In addition, PERK can also inhibit AKT1 or activate
AMPK through CHOP, thereby inhibiting mTORC1 activity and
promoting autophagy (Cybulsky, 2017; Ohoka et al., 2005; Rashid
et al., 2015). Meanwhile, eIF2α-ATF4 promotes autophagy by
binding to the amino acid response element (AARE) sequence
of the p62 promoter (B’chir et al., 2013). In endothelial cells,
autophagy is promoted by increasing the conversion of LC3I to
LC3II via the IRE1α-XBP1 pathway (Margariti et al., 2013). The
IRE1α-JNK pathway phosphorylates Bcl-2, which activates the
Beclin1-PI3K complex to enhance autophagic responses (Heath-
Engel et al., 2008; Wei et al., 2008). Tunicamycin (an ERS activator)
causes splicing of XBP1 mRNA and triggers autophagy, which
was confirmed by reports that knockdown of IRE1α, XBP1, and
Forkhead box O1 (FoxO1) inhibited the increased expression of
LC3-II; additionally the interaction between XBP1 and FoxO1
was confirmed to regulate ERS-induced autophagy in HEI-OC1
auditory cells (Kishino et al., 2017; Figure 3).

Taken together, ERS is widely involved in multiple gene
expressions, oxidative stress, apoptosis, inflammation and
autophagy processes. Since the specific pathological mechanism of
SNHL is still unclear, this suggests that ERS may participate in the
occurrence and development of SNHL by communicating with the
above biological processes.

3 ERS and SNHL

3.1 ERS in genetic SNHL

Approximately 1 in 500 newborns are estimated to have
congenital hearing loss, and more than half of such cases are
attributable to genetic factors (Omichi et al., 2019). However,
treatments to reverse or prevent genetic SNHL remain limited.
Currently, there are over 250 genes linked to both syndromic
and non-syndromic deafness (Carpena and Lee, 2018), and some
of these genes and their protein products are tightly associated
with ERS.

Usher syndrome (USH) is a condition in which patients with
USH experience reduced hearing and congenital SNHL. USH is
associated with three USH proteins: Cdh23, scaffold, and Myo7a.
The absence of any one of these proteins contributes to the
development of severe USH (Blanco-Sánchez et al., 2014; Bonnet
and El-Amraoui, 2012). Studies conducted in zebrafish inner ear
hair cells (HCs) demonstrate that the three USH proteins form
a complex that regulates ER vesicular transportation in the HCs;
inhibiting the synthesis of this complex leads to ERS and promotes
apoptosis of HCs through the Cdk5-Mekk1-JNK pathway (Blanco-
Sánchez et al., 2014; Kang et al., 2012). In addition, the mutation
of Cdh23 gene induces apoptosis in HCs and is thought to be
a pathological cause in patients with non-syndromic autosomal
recessive deafness (DFNB12) and USH type 1D (USH1D; Bolz
et al., 2001; Bork et al., 2001; Miyagawa et al., 2012; Han et al.,
2012). Studies of a DFNB12 mouse model (erl mouse) in which
deafness is caused by a Cdh23 point mutation revealed that
expression of BiP and CHOP in outer hair cells (OHCs), SGNs,
and stria vascularis increased significantly, and confirmed that
apoptosis was inhibited significantly after CHOP knockout (Hu
et al., 2016). P4-ATPase is a phospholipid flippase that selectively

transports phospholipids from the ectoplasm to the cytoplasmic
leaflet to maintain lipid membrane asymmetry (Coleman et al.,
2009; Tang et al., 1996; Zhou and Graham, 2009). Deletion of
proteins belonging to the P4-ATPase superfamily can lead to
hearing disorders (Chepurwar et al., 2023; Coleman et al., 2014;
Pater et al., 2022; Stapelbroek et al., 2009). Transmembrane protein
30A (TMEM30A) is one of the most common forms of P4-
ATPase. Lack of TMEM30A disrupts HC planar polarity in the
cochlea of mice, a process accompanied by an increase in ERS,
as detected by increased expression of CHOP and BiP (Tone
et al., 2020; Xing et al., 2023). Mesencephalic astrocyte-derived
neurotrophic factor (MANF), located in the ER, mainly interacts
with BiP to maintain protein folding homeostasis (Glembotski
et al., 2012; Mizobuchi et al., 2007; Yan et al., 2019). Research
shows that MANF is expressed in HCs and neurons, as well as
in some non-sensory cells in the cochlea (Herranen et al., 2020).
Meanwhile, in manf knockout mice, the OHCs gradually die
soon after hearing formation, and expression of CHOP increases,
indicating that MANF plays an important role in maintaining
hearing by opposing ERS (Herranen et al., 2020). TMCC2 is an ER-
resident transmembrane protein and is widely expressed in HCs
of the mouse inner ear (Wisesa et al., 2019; Hoyer et al., 2018;
Sohn et al., 2016; Zhang et al., 2014; Hopkins et al., 2011; Ren
et al., 2023). Researchers performed auditory brainstem response
(ABR) measurements on Tmcc2 knockout mice and showed that
TMCC2 deletion leads to congenital HL. Further research has
shown that the cause of HL is associated with a progressive loss
of HCs. Meanwhile, an increase in ERS was observed in Tmcc2

knockout HCs, although the general morphology and functions
of ER were not affected. This suggests that deletion of TMCC2
would likely lead to auditory HC death through increased ERS (Ren
et al., 2023). Gap junctions facilitate intercellular communication
and play an important role in maintaining cellular homeostasis
(Cohen-Salmon et al., 2002; Simon and Goodenough, 1998). CX31,
a significant component of gap junctions, is highly expressed in
the inner ear HCs and SGNs of mice. Deficiency or malfunction of
CX31 causes SNHL associated with upregulation of the chaperone
protein BiP in the UPR pathway in HCs and SGNs (Xia et al., 2010;
López-Bigas et al., 2001). This points to a potential connection
between hearing impairment resulting from CX31 deficiency and
ERS-induced death in the cochleae.

3.2 Drug-induced SNHL

3.2.1 Cisplatin-induced SNHL
Cisplatin is a common chemotherapeutic agent used to treat

various types of cancer. The introduction of cisplatin into the
inner ear triggers a cascade of events, including inflammation,
oxidative stress, and DNA damage, leading ultimately to the death
of HCs and subsequent SNHL (Qu et al., 2023). Cisplatin-induced
apoptosis-associated activation of caspase-3 in the cytoplasm
requires calcium, as well as activity of the calcium-dependent
protease calpain, which is associated with ERS suggesting that the
ER is a potential target for cisplatin (Mandic et al., 2003). Mandic
et al. found that cisplatin induces calmodulin-dependent activation
of the ER-specific caspase-12 in the cytoplasm, and increases
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FIGURE 3

Schematic diagram of ERS signaling in the control of autophagy. The PERK pathway inhibits mTORC1 activity via ATF4 and CHOP to promote

autophagy. CHOP constrains the phosphorylation of AKT1 by upregulating tribbles homolog 3 (TRB3) to inhibit mTORC1. ATF4 and CHOP also

respectively activate MAP1LC3B and ATG5, to directly induce autophagy. IRE1α/JNK pathway activates Beclin1-PI3K complex to enhance autophagic

responses. XBP1s can induce autophagy by facilitating LC3I to LC3II conversion and suppress autophagy by inhibiting FoxO1 (figure drawn by

Figdraw).

expression of BiP (Mandic et al., 2003). Studies in cultured murine
cochlear explants showed that cisplatin increases expression of
BiP, CHOP, and caspase-3/9/12 in the inner ear, suggesting that
cisplatin-induced apoptosis is associated with activation of the
caspase-12 apoptotic pathway downstream of the UPR (Xiao et al.,
2016). The expression of ATF4 and CHOP increases progressively
in cisplatin-treated hair cell-like OC1 cells, and cisplatin toxicity
is reduced significantly in chop-knockout cells indicating that
the PERK/ATF4/CHOP pathway is involved in cisplatin-mediated
ototoxicity (Qu et al., 2023). The protein argininemethyltransferase
3 (PRMT3) and cannabinoid systems are involved in cisplatin-
induced ototoxicity associated with ERS, and apoptotic signaling
(including caspase-3, caspase-9, poly-adenosine diphosphate-
ribose polymerase, and phospho-p53) is enhanced, in HEI-OC1
cells (Lim et al., 2019). Overexpression of PRMT3 or FAAH1
increased apoptosis and ERS signaling, whereas knockdown of
PRMT3 or the activation of cannabinoid 1 receptor (CB1R) and
inhibition of FAAH1 mitigated cisplatin ototoxicity (Lim et al.,
2019). ERS is involved in cisplatin-induced ototoxicity through
activation of ER autophagy proteins (Gentilin et al., 2019); indeed,
the ER autophagy receptor FAM134B has been shown to promote
ER autophagy during ERS (Mo et al., 2020). Increased expression
of LC3B in cisplatin-treated HEI-OC1 cells correlates with time-
dependent expression of ER autophagy receptor FAM134B (Yang
et al., 2023). Knockdown of FAM134B decreases cisplatin-induced
autophagy, and attenuates ERS as well as expression of apoptotic
factors, suggesting that FAM134B-induced autophagy in the
ER is an important pathway in cisplatin-mediated ototoxicity
(Yang et al., 2023).

3.2.2 Aminoglycoside antibiotic-induced SNHL
An overdose of Aminoglycoside antibiotic (AmAn) causes

significant ototoxicity by inhibiting protein synthesis and inducing
ROS in host cells, leading to apoptosis of HCs (Francis et al.,
2013; Shulman et al., 2014; Xie et al., 2011). Oishi et al. conducted
genome-wide transcriptomic and proteomic analyses and reported
a substantial increase in the expression of BiP, GRP94, ATF4, and
calreticulin in the gentamicin-treated group (Oishi et al., 2015).
Furthermore, gentamicin significantly reduces the number of SGNs
in XBP1 haploid mice (Oishi et al., 2015). Tu et al. discovered that
chronic kanamycin induces extensive apoptosis in SGNs, which
correlates positively with the expression level of caspase-12 (Tu
et al., 2019). These studies indicate that SGNs are an important
target for AmAn drugs, resulting in ototoxicity via ERS. In addition,
Wu et al., found that neomycin induced significant apoptosis in
HEI-OC1 cells through the PERK/eIF2α/ATF4 pathway (Wu et al.,
2022). Thus, AmAn causes damage to inner ear HCs and SGNs by
promoting the ERS pathway, leading to ototoxicity.

3.2.3 Other types of drug-related SNHL
Acetaminophen (APAP) is a non-steroidal anti-inflammatory

drug and has ototoxic side effects (Blakley and Schilling, 2008;
Curhan et al., 2010, 2012). A metabolite of APAP, N-acetyl-P-
benzoquinone imine (NAPQI), causes damage to the ER and
triggers ERS (Ramachandran and Jaeschke, 2018; Xiaomeng et al.,
2020). Kalinec et al. demonstrated that APAP and NAPQI trigger
ERS and ototoxicity in HEI-OC1 cells via the PERK/eIF2α/CHOP
pathway, and found that the PERK pathway-mediated cell death
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FIGURE 4

Role of ERS in di�erent types of SNHL. Current studies show that ERS is associated with drug-induced, noise-induced, age-induced, or genetic

SNHL. In addition to noise-induced SNHL, ERS shows a strong correlation with SNHL. Of the three UPR pathways, the PERK pathway plays an

important role in SNHL. Therefore, drugs targeting the PERK pathway, such as Sal, PTV, and TUDCA, are promising new ideas for SNHL.

pathway was independent of ATF4 (Kalinec et al., 2014). This
implies that ototoxicity induced by APAP is a result of ERS-
induced death signaling via a different pathway (Kalinec et al.,
2014). Pyridoxine, also known as vitamin B6, can cause peripheral
neuropathy (Schaumburg et al., 1983). In 2019, Park et al.
discovered that treatment of an auditory neuroblastoma cell line
with a surplus of pyridoxine resulted in elevated ROS levels,
mitochondrial dysfunction, and upregulation of UPR (including
p-PERK, GRP78, CHOP, and caspase-12; Park et al., 2019).
This indicates that the administration of excess pyridoxine may
contribute to the impairment of auditory nerve cells through

the ERS-induced apoptotic pathway, potentially leading to SNHL.
However, whether apoptosis is directly mediated by ERS still needs
to be further verified.

3.3 Age-related hearing loss

Age-related hearing loss (ARHL) arises in conjunction with
the natural progression of aging, resulting in significant morbidity
(Eggermont et al., 2017). Chronic ERS is part of the aging process.
Wang et al. found that accumulation of ubiquitinated proteins,
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TABLE 1 Potential targets and treatment strategies for ERS-mediated SNHL.

Target Subject Inner ear cells Strategy Inducement
of HL

References

CHOP HEI-OC1 cells — Knockdown of chop Cisplatin Qu et al., 2023

erl mice OHCs, SGNs and stria
vascularis

Sal DFNB12 and USH Hu et al., 2016

C57BL/6 mice, HEI-OC1 cells Cochlear HCs PTV Neomycin Wu et al., 2022

Cochlear explants – TUDCA Gentamycin Jia et al., 2018

BiP erl mice OHCs, SGNs and stria
vascularis

Sal DFNB12 and USH Hu et al., 2016

C57BL/6 mice, HEI-OC1 cells Cochlear HCs PTV Neomycin Wu et al., 2022

Cochlear explants — TUDCA Gentamycin Jia et al., 2018

PERK HEI-OC1 cells — PTV Neomycin Wu et al., 2022

eIF2α Mouse cochlear explants and HEI-OC1 cells — Sal Cisplatin Lu et al., 2022

HEI-OC1 cells — PTV Neomycin Wu et al., 2022

ATF4 OC-1 cells — Knockdown of chop Cisplatin Qu et al., 2023

Caspase-3 erl mice OHCs, SGNs and stria
vascularis

Sal DFNB12 and USH Hu et al., 2016

Cochlear explants — TUDCA Gentamycin Jia et al., 2018

PRMT3 HEI-OC1 cells — Knockdown of PRMT3 Cisplatin Lim et al., 2019

CB1R, FAAH1 HEI-OC1 cells — CB1R agonist, FAAH1
inhibitor

Cisplatin Lim et al., 2019

HSP90AA1 Comprehensive single-cell transcriptomic
atlas of mouse cochlear aging at
high-temporal resolution

Stria vascularis Active endogenous
HSP90AA1

Age Sun et al., 2023

FAM134B HEI-OC1 cells — Knockdown of FAM134B Cisplatin Yang et al., 2023

as well as reduced expression of BiP and high expression of
CHOP and caspase3/9, occurs in the cochlea of mice aged 12–
14 months (Wang et al., 2015). Lee et al. conducted in vitro and
in vivo experiments, which revealed that in the cochlea aging
causes a substantial reduction in the expression of heat shock
proteins, including HSF1, HSP70, and HSP40, all of which are
essential for preserving ER balance; in addition, expression of p-
eIF2α and CHOP increases as that of HSF1 falls (Lee et al., 2021).
These studies suggest that ERS is involved in the progression of
cochlear senescence and that strategies aimed at reducing ERS-
dependent apoptosis in the aging cochlea could play a role in
preventing ARHL.

3.4 Noise-induced hearing loss

Noise-induced hearing loss (NIHL) is the most common
occupational disease inmany Asian countries (Fuente andHickson,
2011). Previous studies have confirmed that cochlear cells undergo
apoptosis and necrosis during the pathogenesis of NIHL, although
the exact process is unclear. One study in guinea pigs explored the
role of ERS in cochlear damage induced by exposure to intense
noise. Both ER-related BiP and CHOP levels in the cochlea were
elevated significantly after exposure to noise, accompanied by
marked apoptosis, necrosis, and degeneration of OHCs (Xue et al.,
2016). Researchers speculated that the ERS response was activated
by inducing BiP to mitigate noise-induced damage to cochlear
cells and that the CHOP pathway was activated to eliminate the
most severely injured cells (Xue et al., 2016). TMTC4 is expressed

extensively in the ER and plays a role in regulating Ca2+ dynamics
and the UPR (Li et al., 2018). Inactivation of the gene tmtc4

led to the development of NIHL in mice; however, concomitant
knockdown of chop attenuates HL (Li et al., 2018). These studies
demonstrate the direct link between NIHL and ERS, but the role of
ERS in NIHL still requires further research for clarification.

To sum up the above, hearing loss caused by genetics, drugs,
noise and aging is related to ER homeostasis in inner ear cells,
and furthermore, most studies have shown that SNHL is positively
correlated with ERS. It is important to note that studies still lack
evidence of a direct causal relationship between SNHL and ERS.
Although the specific mechanism remains uncertain, ERS shows
a strong correlation with SNHL. Thus, it appears that ERS has
considerable potentiality for the study of mechanisms underlying
SNHL and provides new potential targets for the treatment.

4 Potential targets and strategies
against ERS for SNHL

In recent years, scientists and clinicians have conducted
numerous studies on ERS-mediated mechanisms of SNHL
to identify therapeutic measures that target the mechanism
underlying activation of the ERS response (Figure 4). The UPR
is an important pathway in ERS-induced SNHL, in which the
PERK/eIF2α/ATF4 pathway plays a central role. Several novel
treatment strategies for SNHL have been proposed (Table 1).
Salubrinal (Sal), a selective protein phosphatase I complex
inhibitor, reduces HCs apoptosis in erl mice by inhibiting
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TABLE 2 List of abbreviations.

Abbreviation Full name

ABR Auditory brainstem response

AARE Amino acid response element

AmAn Aminoglycoside antibiotic

APAP Acetaminophen

ARHL Age-related hearing loss

ASK1 Apoptosis signal-regulated kinase 1

ATF4 Activating transcription factor 4

ATF6 Activating transcription factor 6

ATG5 autophagy-regulated gene 5

Bcl-2 B cell lymphoma 2

Bcl-xL B-cell lymphoma-extra large

CB1R Cannabinoid 1 receptor

CHOP C/EBP- homologous protein

DFNB12 Nonsyndromic autosomal recessive deafness

eIF2α Eukaryotic translation initiation factor 2 subunit-α

ER Endoplasmic reticulum

ERAD ER-associated degradation

ERO1α Endoplasmic reticulum oxidoreductase 1α

ERS Endoplasmic reticulum stress

FoxO1 Forkhead box O1

GADD34 growth arrest and DNA damage-inducible 34

HC Hair cell

HL Hearing loss

IP3R Inositol 1,4,5-triphosphate receptor type 3

IRE1α Inositol-requiring enzyme 1α

JNK C-Jun N-terminal kinase

MANF Mesencephalic astrocyte-derived neurotrophic factor

MAP1LC3B Microtubule-associated protein 1 light chain 3β

NAPQI N-acetyl-P-benzoquinone imine

NF-κB Nuclear factor- κB

NIHL Noise-induced hearing loss

NRF2 Nuclear factor erythroid 2-related factor

OHCs Outer hair cells

PERK Pancreatic endoplasmic reticulum kinase

PRMT3 Protein arginine methyltransferase 3

PTV Pitavastatin

RIDD Regulated IRE1-dependent decay

RIPK1 Receptor-interacting serine/threonine-protein kinase 1

ROS Reactive oxygen species

S1P Site-1 protease

S2P Site-2 protease

(Continued)

TABLE 2 (Continued)

Abbreviation Full name

Sal Salubrinal

SGNs spiral ganglion neurons

SNHL Sensorineural hearing loss

TMEM30A Transmembrane protein 30A

TUDCA Taurine ursodeoxycholic acid

UFP/MFP Unfolded proteins/Misfolded proteins

UPR Unfolded protein response

USH Usher syndrome

USH1D Usher syndrome type 1D

XBP1 X box binding protein 1

expression of BiP, CHOP, and caspase-3 in OHCs, SGNs, and stria
vascularis (Hu et al., 2016). Thus, Sal is a promising option for
patients with early DFNB12 and USH. Sal also inhibits cisplatin-
induced cochlear cell apoptosis by dephosphorylating eIF2α, and
by decreasing BiP and CHOP expression (Lu et al., 2022).
Pitavastatin (PTV), a new-generation lipophilic statin, attenuates
neomycin-induced ototoxicity by reducing the phosphorylation
of PERK and eIF2α (Wu et al., 2022). Meanwhile, in vivo and
in vitro experiments show that PTV reduces the expression of
GRP78 and CHOP to suppress neomycin-induced ERS (Wu
et al., 2022). Taurine ursodeoxycholic acid (TUDCA) is a co-
cholestatic acid. Researchers found that the addition of TUDCA to
gentamicin-induced cochlear explants alleviates ERS by inhibiting
overexpression of BiP, CHOP, and caspase 3 (Jia et al., 2018).
Studies also show that TUDCA reduces cisplatin-induced SNHL
by increasing the efficacy of UFP/MFP processing in the ER
(Wen et al., 2021). In 2023, Sun et al. conducted single-cell
transcription experiments on cells from the cochlea and found that:
(1) loss of protein homeostasis and apoptosis are the hallmark
of ARHL; and (2) upregulation of the ER chaperone protein,
HSP90AA1, alleviates damage to the cochlea caused by aging (Sun
et al., 2023). Interestingly, it is the UPR that connects the loss
of protein homeostasis with apoptosis. This suggests that ERS-
induced apoptosis via UPR has enormous research potential in the
context of ARHL. Inhibiting the apoptosismediated bymaladaptive
UPR could be a novel treatment option for ARHL.

5 Conclusions and future prospects

ER stress is a ubiquitous etiological mechanism involved
in a variety of disease processes. Under the influence of
genetic and environmental factors, ERS participates in the
pathogenesis of SNHL by regulating cell function and fate through
extensive communication with the biological processes behind
gene expression, oxidative stress, apoptosis, inflammation and
autophagy. An increasing amount of research has elucidated that
ERS-induced cell death in the inner ear is essential in SNHL,
suggesting a positive correlation between ERS and SNHL; however,
the specific causal relationship between the two has yet to be
clarified. There still remain several unclear questions, such as which
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cells in the inner ear are mainly affected by ERS and through which
specific pathway does the UPR cause damage to the inner ear? Even
though numerous medications appear to reduce ERS, they have
only been tested in animals and cells, and there remains a notable
lack of clinical trials. To sum up, ERS is a novel therapeutic focus
in the context of SNHL and has tremendous research potential.
The question of how to balance the protective and disease-causing
arms of theUPR needs to be considered when identifying/designing
new drugs for SNHL treatment. All abbreviations of specialized
terminology included in this article are summarized in a table
(Table 2).
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