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The role of Foxo3a in
neuron-mediated cognitive
impairment
Qin-Qin Liu, Gui-Hua Wu, Xiao-Chun Wang, Xiao-Wen Xiong,
Rui-Wang and Bao-Le Yao*

Department of Rehabilitation Medicine, Ganzhou People’s Hospital, Ganzhou, China

Cognitive impairment (COI) is a prevalent complication across a spectrum

of brain disorders, underpinned by intricate mechanisms yet to be fully

elucidated. Neurons, the principal cell population of the nervous system,

orchestrate cognitive processes and govern cognitive balance. Extensive

inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory

cascade of Foxo3a transactivation implicates multiple downstream signaling

pathways encompassing mitochondrial function, oxidative stress, autophagy,

and apoptosis, collectively affecting neuronal activity. Notably, the expression

and activity profile of neuronal Foxo3a are subject to modulation via various

modalities, including methylation of promoter, phosphorylation and acetylation

of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT

family, and diverse micro-RNAs intricately interface with Foxo3a, engendering

alterations in neuronal function. Through several downstream routes, Foxo3a

regulates neuronal dynamics, thereby modulating the onset or amelioration

of COI in Alzheimer’s disease, stroke, ischemic brain injury, Parkinson’s

disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive

target, and clinical drugs or multiple small molecules have been preliminarily

shown to have cognitive-enhancing effects that indirectly affect Foxo3a.

Particularly noteworthy are multiple randomized, controlled, placebo clinical

trials illustrating the significant cognitive enhancement achievable through

autophagy modulation. Here, we discussed the role of Foxo3a in neuron-

mediated COI and common cognitively impaired diseases.
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1 Introduction

Cognitive impairment (COI) is a brain disorder involved in impaired memory,
language, reasoning, calculation, executive ability, and attention. Conditions such as
Alzheimer’s disease (AD), stroke, ischemic brain injury (IBI), Parkinson (PA), and
traumatic brain injury (TBI) are representative examples of COI disorders. Persistent COI
seriously affects the recovery of patients’ ability to live autonomously. The development of
COI is closely associated with damage in specific brain regions such as the hippocampus
(Lisman et al., 2017), dorsolateral prefrontal cortex (Joyce et al., 2024), lateral amygdala
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(Qin et al., 2024), and pyriform cortex (Qin et al., 2024). In the
field of brain rehabilitation therapy in recent years, the restoration
of cognitive function has garnered significant recognition as a
fundamental aspect of recovering brain functionality. Nevertheless,
cognition encompasses a vast array of disorders with intricate
etiology, and the precise underlying causes of COI remain
incompletely explicated at present.

The core cause of COI pathogenesis at the cellular level involves
massive neuronal death and dysfunction (Balakrishnan et al.,
2024; Li et al., 2024). Neurons, the predominant cellular entities
within the nervous system, establish synaptic connections with
one another to form intricate neural circuits, critical for regulating
behavioral development and consciousness (Cohen and Greenberg,
2008; Dow-Edwards et al., 2019; Südhof, 2021). Synapses are
specialized adhesions for intercellular communication, either
chemical or electrical (Miller et al., 2015; Nagy et al., 2018).
Chemical synapses rely on various neurotransmitters, including
dopamine and epinephrine, etc., to convey signals between
neurons (Bito, 2010). Electrical synapses facilitate interneuronal
transmission via direct ionic and metabolic coupling facilitated
by gap junctions (Shimizu and Stopfer, 2013). Furthermore,
interneuronal connections exhibit plasticity, which exert influence
over the strength and durability of interneuronal communication,
thereby modulating various facets of cognition (Amtul, 2015).
Notably, neuronal survival has emerged as a pivotal endogenous
factor implicated in the onset of numerous brain disorders, such
as AD, stroke, PA, TBI, etc, contributing to the generation of COI.
Thus, elucidating the modulation of neuronal function represents a
crucial breakthrough in the amelioration of COI.

Forkhead box O3 (Foxo3a), also known as Foxo3, is a member
of the Foxo family of transcription factors, which includes Foxo1,
Foxo2, Foxo3, and Foxo4. Among these, Foxo3a has been the most
extensively studied and recognized. Recent research has delved
deeply into the role of Foxo3a in brain diseases, particularly its
connection to COI. Foxo3a is known to be expressed in key brain
regions like the hippocampus, frontal lobe, and occipital lobe,
which play crucial roles in cognitive function (Braidy et al., 2015;
Yuan et al., 2016; Cheng et al., 2018). In response to stress, intra-
neuronal Foxo3a can activate or inhibit transcriptional regulation
by shuttling between the nucleus and cytoplasm (Bahia et al., 2012).
Furthermore, as a transcription factor, Foxo3a can also impact
neuronal mitochondria, modulate mitochondrial DNA expression,
boost mitochondrial adenosine triphosphate (ATP) production and
COX activity, and improve mitochondrial function, all of which
influence cognitive processes in the brain (Caballero-Caballero
et al., 2013; Shi et al., 2016b). By coordinating various downstream
signals such as autophagy, inflammation, mitochondrial function,
oxidative stress, and apoptosis, Foxo3a has the ability to regulate
neuronal behavior and ultimately impact cognition (Wong et al.,
2013; Wang et al., 2021; Fu et al., 2023).

Foxo3a has an important role in neuronal response to
external stimuli (Maiese et al., 2007; Polter et al., 2009).
Individual behavioral changes significantly stimulate cortical
Foxo3a activation (Zhou et al., 2012). In the acute immobilization
stress (AIS) model, the expressions of peroxidase (Prx) III and Mn-
SOD in neurons are upregulated by enhancing Foxo3a expression,
forming an antioxidant defense (Jeong et al., 2011). In AD-like
brain tissues, nuclear retention of Foxo3a is inversely correlated
with DNA damage while positively associated with glutamine
synthetase levels and cognitive repair efficacy (Fluteau et al., 2015).

As a vital neuronal mediator (Orellana et al., 2023), Foxo3a is
essential for the maintenance of neuronal survival. Knockdown
of Foxo3a results in substantial neuronal apoptosis in embryonic
zebrafish development (Peng et al., 2010). The level of Foxo3a
expression varies as age in response to age-related brain damage
(Sahin et al., 2013; Rollo et al., 2021). However, excessive activation
of Foxo3a can lead to neuronal damage and COI. The regulatory
role of Foxo3a on neurons varies significantly across different
brain disease contexts. This review mainly discussed intricate
relationship between Foxo3a and cognitive disorders, focusing on
its effect on neuron.

2 The role of neuron in COI

Neuronal damage is the pathogenetic basis of COI in
brain diseases (Figure 1). Elevated levels of neuronal death,
inflammation, and oxidative stress have been observed in the
hippocampal region of the brain in neurodegenerative conditions
such as AD and PA (Ansari et al., 2024; Ramírez-Mendoza et al.,
2024). The hippocampus, which is responsible for the storage and
orientation of short-term memory, is one of the main anatomical
structures involved in the formation of cognitive abilities. The
hippocampal tissue mitochondria from AD individuals showed
higher levels of reactive oxygen species (ROS), mitochondrial
depolarization, reduced ATP, and calcium processing deficits
(Olesen et al., 2024). Aging is a key trigger of cognitive
deficits. Brain aging develops with age and is accompanied by
increased levels of tissue inflammation, with neurons becoming
progressively inflamed (Siddiqui et al., 2024). In an inflammatory
milieu, activation of nuclear factor kappa B (NF-κB) and
NLR family pyrin domain containing 3 (NLRP3) inflammasome
leads to upregulation of pro-inflammatory cytokines such as
tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and
interleukin-1 beta (IL-1β), exacerbating neuronal apoptosis and
worsening cognitive impairment (Jin et al., 2019; Liu et al., 2019).
Furthermore, neuroinflammation results in detrimental outcomes
including mitochondrial fragmentation (Harland et al., 2020)
and endoplasmic reticulum stress (Huang et al., 2022). Various
neurotoxins, such as perfluorooctane sulfonate (PFOS), 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and domoic acid,
can trigger neuronal damage (Gratuze et al., 2019; Wu et al.,
2019; Petroff et al., 2022; Figure 1). In particular, aluminum,
is known to induce severe cognitive deficits through persistent
oxidative stress, increased N6-methyladenosine modification of
brain-derived neurotrophic factor mRNA, and promotion of
neuronal apoptosis (Song et al., 2024; Figure 1). Additionally,
exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has
been linked to cerebral and cognitive impairments, with TCDD
activating caspase-3 and leading to extensive neuronal apoptosis
(Xu et al., 2014; Figure 1). Recent research has shown that chronic
exposure to environmental contaminants tris (1-chloro-2-propyl)
phosphate (TCPP) can initiate abnormal neuronal oxidative stress
and mitochondrial dysfunction, causing significant memory and
cognitive deficits in zebrafish (Xia et al., 2021; Figure 1). Notably,
depletion of dopamine (DA) neurons disrupts spatial learning,
spatial memory, and object memory capacities (Morgan et al., 2015;
Figure 1). These findings indicated that neuronal damage plays a
pivotal role in the development of COI.
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FIGURE 1

Effects of common COI-inducing agents on neurons and cognition.

3 The feature of Foxo3a

The Foxo3a gene is located on the human chromosome
6q21 and spans a total of 124,950 bases. The Foxo3a protein
is comprised of 673 amino acids, with a molecular weight of
71,227 Da, displaying a distinct structural regularity (Figure 2).
The core of the Foxo3a protein structure is featured by a highly
conserved N-terminal Forkhead-associated domain (FAD) and a
C-terminal Transactivation domain (TAD). The FAD is responsible
for DNA interactions and binding, while the TAD serves as
the fundamental structural domain for the transactivation of
target genes by Foxo3a. Bidirectional movement between the
nucleus and the cytoplasm is necessary for Foxo3a to exert
transcriptional activation or repression activity. To fulfill this
localization requirement, Foxo3a proteins typically contain two
nuclear localization signal domains (NLSs) and one nuclear export
signal domain (NESs).

Foxo3a binds to gene sequences containing 5′-TAAAA-3′ to
exert its transcriptional effects, playing a key role in regulating
various cellular processes such as differentiation and apoptosis (Li
et al., 2006; Ruankham et al., 2023). For instance, Foxo3a interacts
with specific sequences in the promoter region of the pro-apoptotic
protein Bim, impacting cell survival (Carbajo-Pescador et al., 2013).
Notably, Foxo3a directly regulates transcription of mitochondrial
DNA (mtDNA) to mediate mitochondrial respiration (Peserico
et al., 2013). The transcriptional regulatory activity of Foxo3a
requires the formation of polymeric complexes with multiple
proteins (Figure 3). For example, the STAT3/Foxo3a signaling
pathway has been found to mitigate excessive autophagy in
neuronal PC12 cells (Xu et al., 2023; Figure 3). It has been
reported that STAT3 cooperates with 14-3-3 to engage with Foxo3a,
thereby sequestering Foxo3a within the cytosol and repressing
its activity (Oh et al., 2012). Active aggregates centered on
Foxo3a play a critical role in the transcriptional regulation of
autophagy genes and the dynamics of autophagy (Xu et al.,
2023). Inhibition of Foxo3a is a crucial step for ApoE to
inhibit autophagy in the brain (Sohn et al., 2021). Additionally,
Foxo3a phosphorylates or acetylates itself by binding to other
proteins to regulate its intracellular localization (Figure 3). In
cerebellar granule neurons, Foxo3a forms a complex with histone
deacetylase 2 (HDAC2), which modulates P21 transcriptional

expression and affects apoptosis induced by oxidative stress (Peng
et al., 2015). Intriguingly, the interaction between Foxo3a and
HDAC2 regulates the acetylation level of histone H4K16 in
the p21 promoter region (Peng et al., 2015; Figure 3). SIRT3
serves as a classic acetylation repressor of Foxo3a. It has been
suggested that SIRT3 may be involved in deacetylating Foxo3a
to regulate Pink1/Parkin-associated mitochondrial autophagy in
the brain (Wei et al., 2023). Thus, the interaction of Foxo3a
with various factors is a critical step in modulating intracellular
location. Besides, Foxo3a can also bind other proteins to
alter their activity. It has been demonstrated that Foxo3a
binds NF-κB to inhibit its nuclear translocation and reduces
the exacerbation of inflammation caused by cerebral ischemia
(Tan et al., 2021; Figure 3).

4 Regulation of neuronal Foxo3a

4.1 Methylation of promoter regions

The level of methylation in the promoter region of Foxo3a
directly correlates with its expression. In cases of ischemia-induced
neuronal apoptosis, there is a notable increase in methylation of the
Foxo3a gene, leading to a significant suppression of its expression
(Meng et al., 2022). Methyl CpG-binding protein 2 (MeCP2) is
recruited to the promoter region of neuronal Foxo3a to enhance
methylation levels (Meng et al., 2022). MeCP2 is recognized for its
robust affinity for methylated DNA and its role in neurons has been
extensively investigated. Mutant MeCP2 has been shown to disrupt
functional connectivity among cortical regions in adult mice (Rahn
et al., 2023). In neuronal cells, MeCP2 requires binding to TCF20
for proper function (Zhou et al., 2022). Dysregulation of TCF20
has also been linked to neurogenesis defects in the mouse cortex
(Feng et al., 2020).

4.2 Phosphorylation

The transcriptional activity and subcellular localization of the
Foxo3a protein are contingent upon various forms of modification,
generally including phosphorylation, acetylation, methylation,
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FIGURE 2

Schematic representation of the active structural domain of Foxo3a protein.

FIGURE 3

The effect of interaction of neuronal Foxo3a with other proteins on Foxo3a and neurons.

and ubiquitination (Wang et al., 2017). Phosphorylation, a
predominant inhibitory mechanism for Foxo3a and typically
occurs at sites such as Thr-32 (Liu H. et al., 2014), Ser-7 (Ho
et al., 2012), and Ser-253 (Li et al., 2006). Upon phosphorylation
by the upstream kinase Akt, Foxo3a interacts with 14-3-3 proteins
(Sanphui and Biswas, 2013), forming a complex that sequesters
it in the cytosol, maintaining an inactive state. In neural-
like PC12 cells, attenuation of FOXO3 phosphorylation and
reduced Foxo3a recruitment to the promoter region of the pro-
apoptotic protein bim were observed following Akt activation
and ubiquitination (Xu et al., 2017). Treatment with thapsigargin,
an endoplasmic reticulum (ERS) inducer (Figure 3), led to a
marked decrease in Thr-32 phosphorylation of Foxo3a and an
elevated nuclear-to-cytoplasmic Foxo3a ratio in neuroblastoma
cells (Zhu et al., 2004). The diverse activities of the same
protein resulting from phosphorylation at distinct sites by various
phosphatases may yield contrasting outcomes. Nevertheless,
Foxo3a phosphorylation does not invariably signify inactivation
and is intricately linked to the interacting protein. For instance,
Foxo3a can be phosphorylated and translocated to the nucleus to
mediate neuronal death induced by oligomeric β-amyloid (Aβ)
through mammalian sterile 20-like kinase 1 (MST1) (Sanphui
and Biswas, 2013; Figure 3). The pro-transcriptional function of
Foxo3a phosphorylated by Cdk5 has also been documented in
neurons (Shi et al., 2016a; Figure 3). Conversely, Akt-mediated
phosphorylation of Foxo3a represents a prevailing inhibitory

mechanism in neuronal contexts (Wu et al., 2009; Zeng et al., 2017;
Dong et al., 2018; Figure 4).

4.3 Acetylation

Acetylation constitutes a vital mechanism for the
transcriptional activation of Foxo3a proteins. The Sirtuin
(Sirt) family, renowned deacetylases, play a pivotal role in
regulating the acetylation of neuronal Foxo3a (Figure 3). In
neuroblastoma cells treated with ATRA, high expression of Sirt1
was accompanied by increased Foxo3a deacetylation (Kim et al.,
2009). It was further found that in manganese-treated PC12
cells, activation of SIRT1 significantly inhibited the activity of
Foxo3a (Zhao et al., 2019). However, acetylation also exerts an
inhibitory effect on Foxo3a activation. Downregulation of Sirt1
expression was reported to significantly reduce Foxo3a activation
in lidocaine-stimulated PC12 cells (Zheng et al., 2020). The
concomitant high expression of Foxo3a and Sirt1 was detected in
Parkinson’s-induced neuronal cells (Ubaid et al., 2022). Synergistic
interaction of SIRT3 with Foxo3a is critical for the inhibition
of hydrogen peroxide-induced oxidative stress in neurons (Liu
et al., 2020; Ruankham et al., 2021; Yang et al., 2022). Sirt3-
mediated deacetylation of Foxo3a regulates neuronal survival
by the modulation of acetylation process (Mishra et al., 2018).
Consequently, the functional and active state of SIRT-regulated
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FIGURE 4

A mechanism of neuronal regulation through Foxo3a.

Foxo3a acetylation is contingent upon the contextual conditions
of treatment.

4.4 Upstream pathway of regulating
neuronal Foxo3a

Numerous upstream pathways intricately intertwine with
Foxo3a activity. AKT emerges as a ubiquitous regulator,
exerting influence over Foxo3a through phosphorylation,
thereby modulating its functionality. The PI3K/AKT axis has
garnered attention for its role in orchestrating neuronal Foxo3a-
mediated transcriptional regulation (Figure 4). Within the intricate
network of the IGF1 signaling cascade, IGF1, IGF1R, and PI3K

emerge as pivotal members. Notably, attenuation of IGF1R
expression markedly diminishes AKT and Foxo3a phosphorylation
within the murine brain (Liang et al., 2011). Intriguingly, the
response of AKT/Foxo3a interplay to endoplasmic reticulum
stress (ERS) is perturbed upon ablation of the ERS protein
CHOP (Ghosh et al., 2012). Additionally, the upstream factor
Triggering receptor expressed on myeloid cells 2 (TREM2) has
been shown to potently activate Foxo3a within the AD brain
tissues via the transduction of PI3K/AKT signaling (Wang Y.
et al., 2020). In glioma stem cells, BMP4 stimulation elicits a
decrement in p-AKT/p-Foxo3a signaling alongside an increase
in the neuronal marker β-Tubulin III expression (Ciechomska
et al., 2020). Moreover, the AMPK/Foxo3a axis exerts a pivotal
role in governing autophagy within PC12 cells (He et al., 2022),
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with the AKT inhibitor SC66 demonstrating efficacy in impeding
AMPK activation through modulation of the interaction between
EGFR and autophagy protein P62 (Hou et al., 2022). Furthermore,
heightened expression of FUN14 Domain Containing 2 (FUNDC2)
promotes mitochondrial transport of phosphatidylinositol-3,4,5-
trisphosphate (PIP3), which modulates neuronal AkT/Foxo3a
signaling in a model of cerebral ischemia/reperfusion, consequently
increasing the expression of bim (Shi et al., 2021). SGK1, as an
AKT analog, has also been noted to synergize with AKT to
mediate neuronal activation of Foxo3a (Sahin et al., 2013).
It can be concluded that AKT, as a convergence point of the
upstream pathway, has a profound impact on the neuronal cellular
localization and functionality of Foxo3a (Sahin et al., 2013).

SIRT-centered signaling represents another pivotal upstream
pathway influencing Foxo3a activity. Activation of SIRT3 leads
to the deacetylation of Mn-superoxide dismutase (MnSOD),
consequently elevating Foxo3a levels in ammonia-neurotoxic
animal models (Anamika et al., 2023). Intriguingly, evidence
suggests that SIRT1 activation may be dependent on PI3K/AKT
signaling (Duan et al., 2019; Figure 4). Conversely, SIRT2
inhibitors AK1 and AGK2 have demonstrated the capacity to
attenuate the p-AKT/Foxo3a signaling axis in ischemic stroke
models (Duan et al., 2019). Simultaneous overexpression of
SIRT1 and Foxo3a markedly mitigates oxidative stress induced
by ischemia-reperfusion (Wu et al., 2020). However, during
hypoxia-induced neuronal apoptosis, PARP1-dependent inhibition
of NAD(+)/SIRT1 signaling promotes the acetylation and nuclear
translocation of Foxo3a, and enhances the mRNA expression of
Bcl-2/adenovirus E1B 19 kDa-interacting protein (Lu et al., 2014).
Predictive E2F binding sites within the FOXO gene promoter
region are noted. Moreover, the overexpression of E2F-1 increases
the level of Foxo3a to modulate neuronal apoptosis (Nowak et al.,
2007). In hepatocellular carcinoma cells, SIRT6 suppresses the
transcriptional activity of E2F-1 (Ran et al., 2016), while the effect of
this interaction on neuronal survival mediated by Foxo3a remains
unexplored. Although SIRT-mediated deacetylation of neuronal
Foxo3a has been extensively investigated, its effects necessitate
contextual consideration within disease backgrounds and stimulus
conditions.

MicroRNAs (miRNAs) are a class of non-coding single-
stranded RNA molecules encoded by endogenous genes that
regulate the post-transcriptional activity of genes. In recent years,
miRNAs have also been extensively studied for their direct or
indirect involvement in Foxo3a regulation of neurons. Such as miR-
132/212, miRNA-7/211 have been observed to directly or indirectly
regulate key molecules of the AKT signaling pathway, PTEN,
Foxo3a as well as P300, to regulate the overall state of PI3K/AKT
signaling and to affect the neuronal cellular activity (Wong et al.,
2013; Salama et al., 2020). Phosphatase and tensin homolog (PTEN)
inhibits the phosphorylation activation of neuronal Foxo3a by
counteracting PI3K/AKT signaling (Zhao Y. et al., 2018; Zhao et al.,
2021). Especially, the inhibition of PI3K/AKT/Foxo3a by miRNA-
132 was shown to be an important aspect of sevoflurane-induced
neuronal apoptosis (Dong et al., 2018). Additionally, miRNA-132
also affects the activity of Foxo3a by regulating PTEN (Zhao Y.
et al., 2018). Several miRNAs such as miR-27a, miR-153-3p and
miR-132-3p also directly bind to Foxo3a 3’UTR to manipulate its
transcription in neurons (Sun et al., 2017; Wang H. et al., 2020;
Fu et al., 2022).

5 Role of Foxo3a in cognitive
disorders

Progressive COI associated with aging have emerged as a
widely acknowledged concern. The full length Foxo3a isoform
expression declined with age (Frankum et al., 2022). For
example, Foxo3a expression is significantly down-regulated in
the representative age-related disease intervertebral disc (IVD)
degeneration (Alvarez-Garcia et al., 2017). The inhibition of
PI3K/Akt signaling is accompanied by an increase of age-
related renal Foxo3a level (Choi et al., 2012). The expression
level of unphosphorylated Foxo3a was negatively correlated with
increased age-related mortality (Rollo et al., 2021). SIRT1 is
an acetylase of Foxo3a, and downregulation of its level causes
significant acceleration of renal aging (Chuang et al., 2017). More
importantly, Genetic inquiries have firmly linked mutated Foxo3a
with aging and longevity (Brooks-Wilson, 2013). Especially, the
rs2802292, rs2764264 and rs13217795 variants of FOXO3 have
been associated with extreme longevity (Frankum et al., 2022).
Investigations into Foxo3a’s involvement in aging-associated COI
have also been undertaken (Baek et al., 2023). AD is a geriatric
neurodegenerative disease characterized by representative COI.
Clinical trials have shown that serum Foxo3a levels are significantly
lower in AD patients compared to those with mild COI, suggesting
its potential diagnostic utility in assessing AD risk (Pradhan
et al., 2020). Cox proportional hazards modeling predicted that
FOXO3 rs2802292 has the potential to inhibit the risk of the
advance in AD in hypertensive patients (Chen R. et al., 2023).
Possible mechanisms involve its reduction of blood-borne debris
accumulation, increased oxidative stress, and inflammatory factor
level in the brain due to hypertension-induced disruption of the
blood-brain barrier (Chen R. et al., 2023). Further evidence suggests
that inhibition of Foxo3a via PI3K/AKT exacerbates the onset of
COI in AD mice (Wang Y. et al., 2020), mechanistically which
may be related to the modulation of Foxo3a on mitochondrial
autophagy for cognitive preservation (Zhou et al., 2024).

Foxo3a also exerts noticeable effects on COI that are
not solely attributed to aging. In rats with severe cerebral
ischemia/reperfusion-induced COI, a significant decrease in
Foxo3a expression was observed, which was subsequently reversed
after rehabilitation training (Jin et al., 2021). However, excessive
expression of Foxo3a may also negatively impact cognition. TCDD,
a common neurotoxin known to impede brain development
and promote cognitive impairment, led to marked upregulation
of Foxo3a expression in PC12 cells, accompanied by increased
apoptosis (Xu et al., 2014). Elevated MST1 expression was detected
in mice exhibiting impaired spatial memory, and inhibition of
MST1 not only deactivated Foxo3a but also mitigated the memory
deficits (Shang et al., 2020). PFOS, an environmental pollutant
with widespread occurrence, has been linked to cognitive disorders.
Suppression of Foxo3a prevented PFOS-induced apoptosis in PC12
cells (Wu et al., 2019). Excessive autophagy-induced damage to
the hippocampus contributes to learning and memory deficits and
represents an intrinsic factor underlying cognitive dysregulation in
stroke (Gao et al., 2019). Abnormally elevated expression of Foxo3a
has been observed in hippocampal neural stem cells affected by
zinc deficiency (Han et al., 2015). Remarkably, in the aging brain,
hippocampal neurons in the CA1 region exhibited heightened
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levels of active Foxo3a due to reduced Akt activity (Jackson et al.,
2009). Antagonizing the PI3K/AKT/p-Foxo3a signaling cascade
through interference of upstream PTEN results in enhanced pro-
autophagic activation by Foxo3a, thereby promoting COI in stroke
(Zhao et al., 2021).

Foxo3a is intricately connected with numerous upstream
and downstream pathways. Various stimuli can induce diverse
states and functions of Foxo3a, leading to activation of different
downstream targets and thereby exerting distinct effects on
neuronal states. Consequently, Foxo3a exhibits diverse effects on
different types of COI. Transcriptionally, Foxo3a regulates the
expression of several pro-apoptotic factors, including Puma and
Bim, both of which are BH3-only pro-apoptotic proteins that
synergistically induce neuronal apoptosis. Notably, treatment with
Aβ has been shown to directly induce transcriptional regulation
of Puma and Bim expression by Foxo3a (Akhter et al., 2014).
Moreover, extrasynaptic NMDA receptors, known inducers of
nuclear translocation of Foxo3a (Dick and Bading, 2010), have been
implicated in neuronal apoptotic processes (Bahia et al., 2012).
Foxo3a has also been implicated in mediating corticosterone-
induced cell death in PC12 cells, which is closely associated
with its activation of pro-apoptotic factor expression (Chang
et al., 2023). Conversely, neuronal SIRT3/Foxo3a signaling is
markedly upregulated in the presence of protective antioxidant
enzymes such as Manganese porphyrins (MnPs) (Cheng et al.,
2015). Notably, activation of Foxo3a enhances the expression
of the antioxidant enzyme glutamine synthetase in the brain
(Fluteau et al., 2015). In summary, Foxo3a modulates the
effects of neuron-mediated cognitive alterations, with assessment
necessitating integration of disease context and downstream
pathways (Table 1).

5.1 The downstream pathway of
regulating AD by Foxo3a

AD is a prevalent neurodegenerative condition affecting the
elderly, characterized by COI. While the aggregation of Aβ and
Tau proteins is commonly implicated in AD pathogenesis, the
precise etiology of the disease remains elusive due to numerous
contributing factors. Foxo3a, a protein extensively studied in the
context of AD neurobiology, exhibits a dual modulatory role in
neuronal regulation (Figure 5). The involvement of Foxo3a in AD
pathophysiology is intricately linked to its interaction with specific
disease triggers. Notably, alterations in these triggers can perturb
Foxo3a-mediated regulation of AD neurological function.

Apolipoprotein E (ApoE) has been widely studied in AD due
to its role in lipid and glucose metabolism, as well as its close
interplay with neural signaling pathways. Dysregulated ApoE is
recognized as a major risk factor for AD (Zhao N. et al., 2018),
with ApoE4 being particularly implicated as the most potent pro-
AD factor (Lanfranco et al., 2020). In AD brain tissues exhibiting
elevated expression of ApoE4, there is a notable increase in the
phosphorylation level of Ser253 on Foxo3a, accompanied by its
suppressed activity (Sohn et al., 2021). The protection of Foxo3a
against APOE-type AD potentially strongly is associated with
autophagy. The disruption of autophagy exacerbate the progression
of AD (Zhang et al., 2021), wherein the activation of Foxo3a exerts

a pivotal role in promoting autophagic processes (Zhou et al.,
2024). Moreover, emerging evidence demonstrated that Foxo3a
mediates neurodegenerative pathways through the activation of
the E3 ubiquitin ligase FBXO32/atrogin-1, thereby modulating
autophagosome formation inhibition in AD.

Aβ, the primary constituent of cortical senile plaques, accrues
with advancing age and represents a pivotal factor implicated in
AD pathology. Aβ dimers have been shown to disrupt synaptic
architecture and function, exerting neurotoxic effects. Notably,
it has been demonstrated that treatment with Aβ upregulates
neuronal Foxo3a expression, thereby directly facilitating the
activation of downstream pro-apoptotic mediators including
Bim, caspase-3, and PUMA (Sanphui and Biswas, 2013; Akhter
et al., 2014; Saha and Biswas, 2015). Gonadotropin-releasing
hormone (GnRH) exhibits notable anti-aging properties and exerts
modulatory effects on neurodegeneration (Wang et al., 2010).
GnRH has been documented to counteract Aβ-induced cytotoxicity
(Marbouti et al., 2020). The modulation of hypothalamic on
aging processes has been widely investigated (Kim and Choe,
2019). It has been elucidated that Aβ impedes GnRH expression
in hypothalamic GnRH neurons by activating Foxo3a through
NF-κB signaling pathways (Shi et al., 2020). Furthermore, Aβ-
mediated dephosphorylation of Foxo3a in hippocampal neurons
leads to its translocation to the mitochondrial nucleus and
subsequent modulation of mtDNA expression, culminating in the
suppression of cytochrome c oxidase subunit 1 (COX1) and ATP
release, thereby precipitating mitochondrial dysfunction (Shi et al.,
2016b). Attenuation of Foxo3a activation emerges as a promising
therapeutic strategy for mitigating Aβ-associated AD pathology
(Qin et al., 2008).

5.2 The downstream pathway of
regulating stroke by Foxo3a

Stroke, characterized by the abrupt rupture of cerebral blood
vessels or vascular obstruction leading to inadequate blood
supply to the brain, results in the impairment of brain tissue.
COI is a frequent complication after a stroke that can lead
to disability, yet comprehensive and standardized rehabilitative
strategies remain elusive (Cumming et al., 2013). The emergence of
COI subsequent to stroke is attributed to structural damage within
key brain regions including the temporal lobe, hippocampus,
and brainstem. Neuronal damage within these regions is posited
as a fundamental cellular mechanism underlying COI (Lipton,
1996). An augmentation of neuronal survival to ameliorate post-
stroke COI represents a primary focus of contemporary research
endeavors.

Ischemic and hemorrhagic strokes represent distinct
pathophysiological entities. The overexpression of Foxo3a has
been shown to impede the neurorestorative effects of artesunate
following middle cerebral artery occlusion (MCAO) (Zhang et al.,
2022), underscoring its role in exacerbating MCAO-induced
neuronal injury, partly through dysregulation of autophagy
(Xie et al., 2022). Conversely, activation of SIRT1 confers
neuroprotection in MCAO/R rats, implicating the SIRT1/Foxo3a
axis as a promising therapeutic target for MCAO (Tan et al.,
2024). Furthermore, Foxo3a exerts influence in the context of
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TABLE 1 The role of Foxo3a in major models of COI was summarized.

Diseases Model in vivo
or in vitro

Downstream pathway Biological functions Potential
effect on COI

References

AD Apoe4 mice Foxo3a upregulates the expressions of
autophagy and mitophagy

Foxo3a ameliorates
neuroinflammation

↑ Sohn et al., 2021; Zhou
et al., 2024

Aβ-stimulated
neurons

Foxo3a upregulates expressions of
bim, puma and caspases-3

Foxo3a induces apoptosis of
neurons

↓ Sanphui and Biswas,
2013; Akhter et al.,
2014; Saha and Biswas,
2015

Stroke MCAO/R rats Foxo3a alleviates mitochondrial
oxidative damage through increasing
MnSOD expression

Foxo3a inhibits neurological
damage

↑ Xie et al., 2022

MCAO/R rats Foxo3a suppressed the expressions of
BRCC3 and NLRP3

Foxo3a alleviates oxidative
stress and
neuroinflammatory
responses

↑ Tan et al., 2024

tMCAO rats Foxo3a promotes the activity of CREB
factor

Foxo3a attenuates
neuroinflammatory
responses

↑ Chen B. et al., 2023

IBI Ovariectomized
female rats

High expression of Foxo3a is
accompanied by high level of
caspase-3

Foxo3a induces apoptosis of
neurons

↓ Jover-Mengual et al.,
2010

Hypoxia-ischemia
rats

Foxo3a upregulates the expressions of
bim and caspase-3

Foxo3a triggers apoptosis of
neurons

↓ Li et al., 2009, 2013,
2017

Cerebral I/R mice Foxo3a promotes the ROS production Foxo3a reduces apoptosis
and excessive ERS

↑ Shi et al., 2019

Cerebral I/R rats Foxo3a suppressed the activation of
nrf2/glutathione signaling pathway

Foxo3a potentially reduces
neuronal survival

↓ Zaki et al., 2022

Cerebral I/R rats Foxo3a inhibits the activation of
NF-κB signaling pathway

Foxo3a alleviates
neuroinflammatory
responses

↑ Tan et al., 2021

OGD-stimulated
neurons

Foxo3a upregulate the expression of
bax, cleaved caspase 3, but reduces the
level of bcl-2

Foxo3a protect against
neuronal cell injury

↑ Meng et al., 2022

PA Dopaminergic
neuronal PC12 cells

Foxo3a activates the autophagy No significant effect of
Foxo3a on neuronal viability

Unknown He et al., 2022

MPTP mice Increased level of Foxo3a is
accompanied by increased level of
MnSOD/NQO1/HO-1, but decreased
NF-κB pathway

Foxo3a potentially rescues
the loss of dopaminergic
neurons

↑ Leem et al., 2024

MPTP mice Foxo3a upregulate the expression of
bim

Foxo3a inhibits the apoptosis
of neuron

↑ Liu L. et al., 2014

6-hydroxy
dopamine-treated
cells and rats

Foxo3a promotes the expression of
puma and FasL

Foxo3a triggers neuron death ↓ Sanphui et al., 2020;
Bhattacharyya et al.,
2023

TBI Mice treated with
weight drop

Acetylation of Foxo3a increased the
level of bim

Acetylation of Foxo3a
triggers apoptosis of neuron

↓ Xu et al., 2024

Mice struck by
convex tip

Foxo3a transcriptionally upregulates
AQP4

Foxo3a leads to cytotoxic
edema

↓ Kapoor et al., 2013

Mice treated with
weight drop

Foxo3a activates autophagy Foxo3a initiates neuronal
damage in the hippocampus

↓ Sun et al., 2018

MCAO/R, middle cerebral artery occlusion/reperfusion, tMCAO, transient middle cerebral artery occlusion, IBI, ischemic brain injury, OGD, oxygen-glucose deprivation, MPTP, methyl-4-
phenyl-1,2,3,6-tetrahydropyridine, AQP4, Aquaporin 4. “↑” represents promotion of COI, “↓” represents inhibition of COI.

hemorrhagic stroke. Activation of p-Foxo3a/CREB signaling
contributes to the neuroprotective effects of Swell1 against cerebral
ischemic stroke-induced neurological deficits (Chen B. et al.,
2023), while phosphorylated Foxo3a impedes CREB nuclear

translocation (Chen B. et al., 2023). Notably, CREB serves as
a pivotal regulator of MeCP2 and DNMT3B methylases, with
CREB-induced DNA hypermethylation identified as a contributing
factor to susceptibility of ischemic stroke (Fan et al., 2023).
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FIGURE 5

The dual role of Foxo3a in Alzheimer’s disease.

5.3 The downstream pathway of
regulating IBI by Foxo3a

Ischemia induces neuronal apoptosis and disrupts cognitive
performance. There is a significant positive correlation between
ischemia-activated Foxo3a and neuronal apoptosis (Kuroki et al.,
2009; Jover-Mengual et al., 2010; Li et al., 2013). In the early
stage of ischemia and hypoxia, the levels of Foxo3a nuclear
translocation, Bim and cleaved caspase 3 are significantly increased
in brain tissue (Li et al., 2009, 2017). Enhanced oxidative stress
activates the expression of mitochondria-associated pro-apoptotic
proteins such as caspase 3 and Bax. Blockage of Foxo3a activation
downregulates ischemia-induced increase of ROS (Shi et al.,
2019). More importantly, it was found that inhibition of Foxo3a
expression promotes the activation of the antioxidant pathway
Nrf2/glutathione (Zaki et al., 2022). Further mechanistic studies
revealed that increasing the methylation level of the Foxo3a
promoter and inhibiting Foxo3a expression induces inhibition of
the downstream SPRY2-ZEB1 axis and alleviates ischemic neuronal
apoptosis (Meng et al., 2022). Additionally, Foxo3a could inhibit
ischemia-induced neuroinflammation through direct interaction
with NF-κB (Tan et al., 2021). Interestingly, activation of NF-
κB was reported to potentially upregulate SPRY2 transcription
(Day et al., 2020). Thus, ischemia is a crucial causative
factor for COI.

5.4 The downstream pathway of
regulating PA by Foxo3a

Parkinson’s disease is a neurodegenerative disorder
characterized by the progressive loss of dopaminergic neurons in
the midbrain, often accompanied by COI. Recent investigations in
dopaminergic PC12 cells have illuminated a significant induction
of autophagy following stimulation with the dopamine receptor
(D1R) agonist SKF38393 (He et al., 2022). Further mechanistic
exploration uncovered the regulatory role of upstream AMPK/
Foxo3a signaling in mediating D1R-dependent autophagy
activation (He et al., 2022). In an MPTP-induced Parkinson’s
model, the anti-inflammatory and antioxidative properties of
creatine were found to be mediated by the activation of SIRT3/
Foxo3a signaling pathways (Leem et al., 2024). Moreover,
additional studies unveiled the contribution of SIRT2 to MPTP-
induced neuronal apoptosis through Foxo3a deacetylation and
subsequent upregulation of Bim expression (Liu L. et al., 2014).

The pro-apoptotic function of Foxo3a within Parkinson’s brain
tissues, along with its downstream modulation of proteins such
as Bim, PUMA, and FasL, underscores its role as a pivotal factor
in Parkinson’s pathology (Sanphui et al., 2020; Wu et al., 2021;
Bhattacharyya et al., 2023). Hence, Foxo3a emerges as a potential
pro-Parkinsonian determinant.

5.5 The downstream pathway of
regulating TBI by Foxo3a

TBI resulting from a direct impact or penetrating injury to the
head damages brain tissue and affects brain function. Among the
myriad complications ensuing TBI, COI stand prominent. Severe
instances of TBI manifest a spectrum of cognitive discordances,
encompassing visual and linguistic deficits, memory impairment,
depressive tendencies, attentional lapses, and impediments in
learning (Shuanglong et al., 2024). Notably, profound alterations in
hippocampal morphology manifest within the traumatized cerebral
milieu, concomitant with a marked decrement in neuronal density
(Jahromi et al., 2024). Augmenting neuronal resilience constitutes
the principal avenue toward ameliorating COI. Neuronal vitality
and functionality are governed by an array of stressors, including
oxidative insults and inflammatory cascades (Lu et al., 2024), with
alterations in such responses contingent upon the orchestrated
interplay of diverse signaling pathways.

Clinical investigations have unveiled a notable elevation
in Foxo3a expression within traumatized human brain tissue
compared to control group (Maiese et al., 2023). In animal
models of traumatic brain TBI, the augmentation in Foxo-
positive neuronal populations displays a temporal dependency (Liu
et al., 2021). Mechanistically, acetylated Foxo3a was identified
as a mediator driving Bim upregulation within traumatized
cerebral tissue (Xu et al., 2024). Foxo3a was further delineated
to directly stimulate Aquaporin 4 (AQP4) transcription, thereby
promoting cytotoxic edema post-TBI and consequent memory
deficits (Kapoor et al., 2013). Crucially, attenuation of Aquaporin
4 accumulation mitigates apoptosis and inflammation in TBI-
afflicted brain cells (Xing et al., 2023). Additionally, Foxo3a
exacerbated TBI-induced COI via activation of LC-3/p62-mediated
autophagy (Sun et al., 2018; Liu et al., 2021). Notably, dysregulated
autophagy emerges as a significant predisposing factor for
compromised TBI recovery (Bao et al., 2016). Collectively, these
findings underscore Foxo3a as a pivotal cytokine implicated in TBI
pathogenesis.

6 Clinical prospective

Currently, rehabilitation evaluation stands as the principal
approach for diagnosing COI. Concurrently, the advancement of
technology has elevated imaging to a pivotal role as a cognitive
assessment adjunct. Nonetheless, a notable deficiency persists
in effective methodologies for evaluating COI from circulatory
and pathological perspectives. The identification of a biomarker
represents a pivotal advancement in the formulation of diagnostic
modalities for cognitive disorders. Recent years have witnessed a
significant increase in clinical trials and preclinical investigations,
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underscoring Foxo3a’s potential as a biomarker for diagnosing
cognitive dysregulation.

Aging emerges as a focal risk factor for COI and notably
serves as a core causative element in AD. A meta-analysis has
underscored a significant association between Foxo3a rs2802292
and exceptional longevity (Revelas et al., 2018). Notably, serum
assays conducted on AD patients unveiled markedly diminished
serum Foxo3a concentrations compared to those observed in
individuals with mild COI (Pradhan et al., 2020). Examination of
human cortical tissue further revealed diminished Foxo3a levels
in AD patients compared to non-AD counterparts (Sahin et al.,
2013). Conversely, a heightened positivity rate for Foxo3a was
observed in traumatized human brain tissue compared to non-
traumatized specimens (Maiese et al., 2023). While these small-
sample clinical studies hint at a potentially robust connection
between in vivo Foxo3a alterations and human cognition, larger-
scale cohort investigations remain imperative to bolster evidential
support. Additionally, further validation is warranted to confirm
the diagnostic precision of Foxo3a as a standalone marker
for cognitive deficits. A comprehensive approach incorporating
additional cognitive impairment biomarkers such as neurofilament
light chain, various tau proteins, APOE, Aβ, and the autophagy
marker molecule LC3 is essential when utilizing Foxo3a as
a diagnostic tool. This integrative strategy is instrumental in
enhancing diagnostic accuracy.

Currently, cognitive rehabilitation techniques serve as main
treatment options of facilitating cognitive recovery, yet there
remains a gap in pharmacological interventions. Foxo3a has
emerged as a promising target for mitigating COI. Several studies
have demonstrated the potential of clinical drugs that target the
Foxo3a signaling pathway to effectively counter COI. Utilized in
clinical settings, Chinese herbal medicines or compound formulas
such as E. bonariensis, Chaigui granules, and Banxia Xiexin
Decoction have exhibited neuroprotective effects by modulating
Foxo3a expression in brain tissues, thereby enhancing cognitive
function (Shi et al., 2023; Tian et al., 2023; Ibrahim et al.,
2024). Additionally, the anti-malarial drug 8-aminoquinoline has
demonstrated robust biological activity in improving neuronal
mitochondrial function through the SIRT1/3-Foxo3a pathway
(Ruankham et al., 2023). Perampanel, a widely prescribed
antiepileptic medication, has shown efficacy in inhibiting neuronal
damage following subarachnoid hemorrhage by targeting the
SIRT3/Foxo3a signaling cascade (Yang et al., 2023). Furthermore,
several candidate small molecules targeting neuronal Foxo3a
signaling, including 3,14,19-triacetylandrographolide (Zhou et al.,
2024), creatine (Leem et al., 2024), carboxy-terminal modulator
protein (Miyawaki et al., 2009), estradiol (Jover-Mengual et al.,
2010), and Ferulic acid (Picone et al., 2013), have surfaced.
Nevertheless, their direct interaction with Foxo3a and specificity
necessitate further comprehensive investigation to validate their
selective targeting of Foxo3a.

Autophagy stands as a prominent downstream pathway in the
regulation of Foxo3a within neurons, exerting a profound impact
on cognition. The protective role of autophagy activated by Foxo3a
in neurons is demonstrated by the upregulating expressions of
ATG5, ATG7, ATG12 and LC3 (Wang et al., 2024). The activation
of LC3 II and P62 are required for AMPK/Foxo3a-mediated
autophagy machinery (Wan et al., 2020; Liang et al., 2021).
Notably, Autophagy is a key protective response in the context of
TBI. Inhibition of SKP2/CARM1 signaling by p-AMPK/p-Foxo3a

activates autophagic flux in ischemic stroke mice (Zhao et al., 2023).
Extensive research has elucidated the pivotal role of autophagy
in neuronal function, particularly in the realm of cognitive repair
(Li et al., 2023). When Foxo3a acted as an anti-COI factor, it
significantly activates PINK1 and Parkin to enhance mitophagy,
which in turn restores impaired mitochondria (Zhao et al.,
2023). More importantly, upregulation of the autophagy signal
BDNF/TrkB significantly attenuates the inflammatory response in
hippocampal neurons (Gao et al., 2022). Overexpression of Foxo3a
also autophagy flux. It has been highlighted that MAP1LC3B/LC3-
associated phagocytosis is closely linked to amyloid β clearance
(Lee et al., 2019). Consistently, autophagy enhancement promotes
the degradation of Tau protein, thereby alleviating Tauopathy-
related neuroinflammation and synapse loss to restore cognition
(Zhu et al., 2023). Importantly, mitophagy maintains a balanced
mitochondrial homeostasis via removal of the accumulated ROS
and toxic fragments.

Spermidine, characterized by its indirect modulation of
autophagy and potent antioxidant properties, exhibits the capacity
to attenuate brain aging by bolstering neuronal autophagic
processes (Xu et al., 2020; Yang et al., 2024). Encouraging findings
from a single-center, randomized, double-blind, placebo-controlled
Phase IIb trial underscore the efficacy of Spermidine in enhancing
various neurocognitive faculties, including behavior and memory
(Wirth et al., 2019). Moreover, Spermidine-enriched botanical
extracts have demonstrated significant promise in mitigating
cognitive decline among older individuals, with favorable safety
profiles (Schwarz et al., 2018; Wirth et al., 2018). Importantly,
1.2 mg/day dose supplementation of Spermidine for 3 months had
a favorable safety and tolerability profile. Furthermore, lithium has
emerged as a facilitator of neuroplasticity through its modulation
of autophagy pathways, as supported by clinical observations
indicating enhanced hippocampal function following prolonged
treatment (Forlenza et al., 2014). A 150 mg/day dose of lithium
for 3 months was observed to have lower side effects, but the
safety of long-term clinical use of lithium remains to be evaluated
in specialized clinical trials (Forlenza et al., 2014). Notably,
docosahexaenoic acid (DHA), an essential polyunsaturated fatty
acid renowned for its diverse biological activities encompassing
anti-aging effects, lipid modulation, and facilitation of brain
development, etc. Administration of a 2 g/day dose of DHA over
a 24-month period has been shown to elevate brain DHA levels,
thereby correlating with enhanced memory, improved learning
capabilities, and a potential preventive effect against AD (Pontifex
et al., 2018). Several rigorous randomized, controlled clinical
trials have corroborated the cognitive benefits of heightened DHA
intake among the elderly, mechanistically implicating Aβ-mediated
autophagic processes (Yurko-Mauro et al., 2010; Zhang et al.,
2017, 2018). Despite the potential of Spermidine and DHA to
combat cognitive impairment, there is still a need to consider
the limitations of this dietary supplementation, pending more
recent pharmacokinetic studies to comprehensively assess the
effectiveness of these interventions.

7 Conclusion

Given the yet unclear elucidation of the mechanism underlying
COI, there remains a notable absence of a reliable biomarker for
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its clinical diagnosis. Neurons, serving as the principal cellular
constituency of the nervous system, intricately interconnect via
synapses to construct elaborate neural networks forming neural
circuits. These networks, in turn, orchestrate diverse cognitive
functions encompassing memory, learning, and motion, etc.
Notably, neuronal apoptosis and dysfunction emerge as pivotal
endogenous factors precipitating COI observed in conditions such
as AD, stroke, PA, IBI, and TBI. Thus, enhancing neuronal viability
and functionality represents a critical frontier in the endeavor
to remediate COI.

Foxo3a, functioning as a transcription factor, exerts direct
or indirect influence over the activation and transmission of
multiple pathways. Foxo3a demonstrated favorable improvement
of neuronal activity and function in Apoe4 mice, MCAO/R rats,
tMCAO rats, Cerebral I/R mice, Cerebral I/R rats, and MPTP
mice as a potential protective factor. Conversely, its activity in Aβ-
stimulated neurons, ovariectomized female rats, hypoxia-ischemia
rats, and mice struck by convex tip demonstrated significant
promotion of neuronal injury. Within the domain of neuron-
mediated cognitive dysregulation, mitochondria-associated
apoptosis protein including bim, puma and caspases-3, antioxidant
pathway Nrf2 signaling and autophagy-related molecules including
LC3, p62 and Beclin1, etc, stand out as principal downstream
pathways regulated by Foxo3a. The modulation of Foxo3a itself is
subject to various modifications, including promoter methylation,
protein phosphorylation, and acetylation. Additionally, upstream
pathways or molecules impacting Foxo3a encompass PI3K/AKT,
SIRT, and micro-RNA. Notably, Foxo3a assumes diverse roles
contingent upon the specific disease context within neuron-
mediated COI.

Clinical observations suggested the potential of Foxo3a as a
diagnostic marker for COI, particularly in AD. In particular, clinical
evidence suggests that AD patients have lower levels of Foxo3a
in serum and cortical tissues than non-AD or mild AD patients.
However, immunohistochemical staining suggests that brain tissue
from TBI patients expresses higher levels of Foxo3a compared
to non-TBI populations, and these preliminary clinical trials
demonstrate the potential of Foxo3a as a biomarker for diagnosing
cognitive impairment. Several candidate small molecules have
exhibited promise in clinical trials by targeting Foxo3a to facilitate
cognitive repair. Notably, compounds such as spermidine, lithium,
and DHA, acting upon the downstream autophagic pathway of
Foxo3a, have demonstrated effectiveness in ameliorating cognitive
disorders among afflicted patients. Additionally, multi-targeted

therapy combining the neurofilament light chain, various tau
proteins, APOE, Aβ, and the autophagy molecule may be able
to improve the effectiveness of these drugs, which needs to be
supported by more experiments in the future. More importantly,
in-depth investigation and assessment are warranted in future
studies to examine the dosage, frequency, side effects evaluation,
pharmacokinetics, and precise efficacy of these medications. Large-
scale clinical trials are imperative for determining the long-term
effectiveness of these drugs. Consequently, elucidating the role
of Foxo3a in the process of neuron-mediated cognitive repair
warrants diligent investigation.
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