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Stress and the gut-brain axis: an
inflammatory perspective

Julia Morys, Andrzej Małecki and Marta Nowacka-Chmielewska*

Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical

Education, Katowice, Poland

The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as

well as contributes to mental health maintenance. The pathways that underpin

the axis expand from macroscopic interactions with the nervous system, to

the molecular signals that include microbial metabolites, tight junction protein

expression, or cytokines released during inflammation. The dysfunctional GBA

has been repeatedly linked to the occurrence of anxiety- and depressive-like

behaviors development. The importance of the inflammatory aspects of the

altered GBA has recently been highlighted in the literature. Here we summarize

current reports on GBA signaling which involves the immune response within

the intestinal and blood-brain barrier (BBB). We also emphasize the e�ect of

stress response on altering barriers’ permeability, and the therapeutic potential of

microbiota restoration by probiotic administration or microbiota transplantation,

based on the latest animal studies. Most research performed on various stress

models showed an association between anxiety- and depressive-like behaviors,

dysbiosis of gut microbiota, and disruption of intestinal permeability with

simultaneous changes in BBB integrity. It could be postulated that under stress

conditions impaired communication across BBB may therefore represent a

significant mechanism allowing the gut microbiota to a�ect brain functions.

KEYWORDS

gut-brain axis, blood-brain barrier, tight junctions, stress, inflammation,mood disorders

1 Introduction

The bidirectional communication network between the central nervous system (CNS)
and the gastrointestinal tract, known as the gut-brain axis (GBA) was found to play a
substantial role in the etiopathogenesis of many diseases, including neurodegenerative
diseases, andmood disorders. The GBA involves the integration of gut functions (including
immune activity or intestinal permeability) with the emotional and cognitive centers of
the brain (Carabotti et al., 2015). The existence of complex gut-brain communication is
supported by several animal and human studies, although the underlying mechanisms
are not fully elucidated. Research in this field is focused on neural (Cryan et al., 2019),
neuroendocrine (Kasarello et al., 2023), immune (Rutsch et al., 2020), and metabolic
pathways (Ahmed et al., 2022). These consist of autonomic (parasympathetic) nervous
system signaling via the vagal nerve, enteric nervous system, innate and adaptive immune
responses, neurotransmitters (or false neurotransmitters known as neurotransmitter-like
compounds) or short chain fatty acids (SCFAs) being also metabolites or products of
microbial functioning (Cryan et al., 2019).

Recently, it was proposed that besides the critical role of the gut microbiota as a
component potentially influencing all these neuroimmune-endocrine pathways, it can
affect the integrity of the blood-brain barrier (BBB), by changing barrier permeability and
dysregulating tight junctions (TJs) (Braniste et al., 2014; Margolis et al., 2021). Impaired
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communication across the BBB may therefore represent a
significant mechanism allowing the gut microbiota to affect brain
functions, for example under stress conditions.

The GBA remains under the continuous influence of
environmental factors, from early life through the entire lifespan,
also during acute or chronic stress conditions (De Palma et al., 2015;
Golubeva et al., 2015; Brzozowski et al., 2016). The role of immune
signaling in neuronal development has also been thoroughly
studied (Kipnis et al., 2004). Moreover, it was determined that
presence of immune T cells, mediated partially by gut microbiota,
has a vital role in microglia maturation (Pasciuto et al., 2020). Even
short-term exposure to stress can induce dysbiosis. This term refers
to alterations in microbiome composition, which leads to disturbed
homeostasis, metabolic, and functional changes as the consequence
of shifts in bacteria species residing in the gut (Levy et al., 2017).
Gut dysbiosis is associated with the progress or worsening of
mood disorders caused by various aspects of GBA functioning,
such as activation of immune signaling during inflammatory
processes. It is now well established that CNS disorders as well
as diseases directly associated with the gut have strong stress-
based pathogenesis (Holmqvist et al., 2014; Gao et al., 2018).
Importantly, experimental alteration of gut microbiota influences
stress responsiveness, anxiety- and depressive-like behavior, and
activates the hypothalamic-pituitary-adrenal (HPA) axis (De Palma
et al., 2014; Golubeva et al., 2015; Ergang et al., 2021). Significant
shifts in gut microbiota composition reported in animal models
of CNS diseases related to early life stress, such as maternal
separation (De Palma et al., 2015), chronic restraint stress (CRS)
(Gubert et al., 2020) or chronic unpredictable mild stress (CUMS)
(Zhang et al., 2023) were linked with alterations in microbiota-
related metabolites and immune signaling pathways suggesting
that these systems may be important in stress-related conditions
including depression.

Therefore, the aim of this review paper is to summarize
findings linking the gut microbiota and brain health with special
emphasis on inflammation and immune signaling pathways. We
highlight current studies on inflammatory aspects of altered
GBA functioning and deliver insights on its association with
neuroinflammation and mood disorder development. So far, many
authors have developed the concept of GBA, which undoubtedly
contributed to increasing awareness of its role in systemic
homeostasis (Carabotti et al., 2015; Cryan et al., 2019; Rutsch et al.,
2020; Margolis et al., 2021). However, one of the main threads that

Abbreviations: 5-HT, 5-hydroxytryptamine; AJs, adherens junctions; BBB,

blood-brain barrier; BDNF, brain-derived neurotrophic factor; CMS, chronic

mild stress; CNS, central nervous system; CORT, corticosterone; CRS,

chronic restraint stress; CUMS, chronic mild stress; ENS, enteric nervous

system; FMT, fecal microbiota transplantation; GBA, gut-brain axis;

GCs, glucocorticoids; GF, germ free; GVB, gut-vascular barrier; HPA,

hypothalamic-pituitary-adrenal axis; IB, intestinal barrier; KO, knockout;

LPS, lipopolysaccharide; NK, natural killer; NLR, NOD-like receptor;

NLRP3, nucleotide oligomerization domain-like receptor family, pyrin

domain containing 3; PFC, prefrontal cortex; PTSD, post-traumatic stress

disorder; SCFAs, short-chain fatty acids; SPF, specific pathogen-free; SYP,

synaptophysin; T1D, type 1 diabetes; TJs, tight junctions; TLR, Toll-like

receptor.

distinguishes this work is the focus on the aspect of fluctuations
within the BBB. We discuss the impact of metabolites generated
by gut microbes on the BBB integrity, the involvement of stress
exposure in intestinal barrier leakiness, and further changes in
BBB permeability. Finally, we summarize the data from animal
studies employing the therapeutic potential of manipulating the
gut microbiota through probiotic, synbiotic, or fecal microbiota
transplantation in the context of CNS disorders.

2 Gut barriers and the blood-brain
barrier

Apart from molecular mechanisms engaged in GBA signaling,
this axis also stands for physical barriers surrounding the
gastrointestinal tract and CNS (Figure 1).

The lumen of gastrointestinal tract is separated from the
blood circuitry by an intestinal barrier (IB) and the transport
into blood vessels is controlled by the gut-vascular barrier (GVB)
(Di Tommaso et al., 2023). The CNS is covered by two barriers
interconnecting the blood and the brain, the BBB, and the
blood-cerebrospinal fluid barrier, which involves choroid plexus
epithelium (Kim et al., 2021; Hall and Bendtsen, 2023). Starting
from the gut lumen surface, the IB is composed of the mucus-
producing goblet cells, positioned between the epithelial cells
(Suzuki, 2020). The crypt mucosal coverage, which is composed
of secretory IgA, defensins and glycoproteins, and lamina propria
with residing immune cells protects the gut wall from harmful
pathogens (Suzuki, 2020; Kim et al., 2021). The epithelial layer has
a similar function to the BBB endothelial layer. Both the epithelial
and endothelial cells allow the passage of required molecules
via either paracellular (IB) or transcellular (IB, BBB) active and
vesicular transport. The paracellular passage in BBB is a symptom
of disturbed homeostasis (Bauer et al., 2014; Haddad-Tóvolli et al.,
2017). The vascular barriers, GVB and BBB are similar in structure.
Both the gut-vascular unit and neurovascular unit consist of an
endothelial layer wrapped in pericytes along with either enteric
glial cells (GVB) or astrocytes (BBB) (Kadry et al., 2020; Di
Tommaso et al., 2023). The endothelial cells are located on the
luminal surface and are tightened by TJs, which modulate the
barrier permeability thereby mediating signaling pathways (Bauer
et al., 2014). The major difference between GVB and BBB is the
eight times larger molecule flux allowed by GVB (Scalise et al.,
2021). The reason for such distinction is associated with the gut
functionality that involves nutrient absorption. Though the TJs
and adherens junctions (AJs) expression vary among different cell
types, claudins have been established to be the key components for
changing barriers’ permeability (Banks and Erickson, 2010; Scalise
et al., 2021), claudin-5 being the most abundant throughout the
BBB and in lymphatic endothelial cells of small and large intestine
(Greene et al., 2019). Indeed, there are examples of expression
similarity such as claudin-1, claudin-12, ZO-1, ZO-2 (TJs) or VE-
cadherin and α- or β-catenin (AJs), both in the brain and in the
gut (Scalise et al., 2021). The BBB anatomy enables the ionic and
metabolic exchange homeostasis, proper neurotransmitter uptake
and signaling mediation, and the whole barrier integrity, while the
TJs and AJs between adjacent cells restrict paracellular transport
and protect the brain parenchyma from unwanted hydrophilic
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FIGURE 1

Barriers within the GBA- a structural overview. The IB is composed of epithelial cells with goblet, enterochroma�n and enteroendocrine cells in

between. The IgA, defensins and glycoproteins are main components of mucosal layer. Dendritic cells and macrophages reside in the intestinal

lamina propria. The vascular barriers are both composed of endothelial cells, pericytes and glial cells. Each vascular unit shows the most highly

expressed junctional proteins. Created with BioRender.com.

particles passage (Scalise et al., 2021; Park and Im, 2022). In turn,
the GVB adjusts its permeability to the current state of the intestinal
environment and allows the passage of needed molecules while
maintaining protection from adverse molecules.

3 Focusing on the immune system-
related signaling pathways

Non-specific innate immunity is built on granulocytes,
monocytes, macrophages, dendritic and mast cells as well as
natural killer cells. These cells present the pattern-recognition
receptor protein family, which includes Toll-like and NOD-
like receptors (TLRs, NLRs), and act via inflammasome—an
oligomeric protein complex. An inflammasome distinguishes
pathogen/microbial/damage-associated molecular patterns present
on the pathogenic cell surface, from host cell antigens (Ghilas
et al., 2022). The recognition of specific pathogen-associated
molecular patterns is associated with inflammasome mobilization,
proinflammatory cytokines, IL-1β, and IL-18 release into the
bloodstream, along with pyroptosis induction (Cryan et al.,
2019; Taguchi and Mukai, 2019; Sahoo, 2020). The most studied
transmembrane Toll-like protein is TLR4, which is proven to
interact with bacteria-derived lipopolysaccharide (LPS) which
triggers microglia—the most abundant immune cells residing in
the brain. Apart from glial cells, the perivascular macrophages
are the only endogenous immune cells in the CNS (Prinz and

Priller, 2017). The microbiota-microglia reaction might be the
cause of neuroinflammation and BBB disruption (Banks and
Erickson, 2010). On the other hand, in homeostatic condition
highly specific adaptive immune response evolves throughout the
host’s lifespan and includes T and B lymphocytes. In a recent study,
the CD4+ and CD8+ T lymphocytes were observed in the brain and
accessed brain parenchyma, leading to BBB altered permeability,
and neuroinflammation (Park and Im, 2022).

Some unresolved questions remain as to the mechanism(s) of
communication between the gut microbiota and the brain, but
threemajor pathways have been established as involved in the signal
transmission within the immune system in the GBA: the systemic,
cellular, and neuronal pathways.

The systemic pathway, also known as the humoral pathway,
focuses on the effect of local alterations either in the brain or
in the gut, on the overall state of homeostasis. The altered IB
and GVB permeability results in the inflammatory factors flux,
bacterial translocation, and other triggers that cause the immune
response, into the bloodstream (Kinashi and Hase, 2021; Mou et al.,
2022). Persistent systemic chronic inflammation might affect the
BBB structure, leading to its disruption, which facilitates access
to the brain parenchyma (Rochfort et al., 2014). The glial cells
react by pro-inflammatory (IL-1β, IL-18, IL-6, TNF-α) or anti-
inflammatory (IL-10, IL-4, TGF-β) cytokines release, depending on
the current state of the immune response (Nagyoszi et al., 2015).
Recent animal studies showed elevated levels of TNF-α in rats
(Chen et al., 2019), and IL-1β in nestin-Cre mice (Wong et al.,
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2019) in inflammation-induced BBB disruption models. IL-6 and
IL-18 were found to promote hippocampal stem cell apoptosis
and induce further inflammation in NZB/W-F1 lupus-prone mice
(Nikolopoulos et al., 2023). A recent study performed on CD-1
mice confirmed the augmentation of CCL2 and CCL5 chemokines
during inflammation and pointed out that it is the CCL2 and CCL5
ligands might have the ability to cross an intact BBB (Quaranta
et al., 2023). In a mice model of intracerebral hemorrhage, Lin
et al. (2023) showed that LPS ip. injection enhanced the activity of
the CCL5 signaling pathway which was associated with increased
permeability of the BBB.

The systemic pathway is linked with the HPA axis. As a
result of peripheral (intestinal) inflammation, the HPA axis might
be activated, resulting in the release of glucocorticoids (GCs)
(Misiak et al., 2020). The impact of GCs overproduction on
the alterations in microbiota composition was proven in animal
studies (Petrosus et al., 2018; Couch et al., 2023). It is suggested
that because of HPA axis-induced microbiota perturbations, the
inflammatory response is activated via Th17 lymphocytes, which
are also a part of the cellular pathway (Sun C. Y. et al.,
2023).

The cellular pathway is focused on intestinal immune cells
function. In an afferent way, intestinal immune cells can migrate
into the CNS to promote or inhibit neuroinflammation. The
efferent signaling might start from the stress-induced microbiota
alteration, leading to immune response activation, immune cells
mobilization and translocation to the brain parenchyma, worsening
the already existent neuroinflammation (Rochfort et al., 2014).
The cells engaged in intestinal immune response are myeloid
cells, such as macrophages and dendritic cells, residing in lamina
propria, responsible for promoting proinflammatory cytokines
release (Ghilas et al., 2022). Myeloid cells also mediate Th17
responses employing the Th17 lymphocytes, a subset of CD4+
T cells. Moreover, Foxp3+RORγt+ regulatory T (Treg) cells of
intestinal origin, were found to express similar gene patterns
to Th17 cells, and so, were extensively studied regarding their
properties. The either proinflammatory or suppressive phenotype
of these cells, was proven to be dependent on the cytokine
milieu, TGF-βand the type of myeloid cells that partake in
T cell priming (Zhou et al., 2008; Sun C. Y. et al., 2023).
In a study by Yang et al. (2016) the suppressive phenotype
of Foxp3+RORγt+ Treg cells in a colitis mouse model was
confirmed. -Pro-inflammatory cytokines overexpression, especially
IL-1, IL-6, and IL-23 was determined to participate in the initiation
of autoimmune processes (Yasuda et al., 2019). In a healthy host,
gut-derived interferon γ positive natural killer (NK) cells (IFNγ+

NK) were proven to promote TRAIL+ and LAMP1+, anti-

inflammatory astrocytes, responsible for neuroimmune regulation
via T cell apoptosis (Sanmarco et al., 2021). Additionally, naïve

B cells differentiate into IgA-producing plasma cells after an
antigen encounter (Rojas et al., 2019; Fitzpatrick et al., 2020;

Keppler et al., 2021). The migration pattern of these cells has
not been specified yet, nonetheless, they have been repeatedly
found in the BBB, playing a vital role in preventing pathogens
from entering the brain parenchyma (Rojas et al., 2019; Jacobson
et al., 2021). In a recent study, Brioschi et al. (2021) determined
the presence of B cells in diverse development stages in mouse

meninges, through which the B cells might be recruited. The
lymphoid B cells were also closely linked with enteric glia and
innate immunity, mediated by neurotrophic factors (Ibiza et al.,
2016).

The neuronal pathway is associated with the autonomic
nervous system and the enteric nervous system (ENS). In
homeostasis enteric glial cells interact with intrinsic sensory
neurons, interneurons and motor neurons, and satellite glia,
located in the dorsal root ganglia (Morales-Soto and Gulbransen,
2019; Fung and Vanden Berghe, 2020; Dowling et al., 2022).
During inflammation, increased S100β protein expression in
enteric glia was proven to upregulate iNOS expression in
T cells, macrophages, and dendritic cells (Esposito et al.,
2007). Enterochromaffin cells are responsible for 5-HT (5-
hydroxytryptamine) production (Reigstad et al., 2015; Rao and
Gershon, 2016; Malinova et al., 2018). Enteroendocrine cells
modulate signaling between enteric glial cells and GVB (Dowling
et al., 2022), release cholecystokinin or YY peptide (Hayashi
et al., 2023), and partake in microbial metabolites conversion such
as tryptophan, and further, kynurenine (Ye et al., 2021; Zhao
et al., 2023). The ENS detects bacteria-derived LPS via highly
abundant TLRs, especially TLR2 and TLR4 (Hyland and Cryan,
2016).

4 Short-chain fatty acids (SCFAs) in the
GBA

Emerging evidence suggests that gut dysbiosis and microbiota-
derived metabolites significantly impact the GBA (Dalile et al.,
2019). Currently, most of the research is conducted on SCFAs:
acetate, propionate, and butyrate. In microbiota-depleted mice,
the enteric neurons and glia loss were observed, which was
then restored by SCFAs (Vicentini et al., 2021). SCFAs were also
determined to mediate microglia maturation in germ-free (GF)
mice (Erny et al., 2015, 2021).

SCFAs are products of fiber fermentation by gut microbiota
(Martin-Gallausiaux et al., 2021; Tan et al., 2023). Therefore, in
a fiber deficiency mouse model, altered cognition, hippocampal
synaptic loss, and impaired brain aging were established (Shi et al.,
2021). A study on butyrate and a high-fiber diet confirmed the
amelioration of aging-associated neuroinflammation in mice (Matt
et al., 2018). Dietary enrichment with fiber resulted in restrained
inflammation (Caetano-Silva et al., 2023). In aging mice, whose
microglia shifted to pro-inflammatory phenotype, dietary fiber was
found to reverse this effect by increasing the SCFAs levels, thereby
lowering the inflammatory features (Vailati-Riboni et al., 2022).
This phenomenon was also confirmed in a microglial cell culture
(Wenzel et al., 2020). An acetate shortage in type 1 diabetes (T1D)
mouse model was proven to enhance cognitive impairment and
aggravate hippocampal synaptophysin (SYP) expression, associated
with synaptic plasticity (Zheng et al., 2021). Bacteria-derived
propionate was confirmed to improve neuroregeneration (Serger
et al., 2022). Based on the poststroke recovery study conducted
on the murine model, SFCAs functioned as the direct mediators
of T-cell functioning and microglia activation (Sadler et al.,
2020).
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5 The role of BBB and
neuroinflammation in GBA
dysregulation

The impairment of the BBB is one of the features associated
with neuroinflammation in addition to the widely described
activation of glial cells (microglia and astrocytes). The role
of microglial activation in the neuroinflammation process and
its interaction with BBB was studied in a mouse model of
chronic systemic inflammation (MRL/lpr mice). Using in vivo

imaging, the authors showed that microglial activation starts
with glial migration to the vessel to protect the intact BBB.
As the inflammation progresses, the expression of phagocytic
markers (AIF-1, CD68) increases, leading to amicroglial phenotype
shift. Then, the AIF-1+ CD68+ microglial cells damage the
BBB components, and the permeability increases which causes
widespread neuroinflammation (Haruwaka et al., 2019). Chronic
intestinal inflammation was found to induce dysbiosis in the
gut and subsequently become systemic over time (Thevaranjan
et al., 2017). As in this chronic inflammation state, a persistent
microglia mobilization was observed, along with the immune cells
flux which resulted in neurotoxicity and damage to the brain
(Cowan and Petri, 2018; Guo et al., 2022; Brandl and Reindl, 2023).
Thus, microglia-induced neural cytotoxicity, of gut microbiota
origin as well, can lead to neurodegenerative and mood disorders
development (Megur et al., 2020; Xia et al., 2023).

Regarding the association between neuroinflammation and
altered BBB integrity, several studies focused on the potential
role of SCFAs in BBB permeability. In a study by Li et al.
(2023), mice with an induced sepsis-associated encephalopathy
were treated with SCFA supplementation. It was confirmed
that the SCFAs caused an increased expression of ZO-1 and
occludin expression in the intestine and BBB. In research on
GF (germ free) and SPF (specific pathogen-free) mice, authors
observed the lower expression of occludin and claudin-5 in
the frontal cortex, striatum, and hippocampus in both sexes of
GF mice, suggesting an association between lack of microbiota
and increased BBB permeability (Braniste et al., 2014). In LPS-
exposed cerebromicrovascular endothelial cell culture, ZO-1 and
occludin expression increased after SCFA treatment in comparison
with the LPS-exposed but not treated one (Li et al., 2023).
It was also determined that restoration of gut microbiota and
microbial metabolites, such as SCFAs, alters TJs expression and
BBB permeability (Braniste et al., 2014). The modulatory effects
of SCFAs on BBB integrity were confirmed in the in vitro study
employing a human endothelium cell line (hCMEC/D3), showing
that propionate protected the BBB from inflammation by inhibition
of TLR-specific pathways as well as from oxidative stress via NRF2
signaling (Hoyles et al., 2018).

6 Dysregulation of the GBA in stress

Chronic stress is widely acknowledged as a predisposing or
precipitating factor in neuropsychiatric diseases (Becker et al.,
2007). There is a clear relationship between disturbances induced
by stressful stimuli, especially long-lasting, and cognitive deficits

in rodent models of affective disorders (Knapman et al., 2010).
Chronic stress activates the HPA axis and sympathetic nervous
system, stimulating the release of catecholamines and GCs (Misiak
et al., 2020) that alter the integrity of BBB. Changes in BBB
integrity were associated with the promotion of depression-like
behaviors in male mice (Dion-Albert et al., 2022), indicating a link
between neurovascular pathology and stress vulnerability. Stress-
susceptible mice following chronic social defeat stress showed
depressive-like behaviors which were associated with altered BBB
integrity through a decline in claudin-5 expression in the nucleus
accumbens (Menard et al., 2017; Dudek et al., 2020). Additionally,
the loss of tight junction proteins promoted increased peripheral
IL-6 passage across BBB and monocyte accumulation which
participated in the development of depression (Menard et al., 2017).
Concomitant increases in intestinal permeability may intensify
these effects (Braniste et al., 2014). Stress-induced impairments of
intestinal barrier function (e.g., changes in TJs protein expression)
contribute to increased intestinal permeability and the movement
of antigens and factors, such as LPS, from the gut lumen into the
circulation, which exacerbate the immune response (Dinan and
Cryan, 2012; Yang et al., 2023). Recently, chronic stress inducing
a downregulation of intestinal and hippocampal expression of α-
actin, claudin-1, claudin-5, occludin, and ZO-1 was observed along
with altered microbial diversity in the gut (Geng et al., 2020;
Chi et al., 2021). Compromised IB integrity was accompanied
by seral declined levels of 5-HT, GABA, and increased levels of
endotoxin, IL-6, and TNF-α as well as increased IL-6, NF-κB,
iNOS, and NGAL in the intestine (Chi et al., 2021). In turn,
disrupted BBB correlated with increased norepinephrine levels
in the prefrontal cortex (PFC), hippocampus, and amygdala of
female SPF mice (Geng et al., 2020). Consequences of peripheral
inflammation, such as disruption of BBB integrity (de Vries
et al., 1996) and stimulation of neuroinflammation (Geng et al.,
2018), have been associated with cognitive impairments and
mood disturbances.

6.1 Chronic unpredictable mild stress

The role of stress exposure in GBA dysregulation is widely
explored in the literature. However, the influence of stress response
on intestinal barrier leakiness, and further changes in BBB
permeability were investigated only in a few experimental studies
(summarized in Table 1). Most research performed in various stress
models shows that functional changes (anxiety- and depressive-like
behaviors) correlated with dysbiosis of the GBA, and IB disruption
with an enhanced peripheral inflammatory response was associated
with changes in BBB permeability and neuroinflammation. The
impact of stress on GBA functions in the context of BBB changes
is most commonly described in chronic stress paradigms (Liang
et al., 2015; Bharwani et al., 2017; Nie et al., 2019; Yang et al., 2021;
Jiang et al., 2023; Kitaoka et al., 2023), especially by employing
social stressors (chronic social stress, or CUMS). CUMS-induced
behavioral impairments were associated with the downregulation
of intestinal TJs, upregulation of intestinal inflammatory factors
followed by altered microbial diversity, and an increase in cortical
and hippocampal microglia activation (Ait-Belgnaoui et al., 2014;
He et al., 2024).
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TABLE 1 Summarized results of research on stress response influence on IB and BBB permeability.

Stress model Animals Brain region Outcomes Gut Outcomes Gut dysbiosis Behavioral
impairments

Reference

Chronic restraint stress Male (M) and female (F)
C57BL/6J mice (6-8
weeks old)

Hippocampus ↓ occludin,
claudin-2, claudin-8
↑ ZO-1 expression (F,M)
↑ IL-1β, IL-6 (F)
↑ IL-1β (M)

Proximal colon
Distal colon

↓ occludin, claudin-2,
claudin-8 (F)
↑ ZO-1 expression (F,M)
↑ IL-1β, IL-6 (F)

YES Anxiety-
like behaviors
depressive-like
behaviors

Jiang et al., 2023

Male C57Bl/6N mice (6
weeks old)

PFC
hippocampus

Kynureine
pathway disruption
alterations in Trp
pathway and 5-HT levels

Duodenum
Jejunum
Ileum
Colon
Cecum

Kynureine
pathway disruption
alterations in Trp
pathway and 5-HT levels
altered intestinal
crypt integrity
↓ ZO-1 expression in the
ileum and colon
↑ inflammatory cell
infiltration of the small
intestine and goblet
cell damage

YES Anxiety-
like behaviors
depressive-like
behaviors

Deng et al., 2021

Chronic mild
unpredictable stress

Male C57Bl/6N mice
(6-8 weeks old)

Forebrain
hypothalamus
amygdala
hippocampus

↓ expression of
neurotrophic protein
coding genes
↑microglia- related
gene expression

Colon ↑ intestinal permeability
(Cr-EDTA passage)
↓ occludin and
JAM-A expression

Not measured Not measured

Ait-Belgnaoui
et al., 2014

Male C57Bl/6N mice (8
weeks old)

PFC
amygdala
hippocampus

↑microglia activation in
amygdala
and hippocampus
↑ expression of
immune-related genes in
PFC (Ccl2, Ccl5, Tlr4,
Icam, Vcam, Casp1)

Ileum ↑ ileal kynureine levels
↑ ileal levels of IL-17A,
IL-1β and IL-6
↑ ileal Th17 and
Treg levels

YES Anxiety-
like behaviors
depressive-like
behaviors

Westfall et al.,
2021b

Male C57Bl/6N
SPF mice (8 weeks old)

PFC
hippocampus

↑ levels of hippocampal
microglial activation
↑ activated microglia in
PFC and hippocampus
↓ hippocampal
synaptic plasticity

Colon ↓ claudin-2/4, occludin
and ZO-1
↑ genes associated with
immune response
↑ IL-1β, TNF-α, TLR4
and 5, NF-κB, NOD-like
receptor family, NLRP3,
indoleamine-2, IDO-1

YES Depressive-like
behaviors He et al., 2024

Male Sprague-Dawley
(SD) rats (8 weeks old)

PFC
hippocampus

↓ occludin and
ZO-1 expression
↑ ASC, caspase-1,
NLRP3 expression

Colon ↓ occludin and
ZO-1 expression
↑ ASC, caspase-1,
NLRP3 expression

YES Not measured

Huang et al., 2023

(Continued)
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TABLE 1 (Continued)

Stress model Animals Brain region Outcomes Gut Outcomes Gut dysbiosis Behavioral
impairments

Reference

Chronic social stress Male C57BL/6J mice (8
weeks old)

PFC
hippocampus

↑ IL-1β in hippocampus
↑ NLRP3 expression

Ileum ↑ IL-1β
↑ TLR4 expression

Not measured Anxiety-
like behaviors
depressive-like
behaviors

Westfall et al.,
2021a

Chronic psychological
stress

Female SPF mice (4
weeks old)

PFC
amygdala
hippocampus

↓ α-actin, claudin-5,
occludin, ZO-1
expression in amygdala
and hippocampus
↑ norepinephrine levels

Duodenum
Jejunum
Ileum

↓ α-actin, claudin-5,
occludin, ZO-1
expression

YES Not measured

Geng et al., 2020

Chronic noise exposure Male APP/PS1 and
C57BL/6Nj mice (8
weeks old)

Hippocampus ↓ expression of
claudin-1, occludin
and ZO-1
↑ levels of Aβ40
and Aβ42
↑ tau phosphorylation

Colon ↓ expression of
claudin-1, occludin
and ZO-1
↑ IL-6, NF-κB, iNOS,
and NGAL

YES Not measured

Sun et al., 2019

Single prolonged stress Male (M) and female (F)
Sprague–Dawley rats
(6-7 weeks old)

PFC
hippocampus

↓ claudin-5 expression Cecum ↓ acetate level (M) YES Anxiety-like
behavior Tanelian et al.,

2024

Acute psychological
stress

Male (M) and female (F)
Nod1/Nod2 double
knockout (NodDKO)
mice (6-8 weeks old)

PFC
hippocampus

↓ neural activation and
cell proliferation in
NodDKO
mice hippocampus
↓ 5-HT signaling
in hippocampus
↑ Gabab1b expression
in PFC

Ileum
Colon

↑ intestinal barrier
permeability in
NodDKOmice [FITC
flux]

Not measured Social deficits
anxiety-like
behavior

Pusceddu et al.,
2019

Acute sleep deprivation C57BL/6 J mice (7
weeks old)

PFC
cerebral cortex
hippocampus

↑ TNF-α expression
in PFC
↓ 5-HT receptor
expression
in hippocampus
↑ TNF-α, ICAM1, IL-6
expression in
cerebral cortex

Proximal colon ↓ occludin expression
↑ intestinal permeability
[LPS migration]
↑ TNF-α expression

YES Anxiety-like
behavior Yang et al., 2023

Early life stress Male (M) and female (F)
C3H/HeNRj mice (10
weeks old)

PFC Affected PFC gene
expression of over 100
genes, including Arc,
Btg2, Dusp1, Egr4, Fosb,
Gadd45b, H2-k1, Junb,
Klf2, Nr4a3

Colon ↑ intestinal permeability
(M)

YES Social deficits (M)
anxiety- and
compulsive- like
behaviors (F)

Rincel et al., 2019

High temperature stress Male C57BL/6J mice (7-8
weeks old)

PFC
hippocampus

↑ NLRP3, ASC and
caspase-1 expression

Cecum ↓ butyrate level YES Not measured

Yi et al., 2021
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Additionally, Westfall et al. (2021a) showing activation of
microglia and elevated cortical expression of chemokines and
adhesion molecules (ICAM, VCAM) with simultaneous changes in
ileal immune regulation, confirmed that stress-related behavioral
impairments may depend in such way on GBA dysregulation.
In the study by Rincel et al. (2019) stressed mice (multifactorial
early-life adversity consisting of prenatal LPS injections, chronic
maternal separation, and exposure to CUMS during lactation)
showed gut dysbiosis in both sexes, with differences in behavioral
impairments. In males, authors reported social deficits, while
in females—increased anxiety- and compulsive-like behaviors.
Sex-specific variations were also observed in response to single
prolonged stress (PTSD, post-traumatic stress disorder model)
in male and female rats. These differences extend beyond
behavioral and physiological changes to the gut microbiota and
its metabolites (Tanelian et al., 2024). The results confirm the
importance of gender in the behavioral response to chronic
stress and suggest that it should be considered in experimental
studies regarding stress and the GBA. The identification of sex-
specific alterations in gut microbiota composition, functionality,
and metabolites might be important for the development of sex-
specific therapeutic interventions for those vulnerable to stress-
induced psychopathologies.

6.2 Chronic restraint stress

In the CRS model, which is widely used to recapitulate
depression phenotypes in rodents, the presence of anxiety-
and depressive-like behavior was connected either with the
central or peripheral inflammation, including downregulation
of TJs, enhanced expression of proinflammatory factors, and
increased IB permeability (Deng et al., 2021; Yang et al., 2021;
Jiang et al., 2023). In the study by Yang et al. (2021) CRS mice
manifested elevated hippocampal levels of proinflammatory
cytokines with a simultaneous decline of BDNF (brain-derived
neurotrophic factor) and 5-HT, dopamine, noradrenaline, their
corresponding metabolites levels, as well as gut microbiota
dysbiosis, which was linked with depressive-like behavior.
Notably, depressive behaviors, the altered neurotransmitter
metabolism, and microbiota dysbiosis observed in CRS mice
can be restored by dexamethasone administration, underscoring
the key role of inflammation in gut dysbiosis in stress-induced
depressive behaviors (Yang et al., 2021). In a study by Deng
et al. (2021) exposure to CRS affected kynurenine pathway
components in the intestinal tract and the brain structures.
Downregulated ZO-1 expression caused IB disruption which
resulted in enhanced inflammatory cell infiltration of intestinal
crypts. Following CRS, the elevation of IL-6 levels in the
proximal and distal colon, and the increase of IL-1β only in
the distal section were observed in stressed females. Greater
sensitivity to stress observed in females was associated with
anxiety-like behavior which correlated with the abundance
of specific gut microbes, increased protein levels of IL-1β,
IL-6, and gene expression of ZO-1 in the hippocampus,
probably because of peripheral inflammation (Jiang et al.,
2023).

6.3 Stress-induced inflammasome
activation

Signaling pathways of NLRP3 (nucleotide oligomerization
domain-like receptor family, pyrin domain containing 3)
inflammasome might be involved in GBA regulation in stress
conditions since its inhibition has been associated with decreased
BBB permeability (Bellut et al., 2021), ameliorated cognitive
impairment (Zhu et al., 2021), or reprogramming of microglial
phagocytic phenotype (Jia et al., 2022). Yi et al. (2021) observed
a decrease in cecal butyrate, and an increase in IL-1β, IL-6, and
serum TNF-α levels and activation or inhibition of central NLRP3
inflammasomes because of exposure to high- or low-temperature
stress, respectively. CUMS-exposed rats showed enhanced NLRP3
activity, along with a decrease in ZO-1 and occludin expression
in the colon as well as in the prefrontal cortex and hippocampus
(Huang et al., 2023). Additionally, it was proposed that intestinal
epithelial NLRs might be the novel modulators of the GBA.
NOD1/NOD2 knockout (KO) mice, following exposure to acute
psychological stress linked with increased permeability in the
ileum and colon, showed increased susceptibility to HPA axis
hyperactivation, cognitive impairments, anxiety- and depressive-
like behaviors. These results were associated with the altered 5-HT
signaling in the hippocampus, suggesting a link between 5-HT
and NLR (Pusceddu et al., 2019). Following chronic cold stress,
a decrease in dopamine signaling pathway-related metabolites
levels was associated with increased intestinal barrier permeability
and increased release of immune response mediators. Moreover,
stressed mice also manifested depressive-like behaviors (Sun C. Y.
et al., 2023; Sun L. et al., 2023).

6.4 Prebiotic, probiotic, and synbiotic
administration in stress-induced dysbiosis

As the intestinal microbiota is highly susceptible to
environmental fluctuations, dysbiosis restoration treatments
were proposed as a strategy to alleviate behavioral impairments.
Such treatments may modify gut microbiota and levels of its
metabolites thus mediating the therapeutic action in stress-induced
brain dysfunctions. The beneficial impacts of the oral prebiotic
(Jiang et al., 2023), probiotic (Burokas et al., 2017; De Santa et al.,
2024), and/or synbiotic (Westfall et al., 2021a,b) applications on
stress-induced alterations were confirmed in a few experimental
studies. The application of specific prebiotic types might moderate
inflammation in the hippocampus and colon, and thereby improve
stress-induced depressive- and anxiety-like behaviors (Jiang et al.,
2023). Moreover, the treatment with probiotics was found to
downregulate stress-induced CORT (corticosterone) release and
proinflammatory cytokine levels, increase acetate and propionate
amounts in the intestine, and significantly alleviate depressive- and
anxiety-like behaviors in mice (Burokas et al., 2017). In a study by
Westfall et al. (2021a,b) mice were subjected to synbiotic treatment
(L. plantarum, B. longum) after chronic unpredictable stress
exposure. The synbiotic application weakened neuroinflammation
in the hippocampus and prefrontal cortex and alleviated peripheral
inflammation via downregulation of proinflammatory cytokines,
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FIGURE 2

Overview of GBA fluctuations during inflammatory processes under stress stimuli. As for bidirectional communication, it has been proven so far that

the leaky intestinal barrier a�ects the blood-brain barrier’s permeability via multiple proinflammatory agents migrating within the blood circuitry, and

contrariwise. Inflammation of either intestinal or brain origin, results in the NLRP3 inflammasome activation, and decreased expression of tight

junction proteins and related barrier’s disruption. Peripheral inflammation may activate phagocytic microglia phenotype, causing neuroinflammation.

Then, neuroinflammation alters microbial diversity, thereby influencing the production and release of SCFAs, LPS, and other microbial metabolites.

Created with BioRender.com.

TLR4, and NLRP3 expression. It also decreased the Th17/Treg
ratio and subsequently the IL-17/IL-10 ratio in serum, and
improved depressive- and anxiety-like behaviors. In a study by De
Santa et al. (2024), the multi-strain probiotic treatment reversed
depressive-like, and anxiety-like behaviors induced by the maternal
separation, and normalized neuroinflammation by restoring gut
microbiota. Additionally, the probiotic treatment also significantly
affected the production of SCFA and the level of butyrate.

6.5 Fecal microbiota transplant in stress-
induced dysbiosis

Microbiota-induced inflammation was proven to be completely
reversed by microbial restoration via fecal microbiota transplant
(FMT). The goal of FMT involves direct transfer of fecal microbiota
from a healthy donor to the GI of a recipient to treat the
disease by restoring the phylogenetic diversity and microbiota
of a healthy person. In a few animal models of the Alzheimer’s
disease, FMT was shown to be effective not only in restoring gut
microbiota but also in ameliorating cognitive impairments, and

downregulating Aβ plaques accumulation (Sun et al., 2019; Kim
et al., 2020; Elangovan et al., 2022; Hang et al., 2022). The FMT
effectiveness was also determined in Parkinson’s disease animal
models via alleviating LPS-induced neuroinflammation (Sun et al.,
2018; Zhao et al., 2021). Currently, there is a growing emphasis
on the studies that use FMT approaches to study the role of
stress-relatedmicrobiota composition in behavioral changes. A link
was also recently demonstrated between disease-related microbiota
and behavior where FMT from depressed patients to microbiota-
depleted rodents increased anhedonia and anxiety-like behaviors
(Kelly et al., 2016; Liu et al., 2020). Some studies employed FMT
from control and stressed animals (donors) (Marcondes Ávila et al.,

2020; Sharma et al., 2020; Rao et al., 2021; Huang et al., 2023;
He et al., 2024) confirming the vital role of FMT in regulating

brain inflammation, and behavioral changes in the chronic stress
paradigms. He et al. (2024) employed FMT from stress-resilient

and stress-susceptible mice to CUMS-exposed ones. Besides the
significant behavioral improvement, the FMT from stress-resilient

mice regulated CX3CL1 and CD200 mediators, contributing to
efficient communication between microglia and neurons. In a

study by Li et al. (2019), the authors determined worsened
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behavioral deficits because of an FMT from CUMS-treated donors.

Additionally, recipient mice exhibited increased IDO-1, TNF-α,
and IFN-γ levels in the hippocampus. Marcondes Ávila et al. (2020)

confirmed that chronic mild stress (CMS) aggravated behavioral
impairments like the effects of FMT from stressed donors to

non-stressed recipients. FMT from stress-exposed rats contributed
to elevated IL-6 and TNF-α hippocampal expression. On the
other hand, the downregulation of proinflammatory cytokines
and behavioral development was established as a result of FMT
treatment from healthy donors.

7 Summary

Several studies have been exploring neuroimmune pathways
involved in the regulation of the GBA in animal models of
diseases, but bidirectional communication remains not fully
explained. Most of the research performed in various disease
models shows the involvement of the activation of the NLRP3
inflammasome complex. A few studies report the intestinal
barrier’s altered permeability manifested by the changes in TJs
protein expression and further increased levels of cytokines and
chemokines. Since behavioral impairments resulting from stress
exposure are accompanied by exacerbated inflammation, special
attention should be drawn to the BBB permeability. A couple of
studies pointed out that stress-induced anxiety- and depressive-
like behaviors correlated with dysbiosis of gut microbiota, and
disruption of intestinal permeability with simultaneous changes
observed in the hippocampus and prefrontal cortex. Namely,
authors observed involvement of neuroinflammation processes
(microglial activation, increased expression of NLRP3 and pro-
inflammatory cytokines), alterations in levels of neurotransmitters,
and decreased expression of ZO-1, occludin, and claudins. It
could be postulated that impaired communication across BBB
may therefore represent a significant mechanism allowing the
gut microbiota to affect brain functions for example under stress
conditions (Figure 2).

Understanding the molecular mechanisms underlying stress
susceptibility seems to be crucial to the identification of novel
pharmacological treatments for gut-brain disorders. Currently,
scientists acknowledge the significance of changes in gutmicrobiota
composition in mood disorders. However, using animal models to
evaluate the modifications of gut microbiota (probiotics, prebiotics,

FMT) requires paying special attention to the experimental design.
Despite the growing use of FMT in clinical and animal studies,
accompanied by scientifically proven efficiency showing anti-
inflammatory properties and changes in behavior, alterations in the
BBB have not been addressed so far. It remains an open question
whether animal models should be used as adequate research tools
to study modifications of gut microbiota under stress conditions.
Therefore, drawing direct conclusions about the role of BBB
integrity in the beneficial role of modification of gut microbiota is
not fully possible, and it should be considered in future studies.
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