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Drug discovery is a generally inefficient and capital-intensive process. For 
neurodegenerative diseases (NDDs), the development of novel therapeutics 
is particularly urgent considering the long list of late-stage drug candidate 
failures. Although our knowledge on the pathogenic mechanisms driving 
neurodegeneration is growing, additional efforts are required to achieve a 
better and ultimately complete understanding of the pathophysiological 
underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous 
and multifactorial, this process is further complicated by the fact that current 
experimental models only partially recapitulate the major phenotypes observed 
in humans. In such a scenario, multi-omic approaches have the potential to 
accelerate the identification of new or repurposed drugs against a multitude 
of the underlying mechanisms driving NDDs. One major advantage for the 
implementation of multi-omic approaches in the drug discovery process is 
that these overarching tools are able to disentangle disease states and model 
perturbations through the comprehensive characterization of distinct molecular 
layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. 
Because of recent advances increasing their affordability and scalability, the use 
of omics technologies to drive drug discovery is nascent, but rapidly expanding 
in the neuroscience field. Combined with increasingly advanced in vitro models, 
which particularly benefited from the introduction of human iPSCs, multi-
omics are shaping a new paradigm in drug discovery for NDDs, from disease 
characterization to therapeutics prediction and experimental screening. In this 
review, we discuss examples, main advantages and open challenges in the use 
of multi-omic approaches for the in vitro discovery of targets and therapies 
against NDDs.
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1 Introduction

Neurodegenerative diseases (NDDs) represent a growing 
societal and public health burden affecting millions of people 
worldwide with a projected increase to 3.3% of the population 
affected by 2060 (Erkkinen et  al., 2018; Matthews et  al., 2018). 
Briefly, NDDs are a heterogeneous group of neurological disorders 
characterized by the progressive loss of neurons either in the central 
or peripheral nervous systems (CNS, PNS). Beyond neuronal loss, 
NDDs result in the overall deterioration of both neuronal functions 
and synaptic plasticity, leading to a progressive reduction of patients’ 
behavioral, cognitive, sensory and motor abilities (Wilson 
et al., 2023).

As recently summarized, prevalent NDDs, such as Alzheimer’s 
and Parkinson’s disease (AD, PD), frontotemporal dementia (FTD) 
and vascular dementia (VaD), share a series of hallmark traits such as 
pathological protein aggregation, synaptic and neuronal network 
dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered 
energy metabolism, DNA and RNA defects, inflammation, and 
neuronal cell death (Wilson et al., 2023). While the root causes for 
each disease are potentially multi-factorial, heterogeneous, and 
disease-specific, these shared mechanisms account for the general 
dysfunction associated with the distinct NDDs (Wareham et al., 2022).

Despite the continuous scientific advances in our understanding 
of the pathophysiological traits of each NDD, the frequent failures of 
drug candidates in clinical trials even at advanced stage over the last 
few years, e.g., against AD, undermine the further engagement of 
pharmaceutical companies in developing new therapeutics against 
such disorders (Cummings et al., 2016). On the positive side, the 
advent of monoclonal antibodies, e.g., against β-amyloid (Aβ) to treat 
AD, spearheaded by the recent approval of Aducanumab and 
Lecanemab by the FDA, opens promising clinical scenarios 
counteracting pathological protein aggregation (Delrieu et al., 2024). 
Nevertheless, these agents pose a number of controversies related to 
the observed side effects, their overall accessibility and only partial 
efficacy in tackling advanced stages of the disease. Overall, possible 
reasons for the inefficient development of drugs against NDDs include 
(i) a lack of accepted consensus in biomarkers for patients’ 
stratification; (ii) the inappropriate choice of doses; (iii) an insufficient 
accounting for the stratification and heterogeneity of NDDs, as well as 
(iv) too late interventions (Kim et al., 2022).

Understanding the etiology of the major NDDs is further 
complicated by the diversity across different experimental models, 
which do not recapitulate in a univocal manner the major phenotypes 
observed in humans. While rodents and other model organisms 
represent an established and still useful option in NDDs research, 
numerous evidences attested their limited translatability into the 
human context (Dawson et al., 2018). A key example are microglia 
cells, for which the most advanced models are now relying on mouse 
xenotransplantation of either human pluripotent stem cells (hPSCs)-
derived microglia or entire neuroimmune human organoids (Mancuso 
et al., 2019; Xu et al., 2020; Schafer et al., 2023). Such models have 
demonstrated to closely recapitulate human phenotypes by 
overcoming both the poor overlap between human and rodents as well 
as the cell state artifacts sometimes observed in vitro (Zhang et al., 
2023). Nevertheless, xenotransplantation is still animal-based, 
laborious and only partly reproducible, thus it barely complies with 
classical requirements for early drug discovery (Hughes et al., 2011).

With the advent of highly sophisticated 3D in vitro models we are 
entering a new phase of drug discovery (Klimmt et  al., 2020; 
Whitehouse et al., 2023). Earlier, neuron-centric in vitro cell culture 
models failed to capture the involvement of glial cells and therefore 
could not model important parts of NDDs pathophysiology such as 
neuroinflammation. More recent co-culture systems including 
astrocytes and microglia better approximate CNS cell-type 
heterogeneity and thus increase their suitability for disease modeling. 
Further advancing models from 2D monocultures to heterogeneous 
co-culture systems, up to the highly-structured 3D organoids has 
allowed to achieve even more complex disease phenotypes in vitro 
(Klimmt et al., 2020). In addition, significant advances have been 
achieved with the introduction of human induced pluripotent stem 
cells (hiPSCs) (Penney et al., 2020). Human iPSCs allow to generate 
neuronal and glial cell types with a well-defined, patient-derived 
genetic background (Li and Shi, 2020; Dannert et al., 2023). This is of 
particular interest to further model genetic variability in the context 
of personalized drug discovery. However, further improvement of 
iPSC-based models is required as their early developmental state does 
not yet optimally recapitulate the environment in which late-onset 
diseases like AD develop. Direct conversion of human fibroblasts into 
neurons (induced neurons, iNs) while bypassing their reprogramming 
into iPSCs followed by differentiation, was demonstrated to better 
preserve aging phenotypes in vitro (Mertens et al., 2015), but these 
models are still constricted, e.g., by limitations in cell sources and 
accessibility to gene editing. The establishment of more mature, 
scalable model systems might thus be  a prerequisite for further 
improving reproducibility, controllability, and efficiency of drug 
discovery (Okano and Morimoto, 2022).

In light of these advancements, there is a pressing need to revise 
the overall drug discovery and repurposing strategy while accounting 
for the heterogeneous, multi-factorial, and multi-target nature of 
NDDs. Along these lines, the combination of systems medicine and 
novel pharmacological approaches would enable scientists to 
complement reductionist approaches to capture major aspects of the 
disease complexity (Balusu et al., 2023). As such, tools are required 
that can disentangle disease states and model perturbations through 
the comprehensive characterization of distinct molecular layers up to 
the single-cell resolution. Here, omics approaches have the potential 
to capture cellular information on a global level for distinct molecular 
layers (i.e., genome, transcriptome, proteome) (Hampel et al., 2021; 
Arenas, 2022). Because of their increasing affordability, the use of 
omics technologies to drive drug discovery, while still a relatively 
young development in the neuroscience field, is now spreading (Van 
de Sande et al., 2023). With transcriptomic analyses leading the field, 
these high-dimensional approaches have been increasingly used to 
accelerate the early discovery and repurposing of drug candidates 
when coupled to in vitro perturbations (Carraro et al., 2022), for the 
pharmacological and toxicological evaluation of in vivo treatments 
(Nguyen et  al., 2022) as well as for monitoring and systemic 
investigation of disease susceptibilities in clinical cohorts (Zielinski 
et al., 2021).

Unimodal single-cell omics measurements have revolutionized 
our knowledge on the cellular heterogeneity of organs and tissues, up 
to the definition of human cell atlases, informing us on the cellular 
mechanisms of plasticity in health and disease (Vandereyken et al., 
2023). Nevertheless, multi-omics approaches, i.e., the combination of 
distinct omics layers of information such as the genome, epigenome, 
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transcriptome, proteome, lipidome, and metabolome have improved 
our way to interpret cellular processes as a whole even more 
profoundly. An integrated multi-omics perspective on pathological 
states offers new avenues to increase our understanding of disease 
trajectories up to the possible definition of endotypes. Unveiling the 
gene regulatory networks underlying NDDs with single-cell multi-
omics provides scientists with a holistic view on the possible 
contribution of the different molecular layers and how these result in 
the observed cellular phenotypes (Vandereyken et al., 2023). Different 
protocols and technologies have been developed in the last decade to 
enable scientists to assess different omics information, from bulk to 
single-cell resolution, and many options are now commercially 
available (Baysoy et al., 2023). In addition, more recent options finally 
allow for the simultaneous detection of multiple omics measurement 
from the same single-cell (multi-modal omics) (Zhu et al., 2020). In 
parallel, huge efforts have allowed the establishment of robust 
bioinformatics pipelines to ensure the integration of multiple omics 
information, so as to speed up the biological interpretation of such 
high-dimensional datasets including recent pipelines in R and Python 
(Hao et  al., 2021; Gayoso et  al., 2022; Vandereyken et  al., 2023). 
Finally, distinct computational frameworks have been developed to 
efficiently tackle the technical and biological difficulties of integrating 
and harmonizing the information obtained from distinct omics 
measurements to obtain a unified landscape of the cellular regulatory 
networks underlying disease (Miao et al., 2021).

In this review, we will discuss the main achievements and open 
challenges in the use of multi-omics for the characterization of NDDs 
and the discovery of therapeutics against neurodegeneration, with 
particular attention to AD and PD as the most prevalent and 
extensively characterized NDDs. While both have their disease 
specifics, the approach itself is generalizable to most NDDs. In detail, 
we will focus on the role of omics approaches in the early phases of 
drug discovery, from the evaluation of in vitro models as a fundamental 
step for efficient drug screening, through the bioinformatics analysis 
of omics data for the identification of biomarkers and druggable 
pathways in NDDs, up to the most recent examples on the use of 
omics to identify novel drug candidates. To conclude, we will discuss 
some general requirements and key steps to optimize the design of 
omics-based drug discovery and repurposing experiments.

2 Benchmarking in vitro models of 
neurodegeneration with multi-omics

In vitro models for early drug discovery should efficiently 
recapitulate the main pathophysiological phenotypes observed in 
humans while retaining critical features such as reproducibility and 
scalability (Whitehouse et  al., 2023). Over the last years, multiple 
systems have been proposed to study NDDs (Slanzi et al., 2020; Qian 
and Tcw, 2021). As already mentioned, these different in vitro 
platforms have particularly benefited from the introduction of hiPSC-
derived cell cultures (Paquet et  al., 2016). Different hiPSCs-based 
models with increasing spatial complexity are available, spanning 
from 2D to 3D, i.e., based on the use of artificial matrix scaffolds or 
coupled with microfluidics devices (Park et al., 2018), up to the highly 
structured organoid systems (Lancaster et al., 2013; Bershteyn et al., 
2017; Chiaradia and Lancaster, 2020), and are increasingly employed 
to study brain development and disease.

This diversity poses now the challenge to choose the most suited 
in vitro system when establishing a platform for further drug activity 
assessments. As such, omics technologies can be powerful tools to 
evaluate in vitro systems for their suitability as screening systems for 
drug and target discovery (Figure 1). In this section, we will describe 
the value of omics technologies for the characterization of in vitro 
models of NDDs (particularly AD and PD). We will showcase how 
these technologies helped to evaluate different models in terms of 
cellular heterogeneity and similarity to human phenotypes, concluding 
with some remarks on the advantages and challenges for their proper 
implementation in future drug discovery pipelines (Table 1).

2.1 Evaluation of in vitro models of AD 
using omics approaches

AD is the most common NDD but its pathophysiological 
complexity is still not fully elucidated. A major hallmark of this disease 
is the formation of amyloid beta plaques and tangles of 
hyperphosphorylated tau protein, associated with neuroinflammation 
and synaptic dysfunction, ultimately leading to neuronal cell death 
(Wilson et al., 2023).

The advent of new technologies mentioned above helped with 
widening our knowledge on possible mechanisms underlying AD, 
enabling scientists to advance the complexity of available in vitro 
systems to model key aspects of the underlying pathology. Numerous 
in vitro systems with increasing complexity have been reported to 
model the main molecular signs of AD. Among the first available 
options, neuron-focused 2D iPSC systems were developed (Yagi et al., 
2011; Israel et al., 2012; Bardy et al., 2016; Handel et al., 2016; Lin 
et al., 2018; Burke et al., 2020). Among others, the one reported by 
Kondo et al. (2017) was used to test the ability of different compounds 
to clear amyloid beta in vitro. Transcriptomics enabled the molecular 
phenotyping of iPSC-derived in vitro models across different CNS cell 
types, providing a useful comparison to human ex vivo CNS profiles 
in health and disease states (Table 1). As an example, Lin et al. (2018). 
analyzed the transcriptome of iPSC-derived neurons, astrocytes and 
microglia-like cells bearing an APOE4 genotype, unveiling impaired 
synaptic function, lipid metabolism and immune response compared 
to isogenic APOE3 cells.

While extremely useful and widely adopted by the community, 
2D mono and co-culture models can only partly recapitulate the 
multiplicity of phenotypes and molecular processes contributing to 
AD, such as concurrent amyloidosis and tau pathology. Moreover, 
the low spatial complexity of these cultures does not allow to inspect 
more complex inter-cellular and cell-matrix interactions, all key 
aspects to consider when evaluating the potential of novel 
therapeutic agents. In this direction, a step forward was achieved 
with the introduction of 3D mono- and co-culture systems, from 
spheroids to highly-structured organoids. In the last decade, several 
3D models were developed that replicate distinct features of AD 
such as amyloid deposition, tau burden and more complex cellular 
interactions (Choi et  al., 2014; Raja et  al., 2016; Gonzalez et  al., 
2018). In this scenario, transcriptomics was increasingly employed 
to characterize cell type and state-specific gene expression profiles, 
depicting a highly granular range of cellular phenotypes in such 3D 
models. Different engineering approaches have been also used to 
generate 3D in vitro culture systems that span from microfluidics 
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devices to hydrogels of different composition (Park et  al., 2015; 
Papadimitriou et al., 2018; Jorfi et al., 2023; Cuní-López et al., 2024). 
Papadimitriou and colleagues proposed a 3D culture of neural stem 
cells or primary cortical astrocytes embedded in a biohybrid 
hydrogel scaffold after treatment with Aβ42 peptide as a platform to 
study AD (Papadimitriou et  al., 2018). A whole-transcriptome 
assessment revealed different cell-type-specific gene expression 
signatures proving that cortical alterations are present in these 
conditions. This analysis also confirmed the presence of more 
complex neuronal networks in culture settings of higher spatial 
complexity. Single-cell transcriptomics allows in addition to finely 
describe the advanced range of represented cellular phenotypes. As 
an example, Cuní-López et  al. (2024) used a tissue engineering 
approach to create 2D and 3D co-cultures of monocyte-derived 
microglia cells (MDMis) and immortalized neuronal progenitors. 
They tailored this in vitro platform to study Alzheimer’s disease by 
generating their MDMis both from AD patients with different stages 
of the illness and from healthy controls. A single-cell RNA-seq 
(scRNA-seq) analysis then showed a greater heterogeneity of cell 
populations in the three dimensional culture settings when 
compared with the 2D counterpart. Moreover, in the AD 3D 
co-cultures, a reduced contact between microglia and neuronal cells 
after immunohistochemical surface reconstruction, and a donor-
specific cytokine response pattern to dasatinib treatment were 
observed. A even higher diversity of profiles was investigated by Jorfi 
et al. (2023) who also used single-cell transcriptomics to evaluate 
their novel 3D stem cell-derived microfluidic system which included 
not only CNS-related cell types such as immortalized neurons and 
astrocytes, and microglia, but also incorporated peripheral immune 
cells to depict a finer grained picture of the neuroimmune interaction 
between glial cells and infiltrating T cells in the AD brain. 
Transcriptomics has been widely employed to characterize in vitro 
AD models of higher spatial complexity in terms of cellular 
heterogeneity and functional profile, with the aim to clarify how 
closely such models could represent pathogenic processes observed 

in humans (Zhao et al., 2020; Chen et al., 2021). As an example, 
Chen and colleagues leveraged scRNA-seq to explore the functional 
pathways involved in the response of neurons and astrocytes to 
blood brain barrier (BBB) leakage, simulated in vitro by treating 
cortical organoids derived from iPSC cells of AD patients with 
serum from healthy donors (Chen et al., 2021). More recently, the 
advent of spatial transcriptomic technologies offers yet novel tools 
to map phenotypes and cellular interactions in tissues and 3D in 
vitro models. Interestingly, Vanova et al. (2023) showed how iPSC-
derived brain organoids bearing PSEN1 and PSEN2 gene mutations 
can mimic Alzheimer’s disease-like pathology. Remarkably, 
scRNA-seq highlighted a defective development of specific 
progenitor cells and the absence of an organized structure in AD 
cerebral organoids (Vanova et al., 2023).

Furthermore, the possibility to assess multiple omics modalities 
jointly, up to single-cell resolution, allowed to obtain a more detailed 
picture of the heterogeneity of cell types and states. Dolan et al. (2023) 
leveraged both single-cell transcriptomics and chromatin accessibility 
analysis to characterize their in vitro model of human stem cell 
differentiated microglia (iMGL). The study assessed the iMGL 
transcriptomic profile at the single-cell level upon exposure to 
different substrates present in the microenvironment of an AD brain, 
i.e., synaptosomes, myelin debris, apoptotic neurons or amyloid-beta 
fibrils. The work identified different microglia cell states, including a 
cluster of disease associated microglia (DAM), a cell population 
accumulating around amyloid plaques first reported in a murine 
model of AD (Keren-Shaul et al., 2017) and later identified in multiple 
in vitro and ex vivo settings in murine models and, albeit with other 
distinctive features, in humans.

Concerning genetic alterations, genome-wide association 
studies (GWAS) unveiled numerous genetic risk factors associated 
with AD, such as APOE4 and TREM2 (R47H), inspiring the 
development of models aimed to better depict the genetic 
predisposition for AD in vitro, often obtained through genetic 
engineering (McQuade and Blurton-Jones, 2019; Claes et al., 2021). 

FIGURE 1

Multi-omics technologies can be useful tools to characterize cellular heterogeneity and maturity of in vitro models. Key aspects to consider are their 
similarity to human characteristics and their suitability as in vitro models for drug and target discovery. Created with BioRender.com.
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Besides characterization of the genetic underpinnings driving AD 
development, transcriptome analyses allow for the definition of 
regulatory dynamics in target cell populations and can potentially 
unveil additional mechanisms underlying NDDs. As one example 
for this, Claes et al. (2021) investigated the role of a TREM2 R47H 
mutation on human iPSC-derived microglia xenotransplanted in a 
murine AD model, demonstrating a transcriptome similar to 
human atherosclerotic foam cells and only a limited reactivity 
toward amyloid plaques. Such phenotype was also described by 
McQuade and Blurton-Jones (2019), who showed by scRNA-seq 
that TREM2-knockout iPSC-derived human microglia 
xenotransplanted into a murine model failed to activate in response 
to amyloid-beta plaques. Altogether, these studies showed that it is 
crucial to not only use functional assays but complement this with 
transcriptomic analysis of microglia to unravel the complex 
function of TREM2 and its genetic variants in microglia, especially 
in AD pathology.

Overall, omics technologies not only allowed the exploration of a 
wider spectrum of possible biological processes relevant to AD 
pathology but also helped to evaluate to which extent such processes 
could be recapitulated in different models, especially in vitro. This has 
enabled researchers to investigate the effect of different genetic risk 
factors and other phenotypic AD features, not only for neurons but 
also glial cells in progressively more advanced 3D co-culture models. 
These advances will be of great advantage for the reliable early-phase 
screening of novel potential drug candidates against AD and their 
mechanism of action.

2.2 Omics evaluation of in vitro models of 
PD

PD is a neurodegenerative disease with a multifactorial nature, 
characterized by symptoms spanning from resting tremor to 
neuropsychiatric manifestations for which the most commonly 
available symptomatic treatment is levodopa (Jankovic and Tan, 
2020). A pathognomonic hallmark underlying PD is the accumulation 
of α-synuclein in dopaminergic neurons, leading to cell dysfunction 
and neuronal death in the substantia nigra (Krach et al., 2020).

Several key steps have been undertaken over the last decade to 
model PD in vitro. As different mutations and copy number variations 
are associated with PD, iPSC-derived models were developed 
reflecting this genetic complexity to investigate the genetic bases of the 
disease (Sim et al., 2020; Virdi et al., 2022; Xu P. et al., 2022). Most of 
these culture approaches focus on the generation of dopaminergic 
neurons that are either genetically modified or directly derived from 
patients. Lang and colleagues opted for the second approach, 
producing iPSC-derived dopamine neurons from three different 
carriers of the GBA-N370S mutation and then applied scRNA-seq for 
transcriptome profiling (Lang et  al., 2019). Remarkably, their 
assessment highlighted the higher endoplasmic reticulum stress in 
two of the PD donors-derived lines when compared with healthy 
controls and a downregulation of a set of genes dependent on HDAC4 
expression, later designated as a possible target for treatment. 
Furthermore, the incubation of these cultures with the HDAC4 
allosteric inhibitor tasquinimod led to a reduction of α-synuclein 

TABLE 1 Examples for the use of multi-omics for the characterization of in vitro NDD models.

NDD model Applied omics 
technology

Characterized features Model limitations

2D hiPSCs monocultures

Yagi et al. (2011), Israel et al. (2012), Bardy 

et al. (2016), Handel et al. (2016), Lin et al. 

(2018), Lang et al. (2019), Burke et al. (2020), 

Fernandes et al. (2020), Badanjak et al. (2021), 

Cardo et al. (2023), Dolan et al. (2023)

Microarrays, bulk and 

single cell RNA-seq and 

ATAC-seq

Phenotype maturation, pathological features, impact 

of distinct genotypes and donor genetic background, 

similarity with human material, reproducibility for 

HT screens, epigenomic characterization of cell states

Mostly focused on neuronal 

characterization, no spatial 

complexity, poor milieu heterogeneity 

and consequently limited 

representation of in vivo pathological 

burden

2D hiPSCs co-cultures

Lin et al. (2018)

Bulk RNA-seq Phenotype maturation, cell types’ and states’ 

heterogeneity, pathological features, glial-neuronal 

crosstalk, effect of engineered genetic background

No spatial complexity, limited 

representation of in vivo pathological 

burden

3D hiPSCs-derived co-cultures (neurons, 

astrocytes, microglia)

Papadimitriou et al. (2018), Jorfi et al. (2023), 

Cuní-López et al. (2024)

Bulk RNA-seq, single cell 

RNA-seq

cell plasticity, phenotype maturation, cell types’ and 

states’ heterogeneity, spatial complexity, enhanced 

pathological features, enhanced glial-neuronal 

crosstalk, ex vivo phenotype comparisons, 

neuroimmune axis characterization

Use of exogenous scaffold matrix, 

major neuronal focus, often not all 

glial cell types included, 

heterogeneous modeling of human 

pathological features

Cerebral organoids

Zhao et al. (2020), Chen et al. (2021), Kim 

et al. (2021), Mohamed et al. (2021), Zagare 

et al. (2022), Patikas et al. (2023), Vanova et al. 

(2023)

Single cell RNA-seq Increased spatial patterning, phenotypes in 

developmental modeling, glial-neuronal crosstalk, ex 

vivo phenotype comparisons, neuroimmune axis 

characterization, phenotype maturation, 

characterization of genetic contribution to observed 

pathology

Limited reproducibility and 

scalability, better approximation of 

developmental rather than NDD 

phenotypes and maturation

Xenotransplated microglia

McQuade and Blurton-Jones (2019), Claes 

et al. (2021)

Single-cell RNA-seq Evaluate maturation in presence of in vivo milieu, ex 

vivo phenotype comparisons, neuroimmune axis 

characterization, phenotype maturation, 

characterization of genetic contribution to observed 

pathology

Limited reproducibility and low 

scalability, still rely on in vivo models, 

heterogeneous modeling of human 

pathological features
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release. In addition, this transcriptomics analysis refined the diagnosis 
for one of the donors as a progressive supranuclear palsy patient. 
Single-cell transcriptomics have also been employed to describe cell 
specific responses and transcriptional dynamics upon perturbation, 
as reported for iPSC-derived dopaminergic neuron cultures and 
midbrain organoids exposed to rotenone, a pesticide known to induce 
PD-like symptoms (Fernandes et al., 2020; Patikas et al., 2023). The 
study highlighted the presence of distinct cell subpopulations showing 
different transcriptomic responses to treatment and described 
potential underlying biological pathways. In an analogous fashion, 
Cardo et al., treated iPSC-derived midbrain neurons with 1-Methyl-
4-phenyl-1,2,5,6-tetrahydropyridine (MPTP), a compound known to 
cause selective cellular damage mimicking PD-related cell toxicity 
effects. The team used scRNA-seq to follow the development in culture 
of the iPSC-derived, CRISPR-Cas9 edited tracer line among four 
different timepoints to evaluate the model’s maturity and determine 
the best setting for MPTP treatment. Insights on cell-type-specific 
transcriptomic changes upon compound administration were also 
gathered (Cardo et  al., 2023). Additional mechanisms like 
neuroinflammation are known to contribute to PD pathological 
processes, and to further explore this avenue other in vitro models 
containing also non-neuronal cells are now available. A recently 
published work leveraged transcriptomic analysis of both iPSC- and 
postmortem-derived microglia for the construction of a single-cell 
midbrain in vitro atlas depicting the role of microglia in sporadic PD 
(Badanjak et al., 2021).

Three-dimensional culture systems are cell-heterogeneous 
platforms whose spatial complexity is well-suited to model PD for 
drug discovery purposes. In this direction, studies have generated 
midbrain organoids from individuals carrying a triplication of the 
SNCA gene to reproduce key aspects of the PD pathology in vitro 
(Mohamed et al., 2021; Zagare et al., 2022; Patikas et al., 2023). 
Their characterization by scRNA-seq allowed to explore the 
heterogeneity of the represented cellular profiles compared to other 
in vivo and in vitro models. This comparative analysis unveiled 
shared consensus features across the different models, highlighting 
the potential of single-cell tools to evaluate and score cellular and 
phenotypic complexity across disease models. The use of such tools 
enabled also the characterization of other organoid models of PD, 
like the one published by Zagare et  al. (2022), who generated 
midbrain cultures from iPSC lines edited to carry the LRRK2-p.
Gly2019Ser mutation. The transcriptomic profiling carried out by 
this group allowed for the evaluation of differences between 
mutated and wild-type samples both in cellular proportions and 
gene expression, indicating an altered developmental process in the 
organoids carrying the PD alteration. hESC-derived midbrain-like 
organoids were also used as a source of neural progenitors for 
transplantation into a hemiparkinsonian rat model to probe a new 
regenerative medicine approach for treatment. Both bulk and 
single-cell analysis were useful to determine the 3D culture setting 
as the most appropriate supply of selected progenitors for the 
procedure, when compared with 2D-derived NSCs, resulting in 
amelioration of performance in a battery of tests measuring 
forelimb akinesia (Kim et al., 2021). Overall, omics technologies 
have shown great promise to support the development of relevant 
in vitro models phenocopying Parkinson’s disease pathology. In 
particular, the integration of 2D and 3D models with ex vivo data 
offered the possibility to highlight consensus features, inter-model 

similarity as well as limitations such as immature phenotypes and 
model artifacts.

To conclude, multi-omics represent powerful tools to evaluate the 
cellular heterogeneity and complexity of in vitro models, key aspects 
to be considered for the selection of the most suited drug discovery 
system for NDDs (Sharma et al., 2020). Single-cell omics can convey 
a high degree of granularity, difficult to achieve with other 
technologies, enhanced by the recent possibility to investigate spatial 
and longitudinal information. Nevertheless, such fine-grained pictures 
often vary across different models and datasets, both in terms of 
distinct phenotypes as well as their annotation, and efforts are needed 
to generate consensus information (Paolicelli et al., 2022), in order to 
eventually identify the most convenient and reliable scaffolds for the 
early identification of novel therapeutics in vitro.

3 Omics in drug discovery and 
repurposing for neurodegenerative 
diseases

Recent years have seen a rise in the use of omics and computational 
approaches to fuel drug discovery. Different studies have demonstrated 
how to exploit omics to advance the identification and characterization 
of novel or repurposed therapeutics, from the study of their activity, 
mechanisms of action, and pharmacodynamics up to the investigation 
of cellular responses and determinants of susceptibility (Van de Sande 
et  al., 2023). More recently, many reports have shed light on the 
potential for combining multi-omics with other computational tools 
to foster the discovery of drug candidates against targets in different 
NDDs (Aerqin et al., 2022). In this section, we will summarize the 
main findings and examples related to (i) the computational mining 
and re-use of existing omics and other high-content datasets to 
identify novel druggable targets in neurodegeneration as well as to 
build disease signatures; (ii) some of the available approaches for 
omics-based repurposing of drugs, with key examples of their efficient 
application; (iii) the use and establishment of omics-based 
experimental workflows for the screening and characterization of 
small molecules against known and unknown target structures in 
NDDs (Figure 2).

3.1 Data mining and re-use to identify new 
targets and disease signatures in NDDs

In the last decade, the scientific community has produced a 
considerable amount of multi-omics data describing cellular processes 
and phenotypes in health and neurodegeneration (Balusu et al., 2023; 
O’Connor et al., 2023). These bulk and single-cell datasets, obtained 
from different complementary models of NDDs, have provided us 
with a holistic view of the complex cellular dynamics regulating 
different neurological processes at high resolution (Piwecka et al., 
2023). These converged in the generation of high-dimensional atlases 
describing the cellular heterogeneity of different areas of the CNS in 
mouse and human as well as in brain organoids (Kanton et al., 2019; 
Agarwal et al., 2020; Rood et al., 2022; Zhou et al., 2022; Mathys et al., 
2023). This enormous amount of data, becoming increasingly 
accessible to the research community, calls for further mining and 
mindful re-use to generate additional knowledge also through 
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cross-dataset integration (O’Connor et al., 2023). Such a perspective 
sounds particularly attractive in the drug discovery context as 
we  could potentially perform pre-assessment of a given patient’s 
vulnerabilities and project disease trajectories through integration of 
multiple existing datasets.

Different databases and repositories have been established and 
curated in the last few years to allow scientists to systematically 
access multi-omics and other genomic and phenotypic datasets 
(Table 2) (Abdullatef and Farina, 2023; O’Connor et  al., 2023). 
Among the most widely known are Gene Expression Omnibus 
(GEO) and the European Genome Archive (EGA) for NGS data, 
BioImage Archive (BIA) for imaging and microscopy-based spatial 
omics data, as well as PRoteomics IDEntifications (PRIDE) for 
proteomics datasets, plus many others, including some for 
lipidomics and metabolomics data (Martens et al., 2005; Barrett 
et  al., 2013; Lappalainen et  al., 2015; Hartley et  al., 2022). 
Interestingly, also resources for the specific deposition of 
neurological datasets exist, such as the NIH BRAIN Initiative Cell 
Census Network (BICCN), the Mount Sinai Brain Bank and 
ROSMAP dataset, the Allen Brain Map and the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), Synapse AD knowledge 
portal, Brain-CODE and the National Cell Repository for 
Alzheimer’s Disease (NCRAD), which offer access to catalogs of 
biobanked specimens and the associated metadata (Petersen et al., 
2010; Bennett et al., 2018; Wang et al., 2018, 2020; Hawrylycz et al., 
2023; National Institute on Aging, n.d.).

It has been recently demonstrated that the multi-omics 
information from published datasets can drive the discovery of new 
potential NDD targets, biomarkers and disease signatures (Hampel 
et al., 2021; Aerqin et al., 2022). This will be instrumental in the future 
for the downstream computational repurposing of chemical agents. 
As an example, publicly available GWAS, e- and pQTLs datasets from 
blood, CSF and brain tissue biopsies have been integrated to achieve 
a more comprehensive overview of potential causal genes and targets 

for intervention in PD (Gu et al., 2023). In another examples, multi-
omics analyses of ex vivo and in vitro disease models further elucidated 
the contribution of dysregulated lipid and amino-acid metabolism 
pathways to PD pathogenesis and highlighted PD-associated gene 
signatures through the combination of transcriptomics, epigenomics 
and metabolomics (Lee A. J. et al., 2023; Zagare et al., 2023). Numerous 
studies have described disease phenotypes of different CNS cell-types 
in AD resulting in the definition of genomic determinants and 
transcriptomic signatures of the disease, further complemented by in 
vitro modeling as described above (Grubman et al., 2019, 2021; Xicota 
et al., 2019; Mathys et al., 2023). In addition, single-cell resolution and 
spatial approaches have enabled the identification of cell-type specific 
signatures of NDDs, as reported for a subset of dopaminergic neurons 
in the substantia nigra pars compacta (SNpc) of PD patients (Kamath 
et  al., 2022), or for glial subsets within idiopathic PD patients’ 
midbrain (Smajić et  al., 2022). Similarly, as an example of 
non-neuronal glial cells deeply implicated in disease pathology, DAM 
microglia represent a druggable glial phenotype identified by 
scRNA-seq as enriched in AD with a potential key role in the disease 
pathogenesis (Deczkowska et  al., 2018; Grubman et  al., 2021). 
Numerous studies have performed metabolome analysis for the 
definition of AD and PD biomarkers and the identification of 
potentially druggable targets (Lista et  al., 2023; Yin et  al., 2023). 
Recently, Liu et al. (2024) conducted a metabolome-wide association 
study in AD (MWAS) which led to the identification of fourteen 
metabolites showing an association with AD risk. de Lope et al. (2024) 
identified PD-associated plasma metabolome alterations, particularly 
in xanthine metabolism, in line with other independent studies on 
transcriptomics data. Lastly, proteomics investigations have been 
increasingly recognized as pivotal for understanding the complex 
protein pathophysiology underlying NDDs (Rayaprolu et al., 2021). 
As an example, Karayel et al. (2022) recently developed a scalable, 
sensitive, and reproducible proteomics protocol for PD biomarker 
discovery. Further, Sung et al. (2023) propose the combined usage of 

FIGURE 2

Overview of the various applications of multi-omics in drug discovery and repurposing against targets in NDDs. MoA, mechanism of action. Created 
with BioRender.com.
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brain, CSF, and plasma proteomics to identify markers for sporadic 
and genetically defined AD.

Overall, newly generated data combined with the re-use and 
integration of existing multi-omics datasets, especially from human 
cohorts, represents a powerful resource to pre-identify disease 
trajectories and signatures useful for the downstream, patient-tailored 
identification of novel targets and therapeutics against NDDs. Joint 
and comprehensive efforts are needed to achieve a transversal 
consensus derived from the existing high-dimensional NDD multi-
omics datasets, spanning across different models and clinical cohorts.

3.2 Computational strategies for 
omics-based drug repurposing

The concept of drug repurposing refers to the renewed application 
of established drugs beyond their original therapeutic indication 
(Pushpakom et al., 2019). The repurposing of therapeutics offers an 
accelerated route in drug development by excluding the need for 
further preclinical and toxicological testing as well as early clinical 
trials up to phase II trials. For this reason, drug repurposing represents 
an appealing opportunity to tackle NDDs, especially in light of the 
decreased investments of pharmaceutical companies in this high-risk 
therapeutic area (Kakoti et al., 2022).

Different approaches have been reported to identify potential 
candidates to be repurposed against different NDDs, based either on 
Delphi consensus or computational strategies (Ballard et al., 2020). 
Delphi consensus converges the knowledge of experts in the 
pathological field of interest who scrutinize the literature to 
comprehensively and systematically identify potential candidates for 
repurposing, as reported for rho kinase inhibitors (Fasudil), 
acetylcholinesterase inhibitors (Phenserine) and antiviral drugs 
against AD during the 2018–2019 Delphi process (Ballard et al., 2020). 
While such an approach can potentially unravel promising hits for 
further development (Corbett et al., 2012), the biased shortlisting of 
potential candidates tends to neglect the dynamic nature of drug 
treatments, which generally not only induces a direct perturbation of 
the intended pathways and targets, but rather a more comprehensive 
cellular response even directly or indirectly (e.g., off-targets) (Padhi 
and Govindaraju, 2022).

Computational approaches can circumvent this by considering 
the multi-target nature of most NDDs as well as the cellular 
heterogeneity of disease states (Paranjpe et al., 2019). One example are 
biophysical methods, including structural, ligand-based and 
molecular docking strategies for the modeling of drug-target 
interactions in silico (Paranjpe et al., 2019). Still, in the majority of 
cases, these approaches start from a priori knowledge on potential 
targets to be investigated for a given disease, leading to a literature-
based inspection of candidates for further repurposing. Other agnostic 
options rely on the generation of clinical signatures from the analysis 
of patients’ medical histories and, in general, electronic medical 
records (Paik et al., 2015). While potentially very useful, the limited 
accessibility of sensitive clinical data represents a major obstacle to the 
widespread use of such approaches (Gehrmann et al., 2023).

As a promising alternative, transcriptome-based approaches 
primarily rely on the identification of drug hits capable of reversing 
specific disease signatures (Shukla et al., 2021). This is achieved by 
(i) the identification (de novo or from a literature-based consensus) 

of a transcriptional signature characterizing the disease [i.e., usually 
transcripts demonstrated to be up- or downregulated in the selected 
disease model(s)]; (ii) the parallel acquisition of a drug-perturbed 
transcriptomic profile in the model(s) of interest, to be representative 
of the pathways and cell responses elicited in reaction to the specific 
agent; (iii) inspecting the expression of signature genes upon drug 
perturbation and the further functional assessment of drug 
candidates able to reverse the associated pathological signature 
(Aschenbrenner et al., 2021; Shukla et al., 2021; Knoll et al., 2023). 
This principle finds its agnostic and fully-computational application 
in the widespread interrogation of the Connectivity Map (CMap) 
and the NIH Library of Integrated Network-Based Cellular 
Signatures (LINCS) databases, together providing perturbed 
transcriptional profiles for more than 30,000 small molecule 
compounds screened on mostly cancer cell lines (Lamb et al., 2006; 
Subramanian et al., 2017; Stathias et al., 2020). Propagating this back 
to the repurposing of drugs against NDDs, further efforts are 
required to extend the acquisition of drug-perturbed transcriptomic 
profiles of relevant cells for NDDs rather than in vitro cancer models, 
which can be only partly suited to efficiently predict drug responses 
in the CNS/PNS.

Recent examples have seen the signature reversal paradigm 
applied to drug repurposing against NDDs, e.g., with the 
identification of bumetanide, a loop-diuretic, as particularly active 
against effects caused by the APOE4 genotype. This prediction has 
been confirmed in vitro and in mouse models, as well as 
corroborated by clinical data (Taubes et  al., 2021). In another 
study, authors identified more than 50 candidate drugs starting 
from available single-nucleus transcriptomics data of human AD 
brain biopsies combined with GWAS information, leveraging cell-
type specific signatures of the disease and an integrated network 
analysis (Parolo et  al., 2023). Other network-based approaches 
have been recently employed to address drug repurposing in 
distinct Braak stages of AD pathology, integrating the information 
from reversal of transcriptomic disease signatures with an 
additional multi-factorial prioritization, e.g., based on the blood–
brain barrier (BBB) permeability of compounds and similarity to 
agents currently in clinical trials (Savva et al., 2022). More recent 
avenues point toward the use of artificial intelligence approaches 
to further optimize the unbiased identification of repurposing 
candidates, such as DRIAD (Drug Repurposing In AD), a machine 
learning framework investigating associations between AD Braak 
stage and specific drug-perturbations in differentiated human 
neural cell cultures (Rodriguez et al., 2021). Another example is 
Network topology-based deep learning framework to identify 
disease-associated genes (NETTAG), which uses aggregated 
genomics profiles and protein–protein interactome data to infer 
putative risk genes and drug targets impacted by GWAS loci, then 
used for the network-based prediction of repurposable candidates 
(Xu J. et  al., 2022). Overall, computational and AI-based 
approaches have the potential to harmonize and integrate the 
distinct levels of information useful for drug repurposing, from the 
inspection of clinical and registry data beyond their actual sharing, 
e.g., through Swarm Learning (Warnat-Herresthal et al., 2021), its 
integration with multi-omics profiling and other biophysical 
characterizations, which can be  modeled together in a 
comprehensive framework for a more efficient identification of 
drugs against targets in NDDs.
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3.3 Omics-tailored approaches for the in 
vitro screening of drugs

The experimental screening of chemical agents in vitro represents 
an integral part of the early drug discovery pipeline (Hughes et al., 
2011). In the last decades, numerous biochemical and cell-based in 
vitro assays have been developed for the high-throughput 
investigation of a compounds’ ability to interfere with distinct traits 
of the pathology underlying NDDs (Aldewachi et al., 2021; Maniam 
and Maniam, 2024). As concerns bioassays on isolated targets, 
different miniaturized alternatives have been established for High-
Throughput Screening (HTS) of small molecules active in distinct 

pathways in AD/PD, i.e., UV–Vis, chemiluminescence- or 
fluorescence-based approaches to screen for binding partners of Aβ 
isoforms [e.g., ThioflavinT assay (Lee S. et  al., 2023)] and tau 
oligomers, as well as of BACE1 (beta-secretase 1), TDP-43 (Buratti 
et al., 2013), ApoE (Chen et al., 2012), which among others include 
Fluorescence Resonance Energy Transfer (FRET) assays [e.g., 
AlphaScreen (Ren et al., 2013)]. In addition, cell-based high-content 
imaging screening (HCS) alternatives have been reported for the 
automated analysis of cell morphology changes and their drug-
induced dynamics (Ofengeim et  al., 2012), as well as mass-
spectrometry (MS)-based HTS methods able to visualize protein 
aggregation in ex vivo drug-exposed brain section (Yoshimi et al., 
2015) and other phenotypic options (Maniam and Maniam, 2024). 
Although such approaches provided the field with novel insights on 
potential drug candidates and interesting targets for NDDs drug 
development, they do not offer an holistic overview of cellular 
responses and phenotypic changes upon perturbation. Instead, they 
focus on specific drug-target interactions on isolated substrates, or 
inspect very specific, low-dimensional cellular readouts. These 
reductionist approaches have limitations when considering the 
complexity of NDDs, which arise from a variety of pathogenic 
processes and cell types. In this direction, complementary high-
dimensionality omics can be exploited not only as described above, 
for the evaluation of in vitro models and the identification of disease 
biomarkers and signatures, but even in the experimental screening for 
novel candidate therapeutics. Indeed, these tools can offer a 
comprehensive overview of the in vitro modeled cellular responses to 
drug perturbations as well as on the potentially engaged 
druggable pathways.

New and improved computational approaches are pivotal to 
identify and rank potential candidates against targets in NDDs, not 
only fostering drug repurposing, but also suggesting completely new 
chemical entities through AI-assisted strategies, including modeling 
of docking properties and molecular dynamics of new candidate drugs 
(Mock et al., 2023; Sadybekov and Katritch, 2023; Oestreich et al., 
2024). Nevertheless, the establishment of robust and reproducible 
approaches for experimental screening and validation of selected 
compound libraries remains of key importance for effectively bridging 
the early drug discovery phase to potential downstream development 
(Aldewachi et al., 2021). Ideally, for the identification of new targets 
in NDDs, experimental screenings need to converge with general 
requirements for drug discovery, such as reproducibility, cost-
efficiency as well as scalability and throughput. This can be  even 
enhanced by the use of in vitro models with increased controllability 
and reproducibility, taking into account cellular heterogeneity of the 
CNS and approximating as much as possible mature human 
phenotypes (Klimmt et al., 2020).

Combined with increasingly sophisticated in vitro models, multi-
omics measurements can provide a comprehensive readout of cell-
type specific responses to drug or small molecule perturbations 
(Koromina et al., 2019). This information can be leveraged to better 
understand pharmacodynamics as well as possible toxicological 
insights in early in vitro models (Nguyen et al., 2022). While changes 
of transcriptomic signatures can themselves be informative of drug 
effectiveness, especially in the context of reversal of potentially 
disease-induced transcriptomic alterations, their combination with 
other cell-type specific functional readouts (e.g., protein aggregation, 
cell plasticity or evaluation of metabolic reprogramming) would allow 

TABLE 2 Overview of the main general and neuroscience-related 
databases and repositories for the deposition and access of multi-omics, 
imaging, clinical and other phenotypic data.

Name Data type Reference

Allen Brain Map Gene expression, spatial 

mapping, cell atlassing

http://www.brain-map.

org, Wang et al. (2020)

National Cell 

Repository for 

Alzheimer’s Disease 

(NCRAD)

Biobanking specimen and 

metadata catalogues

https://ncrad.iu.edu/

NIH BRAIN Initiative 

Cell Census Network 

(BICCN)

Transcriptomics, 

epigenomics, spatial, 

morphology, imaging, 

multimodal

https://biccn.org/, 

Hawrylycz et al. (2023)

Mount Sinai Brain 

Bank

Genomics, 

transcriptomics, 

proteomics, imaging, 

neuropsychological 

assessments

deposited at https://

synapse.org/, Wang et al. 

(2018)

Alzheimer’s Disease 

Neuroimaging 

Initiative (ADNI)

MRI and PET images, 

genetics, cognitive tests, 

CSF and blood 

biomarkers as predictors

https://adni.loni.usc.edu/, 

Petersen et al. (2010)

Brain-CODE Platform for data 

management and sharing. 

From clinical assessment 

data to neuroimaging, 

PET, MRI

https://www.braincode.ca/

Synapse/AD 

knowledge portal

Genomics, 

transcriptomics, 

metabolomics, proteomics

https://

adknowledgeportal.

synapse.org/

BioImage archive 

(BIA)

Imaging https://www.ebi.ac.uk/

bioimage-archive/, Hartley 

et al. (2022)

Gene Expression 

Omnibus (GEO)

Gene expression https://www.ncbi.nlm.nih.

gov/geo/, Barrett et al. 

(2013)

European Genome 

Archive (EGA)

Genetic/genomic, 

phenotypic, clinical

https://ega-archive.org/, 

Lappalainen et al. (2015)

PRoteomics 

IDEntifications 

(PRIDE)

Proteomics https://www.ebi.ac.uk/

pride/, Martens et al. 

(2005)
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to build models predicting drug sensitivity and favorable drug 
combinations (Vincent et al., 2022). To close the cycle, omics-based 
experimental screenings can be leveraged to further inform, scale and 
optimize the performance of computational approaches to refine the 
development of new drugs (Zielinski et al., 2021).

As previously mentioned, the widespread use of human iPSCs-
based models represents a promising avenue for the in vitro modeling 
of NDDs, which is especially well-suited for early drug screening. 
Generating libraries of human iPSCs bearing different genetic 
backgrounds would be  important to cover the diverse genetics 
potentially underlying disease predisposition and would follow the 
precision medicine paradigm of patient-tailored therapy. In light of 
the fact that familial occurrence of AD and PD is rare with the 
majority of cases being sporadic and bearing genetically complex 
traits, this would be a major endeavor but also a major step towards 
achieving this goal (Kondo et al., 2017; Okano and Morimoto, 2022). 
Deep multi-omics phenotyping of drug responses using human iPSCs 
would allow to account for the wide range of inter-individual 
susceptibility and disease endophenotypes (Okano and Morimoto, 
2022). Along this line, a recent study reported the establishment of a 
framework combining (i) the identification of repurposed drug hits 
based on the reversal of an AD gene signature covering severe disease 
stage, early progression of disease pathology, cognitive decline and 
animal models, with (ii) an experimental workflow for the 
transcriptomics-based screening of identified hits on human iPSCs-
derived cortical neurons (Williams et al., 2019). The study led to the 
identification of 51 drugs reversing the AD phenotype in vitro, 
suggesting new avenues in omics-based drug repositioning against 
NDDs. Another work described a novel network-based drug-
screening platform based on the generation of human iPSC-derived 
cerebral AD organoids (iCOs) and their transcriptional evaluation to 
guide downstream repurposing (Park et al., 2021). Here, the authors 
identified interesting candidates by mathematical modeling of a high-
content screening (HCS) system based on the use of 1,300 organoids 
from 11 participants, providing a novel strategy for personalized 
medicine against NDDs.

Overall, the potential of the use of omics to drive drug discovery 
from in silico generation of hits of potential interest up to the 

experimental screening and validation of drug candidates is an 
emerging field with high potential. Despite some valuable examples 
showing high promise for future developments, these avenues are still 
underexplored in the context of NDDs and worth more thorough 
exploration in the near future.

4 Practical aspects for the design of 
omics-based drug screens

In the previous section, we described how multi-omics can offer 
insights and improve readouts for drug discovery against targets in 
NDDs. An efficient omics-based drug screening starts from an 
accurate study design tailored to the biological question of interest 
(Figure 3). The design should take into account general requirements 
for drug discovery, such as the need for high reproducibility, which is 
a prerequisite to subsequently increase the overall throughput, and the 
possibility for miniaturization, which ensures time- and cost-
effectiveness (Aldewachi et al., 2021; Leidner et al., 2024). Together, 
these two general goals will guarantee a more feasible scale-up of the 
screening strategy.

Overall, the selection of the right in vitro model for the respective 
NDD is key to the global success of such an endeavor: the choice will 
depend on a compromise between the desired model complexity 
(maturation, dimensionality, and heterogeneity, which are maximized in 
organoid co-cultures), the target throughput and reproducibility, as well 
as costs and time to be spent on model development and maturation 
(Whitehouse et al., 2023). While organoids can faithfully reproduce brain 
development dynamics, they are only partly suited to model NDDs due 
to their marked embryonic component. In addition, 2D and spheroid-
like 3D cultures represent a more valuable alternative also in terms of 
reproducibility, making them generally more suited to confidently 
increase the overall throughput (Centeno et al., 2018). An even more 
promising scenario derives from the combination of human iPSCs-
derived neurons and glia with three-dimensional modeling approaches, 
which allow for the better capture of the complexity of health and disease 
states even in a heterogeneous milieu (Klimmt et al., 2020). Indeed, 
co-culturing of neuronal and glial cells would be suited to model the 

FIGURE 3

Practical aspects to design an omics-based drug screening experiment. DD, drug discovery, sc, single-cell, sn, single-nucleus. Created with BioRender.
com.
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dynamics of the drug response in vitro for NDDs reflecting a high degree 
of cellular complexity and diverse cell–cell communication patterns 
(Stevenson et al., 2020). Hierarchically increasing the complexity of 3D 
models, from spheroids to organoids and assembloids, has been 
demonstrated to enable a more faithful mimicry of intercellular 
architectures observed in humans, which in analogy should result in a 
better representation of the dynamics of drug response (Centeno et al., 
2018). Nevertheless, higher-order in vitro models like organoids still lack 
sufficient reproducibility and throughput for the required scalability in 
large drug discovery approaches, while 3D co-culture systems represent 
a valid compromise between model fidelity and actual throughput 
(Klimmt et al., 2020). Overall, multi-omics can offer powerful tools to 
evaluate the fidelity of NDD in vitro models and drive the selection of 
optimal drug screening platforms.

A second key factor is the planned size of the drug screening. 
An initial high-throughput screening of a larger library of 
molecules, with omics as primary read-out, would benefit from a 
miniaturized setting with lower resolution and model complexity, 
to minimize resources while still maintaining economic feasibility. 
Instead, the downstream characterization of positive hits would 
urge for an upgrade of both the in vitro model and the omics 
resolution, so as to enable a further investigation of mechanisms 
of action and cell-type specificities. In addition, for each of the 
compounds to be  screened, treatment conditions (i.e., time, 
concentration, solvent for drug solubilization) may need to 
be  optimized a priori based on the available literature, or 
experimentally through multiple screening rounds using proper 
functional readouts (Moffat et  al., 2017). Further, in order to 
calibrate the experiment, the expected dynamics of time- and 
dose-dependent responses have to be considered and integrated 
into the workflow.

Ideally, the most advantageous omic readout layer for screening 
has to be  considered upfront, e.g., genomics, epigenomics, 
transcriptomics, proteomics, metabolomics. Transcriptome 
analysis is widely employed to inspect holistic cellular processes at 
basal or drug-perturbed states and offers the possibility to opt for 
bulk or single-cell approaches (Hasin et  al., 2017). RNA-seq 
technologies are among the most advanced approaches for further 
assay miniaturization, and as such bulk and single-cell 
transcriptomics have been increasingly used in drug discovery in 
the last decade (Baysoy et al., 2023; Van de Sande et al., 2023). 
While less easy to interpret as a readout for short-term drug 
responses, epigenomics approaches have been increasingly 
reported to assist the investigation of cellular mechanisms of 
response and drug susceptibility, and an increasing number of 
technologies are available for their single-cell and spatial 
characterization (Minnoye et al., 2021; Carraro et al., 2023; Preissl 
et al., 2023). Proteomics also offers powerful tools for the analysis 
of general cellular dynamics and response mechanisms, but 
techniques able to analyze the whole proteome at the resolution of 
single-cells, especially if starting from a limited number of cells, are 
still under development (Bennett et al., 2023). Assessing multiple 
omics layers simultaneously (multi-omics) can provide a more 
refined picture of drug responses (Carraro et al., 2022; Ivanisevic 
and Sewduth, 2023). Different strategies have been developed for 
the proper interpretation of distinct layers of omics information 
and their cross-talk within the biological context of interest. These 
integrative approaches, spanning from quantitative causal modeling 

to latent space inference and late integration (Miao et al., 2021), can 
tackle challenges such as the handling of heterogeneous data 
structures and employed technologies (i.e., sequencing- or 
MS-based), the often non-linear interactions between features from 
distinct omics readouts, as well as the optimization of 
computational performance (Athieniti and Spyrou, 2023). Both 
bulk- or single-cell-tailored strategies have been reported for the 
efficient integration of multi-omics in NDDs drug and target 
discovery (Cuperlovic-Culf and Badhwar, 2020; Qiu and Cheng, 
2024). As an example, Qiu et  al. (2024) recently developed a 
transcriptomics and proteomics-based systems biology framework 
to identify AD-related GPCRs and gut metabolites. Further, El 
Bouhaddani et al. (2024) reported a novel probabilistic multi-omics 
data integration method combining the information of 
transcriptomics, proteomics, and drug screening data to identify 
druggable targets involved in synucleinopathies.

Once the NDD in vitro model, the (multi)-omics readout and 
screening size are defined, additional optimization at different steps 
should be  considered, e.g., related to (i) the general protocol for 
differentiation and culturing conditions; (ii) the workflow for applying 
compound treatments, which will vary also based on the planned drug 
screening size and may call for further miniaturization while 
maintaining compatibility with the required information depth of the 
selected omics readout; (iii) the optimal dissociation strategy in case 
of further cell sorting and single-cell analyses, balancing the overall 
recovery rate while limiting cellular stress, which could derive from 
enzymatic trypsin/papain-based digestion with or without manual or 
automated mechanical dissociation (Denisenko et al., 2020); (iv) the 
definition of standard operating procedures (SOPs) for the 
preprocessing of samples for downstream omics investigations (e.g., 
transcriptomics and/or proteomics; bulk, single-cell or single-nucleus) 
as well as SOPs for the actual omics analysis based on the specific 
technology of choice [e.g., droplet-based or microwell-based 
transcriptomics (Conte et  al., 2024)]; (v) the optimal sequencing 
strategy in case of NGS-based omics, as well as (vi) the downstream 
analysis workflow based on quality control (QC) requirements, 
formulated hypotheses to be  tested and biological insights to 
be gained.

In summary, we  discussed here some of the main aspects to 
be considered when planning a priori an omics-based drug screening 
experiment, as well as further steps to be taken into consideration for 
the optimization of a comprehensive workflow, bearing in mind that 
every strategy needs to be tailored to the specific biological question, 
desired throughput and available resources.

5 Discussion

The advent of omics technologies has revolutionized the field of 
health sciences by introducing the paradigm of precision medicine 
(Ashley, 2016). Precision medicine aims to prevent and treat disease 
states based on the susceptibilities of individuals through deep geno-
phenotyping and further clinical stratification (Hulsen et al., 2019). 
Such a perspective for personalized therapies sounds particularly 
appealing to tackle neurodegenerative diseases, which are still rather 
resistant to a successful discovery of novel curative or symptom-
alleviating agents because of their high intra- and inter-individual 
heterogeneity (Strafella et al., 2018).
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In this review, we  summarized the main advances and 
opportunities for the use of multi-omics approaches for drug discovery 
and development against neurodegenerative diseases. We described (i) 
how omics can be  used to investigate the different cell states, 
phenotypes and peculiarities of in vitro models for NDDs, instructing 
the downstream selection of the most optimal platforms for drug 
screening; (ii) how to mine and re-use available omics datasets and 
databases to refine disease signatures and identify new druggable 
targets; (iii) how the use of computational omics-based approaches can 
drive the selection of repurposable candidates including valuable 
examples from the field; (iv) how the use of omics-based screening 
approaches can offer a holistic overview of cell type-specific drug 
responses up to single-cell resolution for an unbiased identification of 
interesting therapeutics against NDDs and (v) we provided an overview 
of some practical aspects for the efficient design of an omics-based 
drug screening experiment.

Among others, these approaches promise to tackle the current 
lack in early disease intercepting therapies in the field of 
neurodegeneration, but also highlight the concurrent need for 
establishing clear blood, CSF, CNS biomarkers as well as more 
comprehensive definition of patient endotypes across different 
NDDs to support this process (Hampel et al., 2021). Coupled with 
high-throughput in vitro models for the respective disease, such as 
hiPSCs-based systems, multi-omics could enable high-scale 
phenotyping of inter-individual variabilities in favor of more 
personalized treatments (Brooks et al., 2022). In addition, omics 
analysis promises to tackle the urgent need to converge and 
rationalize the information from different valuable rodent and 
human models, often only partly superimposable, identifying shared 
and model-specific disease traits, finding univocal cell subtype 
nomenclatures and prioritize human-like phenotypes and signatures 
(Aerqin et al., 2022; Jung and Kim, 2023).

Collectively, the advent of omics in driving drug discovery 
against NDDs has already highlighted promising developments, 
but further efforts are required to exploit their full potential and 
increase their clinical translatability. Processing standards and 
community guidelines would ensure the optimal use of omics in 
drug development, repurposing and target identification, ranging 
from sample procurement and preprocessing to multi-omics 
library generation, data exploration and integration (Mangul 
et al., 2019; Tarazona et al., 2020; Brooks et al., 2024). In parallel, 
solid and versatile platforms should be set up for early in vitro 
high-throughput omics screening of drugs against NDDs, 
guaranteeing reproducibility, scalability and sufficient disease 
complexity. Moreover, the quality and reusability of multi-omics 
and clinical data heavily depend on the application of appropriate 
and harmonized quality assurance protocols for laboratories in the 
field (Oldoni et al., 2022). Also for AI-based drug discovery, the 
accuracy of omics-driven data modeling in predicting patient 
characteristics depends on the quality and quantity of data and the 
interoperability of the tools used. Reliable and standardized data 
are not always accessible for AI due to the sensitive nature of 
clinical phenotype data and challenges in obtaining standardized, 
structured databases (Oldoni et  al., 2022). In addition, data 
privacy issues pose a significant challenge preventing the full 
translatability of omics and their use to define reliable biomarkers 
and drugs (Oestreich et al., 2021). This has an impact on data 

accessibility and interoperability, and requires the definition of 
novel strategies beyond classical data sharing practices, able to 
account for regulatory compliance, ethical and legal considerations 
(Schultze et al., 2022).

We believe a joint investment in clinical omics-based investigation 
of disease cohorts together with advanced in vitro modeling of NDDs 
can speed up the identification, further optimization and development 
of therapeutics to finally intercept, decelerate and potentially cure 
common neurodegenerative diseases.
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